Complex Event Processing Synergies with Predictive
Analytics

Gabriella Téth
Dept. of Software Engineering
University of Szeged, Hungary

gtoth@inf.u-szeged.hu

Arpad Beszédes
Dept. of Software Engineering
University of Szeged, Hungary

beszedes@inf.u-
szeged.hu

ABSTRACT

For Complex Event Processing (CEP), the synergy with Pre-
dictive Analytics (PA) is a promising research direction. In
this paper we focus on the inclusion of PA technologies into
CEP applications. Involving PA opens a wide range of pos-
sibilities in several application fields. However, we have ob-
served that only a few CEP solutions apply PA techniques.
We extended a CEP solution with predictive capabilities,
defined the key aspects of the combination of these techni-
ques, and summarized how CEP and PA could gain from the
joint solution. Our approach is demonstrated in a proof-of-
concept experiment and simulation results are provided.

Categories and Subject Descriptors
C.2.4 [Comp-Comm. Networks|: Distributed Systems

General Terms
Theory, Reliability, Design, Experimentation

Keywords

complex event processing, predictive analytics

1. SYNERGIES OF CEP AND PA

The synergies between CEP and PA enable new use cases
or applications. PA deals with different kinds of predic-
tion (long term, short term, classification, regression, etc.),
while CEP deals with detecting real-time complex events.
By combining these two areas one could predict complex
events in the short term future. The reason why CEP sho-
uld be enhanced with PA techniques is that in many cases
the reaction should be triggered earlier, even before the oc-
currence of the primary event. In these cases, events can be
predicted by PA models incorporated to the CEP solution.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DEBS’10, July 12-15, 2010, Cambridge, UK.

Copyright 2010 ACM 978-1-60558-927-5/10/07 ...$10.00.

Lajos Jend Fulép
Dept. of Software Engineering
University of Szeged, Hungary

flajos@inf.u-szeged.hu

Hunor Demeter
Nokia Siemens Networks
Hungary
hunor.demeter@nsn.com

LaszI6 Vidacs
RGAI, Hungarian Academy of
_ Sciences
lac@inf.u-szeged.hu

Lorant Farkas
Nokia Siemens Networks
Hungary
lorant.farkas@nsn.com

Real application

Simple event) (Simple event) (Simple event) (Simple event

CEP engine

PA

Primary
omplex eveny

nchronized event handler(s) ‘

Figure 1: CEP-PA solution - logical architecture
An ellipse denotes certain simple or complex event, while a box
represents an information processor component. The white boxes
and ellipses are the parts of the initial CEP application, while the
blue ones represent the required components and events for the
CEP-PA synergy. The dashed lines represent indirect (logical)
connections, while the solid lines represent physical connections.

CEP detects complex events from a system according to
predefined queries based on simple events. By the connec-
tion of CEP and PA, these complex events can be predicted.
The logical architecture of the interworking CEP and PA so-
lution is illustrated in Figure 1. Let us suppose that we have
an initial CEP application, represented by the white boxes
and ellipses. In this system a certain complex event can be
detected with the help of CEP. This event is called primary
complex event, while the related query is called primary CEP
query. The event is handled by the event handler, which
performs an action when the event occurs, e.g. notifies the
business actor or triggers an automatic reaction (ECA). The
existing CEP solution is extended with the PA component
in a transparent way: the CEP engine is only the interface,
the original application is not affected. The PA component
contains a machine learning part. A large set of predictors is
necessary for building the internal machine learning model.
Generally, the calculation of predictors would be the task
of the original embedding application. In our case, instead
of the embedding original application, the CEP engine itself

produces the predictors (an example for the two-way nature
of the synergy). The CEP engine processes simple events in
the original system and produces complex events based on
CEP queries. These complex events are the required predic-
tors, denoted as secondary complex events (SCE). The SCEs
are transmitted physically by the event handler. Another re-
quirement for PA is the target of the prediction, which is the
primary complex event (PCE). This event can be sent to PA
similarly to the SCEs. The PCEs and SCEs occur at diffe-
rent times, it is important to synchronize them with event
handlers. Afterwards, the training set is extended based on
the earlier defined predictors and the prediction target. The
learning model is periodically refreshed based on the cur-
rently extended training set. Then PA gives a prediction for
the PCE at a later time, based on the predictors and the
actual learning model. This prediction is sent back to the
CEP engine, which generates a new (predicted) event. By
this way, PCEs can be predicted.

There are several possible extensions for the presented
CEP-PA synergy. The predicted event can be used to de-
fine further complex events. In case of the dependency on
another event which requires the avoidance of the prediction
step, a new complex event based on the predicted and the
controller event may help. In case of applying multiple PAs,
several predicted events appear in the CEP engine which can
be used in further CEP patterns. For example, in the case
of applying 5 PA algorithms in parallel, the CEP engine gets
5 prediction events, where a complex pattern could accept
the prediction if at least 3 predict the event.

2. PROOF OF CONCEPT

We performed proof of concept experiments on a CEP
program which works on an entry system of a building. The
task of the CEP engine is to listen the traffic data, and in
case of too high incoming traffic it has to issue an alert
(complex event) about the overload. With PA extension, we
can not only detect the overloaded entry doors but predict
as well. If the number of entrants is greater than 25 during
the last 1.5 hours, the entry system is overloaded which is
detected by the CEP solution. We refer to this event as the
Primary complex event. In the current implementation, the
events for the CEP engine are simulated by reading a da-
tabase file [2]. The original database contains information
about concrete events (e.g. conferences). However, we have
not used this data, but rather we defined our custom event
(incomings are greater than 25 during the last 1.5 hours) to
create a CEP application. Note that the half-hour measure-
ments could be more frequent, e.g. 10 seconds: therefore
this does not affect the validity of the experiment.

The forecast is based on the number of entries and exits,
and the timestamp. So, we have these simple events: the
number of incoming/outgoing persons during the last half
an hour and the timestamp of the measurement. The comp-
lex events are: the median, summed, maximum, minimum,
average number of persons coming in during the last 2.5 ho-
urs; the difference between the entrants at 2.5 hours before
and now — we had presumed that it increases when an event
is approaching; the day of the week (e.g. Monday) and fi-
nally the number of people in the building. The complex
events defined and detected with an Esper application [1].

The practical example contains only one SCE which rep-
resents information about all predictors. Note that certain
predictors cannot be calculated with CEP query (e.g. day

of the week). During the first week, the synergy does not
provide any forecast, only extends the training set in the
PA framework (in our solution we applied Weka [3]). At
the beginning of the second week, the first learning model
is built. Afterwards, the synergy can give forecasts in every
half an hour, where the forecast concerns the following one
hour. The training set is extended continually with the new
data, while the learning model is refreshed weekly.

PA training set

Synchronizing SCEs and PCE in time

PA training set refreshing

Predictors from SCEs

PA learn model 1

Figure 2: CEP-PA illustrated chronologically
The area above the z axis presents the extension of the training set,
while the area below the z axis shows the forecasting process.

Predictions for future
1 hour

PA Prediction

Figure 2 shows the working of proof-of-concept in time.
It is a snapshot at measurement point 7. The training set
is extended with data coming from measurement point 5.
The predictors are calculated from SCEs on interval 1-5,
while the prediction labels are calculated from PCE based
on interval 5-7. By this way, the learning model based on
the training set is able to forecast the events during the next
one hour. In our example(Figure 2), it means the calculation
of SCEs on interval 3-7, and sending these as predictors to
the PA, which basically gives a forecast to the future point
9, but we accept this prediction for future point 8 as well.

Based on our results, the original CEP application is signi-
ficantly improved with prediction. We detected 1017 events,
from which 938 events were successfully predicted and 69
ones were false predicted. Successful prediction occurs if the
event is predicted 0.5 or 1 hour before it really occurs. False
prediction occurs if there was a prediction, but there are no
events occurring at 0.5 or 1 hour later. The precision of the
experiment was 93.15% and the recall was 92.23%.

3. CONCLUSIONS

A promising research area of CEP domain was examined:
how to use PA to enhance complex event detection. A logical
architecture of a PA-enhanced CEP solution was introduced.
Then results on real-world data using a proof of concept
implementation were presented. The achieved results are
promising, the CEP solution was extended with predictive
capabilities and the most events were predicted successfully.

4. ADDITIONAL AUTHORS

Additional authors: Tibor Gyiméthy (Dept. of Software
Engineering, University of Szeged, gyimi@inf .u-szeged.hu)

5. REFERENCES

[1] Esper/NEsper. http://www.espertech.com/.

[2] UC Irvine Machine Learning Repository - Callt2
building people counts. http://archive.ics.uci.edu/
ml/machine-learning-databases/event-detection/.

[3] I. H. Witten and E. Frank. Data Mining: Practical
machine learning tools and techniques. Morgan
Kaufmann, San Francisco, 2005.

