
Test Suite Reduction for Fault Detection and
Localization: A Combined Approach

László Vidács*, Árpád Beszédes**, Dávid Tengeri**, István Siket* and Tibor Gyimóthy**

MTA-SZTE Research Group on Artificial Intelligence*, University of Szeged**, Hungary
{lac,beszedes,dtengeri,siket,gyimothy}@inf.u-szeged.hu

Abstract—The relation of test suites and actual faults in a
software is of critical importance for timely product release.
There are two particularily critical properties of test suites
to this end: fault localization capability, to characterize the
effort of finding the actually defective program elements, and
fault detection capability which measures how probable is their
manifestation and detection in the first place. While there are
well established methods to predict fault detection capability
(by measuring code coverage, for instance), characterization of
fault localization is an emerging research topic. In this work,
we investigate the effect of different test reduction methods on
the performance of fault localization and detection techniques.
We also provide new combined methods that incorporate both
localization and detection aspects. We empirically evaluate the
methods first by measuring detection and localization metrics of
test suites with various reduction sizes, followed by how reduced
test suites perform with actual faults. We experiment with SIR
programs traditionally used in fault localization research, and
extend the case study with large industrial software systems
including GCC and WebKit.

I. INTRODUCTION

Using regression testing [1], [2] to maintain the overall
quality of software systems and reduce the risk of regressions
after changes is unavoidable for any software developed and
maintained for a longer period of time. But the repetitive use
and continuous maintenance of test suites used for regression
testing is hard since these test suites tend to grow almost
as large and complex as the system under test itself. Hence,
various methods are applied to cope with this complexity such
as test selection, prioritization and test suite reduction [2].

In this paper, we investigate the problem of test suite
reduction whose goal is, in general, to find the test suite’s
representative subset that satisfies certain properties of the full
test suite. A property often sought after is the fault detection
rate, i. e. the goal is to reduce the test suite in such a way
that one is able to detect as many faults as possible using the
least resources. Predicting the fault detection capability of a
test suite in general is hard, and the mostly accepted method is
to use different types of code coverage as an alternative [3]. In
a basic method, test cases are added to the reduced test suite
in a greedy manner aiming at high absolute code coverage
(referred to as Naive coverage-based method in this paper).
A more profound method is to select test cases that increase
mostly the cumulative coverage gained by previously selected
test cases (called Additional coverage-based method).

However, coverage-based approaches may have a negative
impact on another important test suite property, which is fault

localization capability [4], [5]. Fault localization refers to
an activity where, given the failing outcomes of some test
executions, the most probable program parts responsible for
the faults are sought. A widely researched fault localization
method is based on comparing the test outcomes to code
coverage (also called program spectra) [6]. Among other
factors, the successfulness of these methods highly depends
on how well a test case can differentiate between the program
elements based on their coverage information. But test reduc-
tions concentrating on the highest possible code coverage may
result in an opposite effect because, for instance, two test cases
both having high coverage may be indistinguishable from fault
localization viewpoint. Based on this observation, we defined
a test reduction method that particularily aims at selecting test
cases which better fit fault localization than fault detection.
We call the method Partition-based because it is based on
partitioning the program elements based on their coverage.

In this paper we contribute (1) a new combined reduction
method which could be a compromise when both detection
and localization aspects are important; and (2) we thoroughly
evaluate coverage-, partition-based and combined methods
investigating their performance on metrics and real faults
with various reduction sizes. The evaluation is performed
in two stages: first we define and compute suitable metrics
for fault detection and localization capability assessment and
compare the methods using these metrics. In the second step
we verify the results on actual faults by computing detection
and localization success rates and compare our findings to
the metrics-based approach. For the empirical assessment we
used test data from the program and test database traditionally
used in the fault localization field, the SIR repository [7]. In
addition, we also used real size industrial programs, including
the open source systems GCC [8] and WebKit [9]. Since we
wanted to verify our approach on large programs and test suites
we chose to use the level of granularity of procedures for
analysis. Our results suggest that in many cases it is adviseable
to use special reduction methods depending on whether the
goal is fault detection or localization. When both aspects are
important then a combined approach could be considered.

The paper is organized as follows. We present our moti-
vation and research goals in Section II and basic methods
in Section III. In Section IV, experiments are described,
while metric- and score-based measurements are presented in
Sections V and VI, respectively. Results are summarized in
Section VII, and we close with related work and conclusions.

II. RESEARCH AIMS

We concentrate on two important activities in the test-
diagnose-fix lifecycle of software defects: (1) fault detection
(observing failing tests) and (2) fault localization (finding
the program defects based on the failing tests). Both have a
high impact on software quality and their efficiency highly
depends on various – sometimes conflicting – properties
of the underlying test suites. In this work, we investigate
the respective properties of test suites based on their code
coverage information. Code coverage is essentially a signature
of dynamic program behavior reflecting which program parts
are run during tests. We will also make use of an error vector,
which reflects in which runs errors have been manifested.

Background on spectrum-based fault localization: In the
fault localization context, code coverage information is called
the program spectrum. Various forms of program spectra exist,
refer to the paper by Harrold et al. for an overview [4]. Most
of the spectrum-based fault localization methods are based on
assigning a “risk” value to each program part and use the thus
obtained ranking to localize the fault [10], [6]. In this work
we will follow the Tarantula approach that assigns a risk value
based on the number of hitting test cases that fail compared to
the total number of hits (the more often hitting test cases fail
the higher the risk). The successfulness of fault localization
is usually assessed by the diagnosis accuracy measure, which
is the “distance” between the actual program fault and the
resulting program element given by the ranking.

In this paper we work with procedure level code coverage,
which can be represented as a matrix whose rows are different
program runs (test cases of a test suite) and columns corre-
spond to different program parts (procedures in our case). In
the matrix, 1 means that the corresponding test case executes
the given program element. An example coverage matrix can
be seen in Figure 1. Similarly, the error vector will be a binary
vector representing the pass/fail outcomes of the test cases (0
means pass and 1 means fail). We will use P to denote the set
of procedures and T for the test suite consisting of test cases.

C =


p1 p2 p3 p4 p5 p6

t1 0 0 0 0 0 1
t2 1 1 1 1 1 0
t3 1 1 1 1 0 0
t4 1 0 1 1 1 0
t5 1 0 1 0 1 0
t6 0 0 1 1 0 0

 e =


0
1

...
0
0


Fig. 1. An example coverage matrix (program spectrum)

For fault detection and localization, usually different proper-
ties of the reduced test suites are required to hold. Traditional
test suite reduction methods are optimized to maintain fault
detection capability with the help of high code coverage.
On the other hand, for maintaining fault localization of the
reduced test suites different approaches are needed. As shown
by previous research, coverage based strategies usually have
a negative impact on fault localization capability [5].

In this paper, we investigate the relation of test reduction
methods optimized for either fault detection or localization

and, in addition, we introduce a combined approach where we
reuse selected tests of both detection and localization methods.
Our intention with the combined method is to provide a
feasible alternative with a reasonable trade-off for both aspects.

Our research questions are as follows:
RQ1: Is it true that the fault localization-driven reduction

method is more suitable for fault localization than fault
detection-driven ones, and vice versa?

RQ2: To what extent combined reduction methods are suitable
for both fault localization and detection purposes and
can they be used as a suitable trade-off?

To answer the above questions we performed a series of
experiments on different programs of various sizes. For in
depth evaluation we applied two approaches: (1) we evaluate
reduction methods by means of fault detection and localization
metrics; and (2) extend the metrics-based results with the
evaluation of the reduction methods on real faults.

III. TEST SUITE REDUCTION METHODS

Test suite reduction means the appropriate selection of a
set of test cases to reduce testing effort and at the same time
maintain good testing properties. Most of test suite reduction
problems can be expressed as a minimal hitting set problem
which is known to be NP-complete [2]. Therefore heuristics
are often used to find appropriate reductions. A simple yet
effective general heuristic is to use a greedy approach to select
those test cases that mostly satisfy the given requirement such
as test cases with the highest coverage. Many reduction meth-
ods are actually based on prioritizing test cases and selecting
them in the order implied by the prioritization. Various test
suite reduction approaches rely on quite different principles –
see an overview in [11]. Test prioritization methods usually
concentrate on highest code coverage, however we extend
the view by presenting reduction methods designed for fault
localization and by combining these methods. In this section,
we first introduce two suitable metrics to objectively express
fault detection and localization capabilities of a test suite (or
its reduced variant), which will then serve as bases for the
reduction algorithms presented later in the section. The metrics
will also be used for the evaluation of the reduced test suites.

A. Fault detection and fault localization metrics

Fault detection capability is traditionally predicted using
the level of code coverage of test cases. In this paper we
define the Fault Detection metric or FD metric as the ratio of
covered elements from all elements (the metric itself merely
predicts fault detection but we stick with this notation to be
consistent with other metrics used in this study). Since we
address procedure level capabilities, we define the metric for
the T ′ ⊆ T reduced set of test cases and P set of procedures
as follows (clearly, bigger FD metric is better):

FD metric =
|{p ∈ P | p covered by T ′}|

|P |
.

We define the Fault Localization metric or FL metric
to express the localization capability based on the idea of

counting the number of examinations one has to perform in
worst case to locate a fault for each possible faulty program
element (similarly to FL, this is also a prediction metric). Since
the basic approach in all spectrum-based fault localization
techniques is to compare the error vector to the coverage
vectors of program elements, it clearly follows that the level of
diversity in the coverage vectors influences the successfulness
of localization. In other words, if there are many similar or
same coverage vectors in the matrix, localization will take
more effort because those elements have to be investigated
one by one as opposed to the case when there are more
distinct ones. In our research we use a simplified approach
to express the similarity between the error vector and the
procedure coverage vectors by looking at exact equivalence.1

The equivalence of coverage vectors of the different pro-
cedures will determine a partitioning on the procedures: pro-
cedures covered by the same test cases (e.g. having identical
columns) belong to the same partition. For a program and test
suite under investigation we will denote such a partitioning
with Π ⊆ P(P) with the corresponding partitions π1, . . . , πK
(K being the number of partitions). This means that for a
partition πi that contains k elements we need at most k − 1
examinations to find the faulty element. Assuming that any
element of the partition can be faulty we need k(k − 1)
examinations for πi, and for the whole program:

FL metric =

K∑
i=1

|πi|(|πi| − 1) .

The metric may be computed for any T ′ ⊆ T reduced test
suite by looking at the corresponding coverage vectors with
the selected test cases only. It intuitively follows from the
definition that small FL values indicate good localization ca-
pability and values close to the maximum N(N−1) are worse.
It can be computed effectively by determining the partitioning
of the program elements using the program spectra. We use a
normalized version of this metrics between [0–1].

B. Fault detection driven reduction methods

The most widely accepted fault detection driven approach
aims at achieving the code coverage of the full test suite,
but with a possibly minimal subset of the test cases. In this
approach one selects the test cases in a greedy way based
on their prioritization according to individual code coverage
they achieve, starting with the biggest one. Once the desired
number of test cases (or full coverage) is achieved the selection
is stopped. We will refer to this traditional method as the
Naive coverage-based method, which is often also referred to
as “minimization for total coverage” or “general coverage”
method [3]. The Naive coverage method needs a coverage
measurement for each test case, but it is limited to a greedy
local decision. A more elaborate solution is provided by
the Additional coverage-based method. Here, in each step

1Clearly, in real life situations this approach may not always be successful
for fault localization, however for the purpose of fault localization capability
prediction this will be a good approximation.

already selected tests are extended with a single test from the
remaining set. Code coverage is computed for each candidate
from the remaining test set, and the one resulting highest total
coverage is selected. This requires intensive computations in
each step, but in each step we select the optimal solution in
terms of total coverage of the reduced test suite.

C. Fault localization driven reduction

We elaborated a concept and implemented a novel test
suite reduction method optimized for fault localization rather
than fault detection. The key idea of the approach is to
select those tests in the reduction that will result in the finest
possible partitioning of program elements, because following
the intuition behind the FL metric introduced above, fault
localization is expected to be more successful with a higher
number of partitions and smaller partition sizes.

A naïve implementation of the concept would be to select
in each step the test case producing the highest FL metric
value, however this is infeasible for large software due to
the large number of computations required. We employ an
algorithm which is more scalable because it does not use
the FL metric directly but approximates it with a heuristic.
The algorithm starts by selecting the first test case that best
separates the procedures into two sets based on their coverage.
Then, it iteratively selects new test cases that best separate
the resulting procedure sets into two new sets each, and
so on, until a desired number of test cases is reached (we
refer to this reduction as the Partition-based method). In each
iteration the algorithm adds two times more test cases to
the reduced test suite as in the previous iteration, practically
producing 1, 3, 7, 15, . . . test cases in iterations 1, 2, 3, 4, . . . ,
respectively. This type of exponential expansion of test cases
is natural due to the structure of the algorithm, but it can
be implemented in such a way that the number of additions is
limited to a certain limit. We store the reduced test sets in each
iteration so that we can make comparisons to other approaches
experimentally. This is indeed scalable: all iterations of the
biggest program we used took less than an hour.

D. Combined reduction methods

The above mentioned reduction methods serve specific aims.
Now we propose a new approach to combine the advantages
of the two different reduction methods, which works as
follows. For a given reduced test suite size k, we compute the
intersection of the reduced sets of the two methods, and if the
intersection is smaller than k we include additional elements
selected interchangeably from both sets until the desired k
tests are reached. More formally:

1) Select the intersection of the two test suites and add the
result to the combined reduced test suite.

2) Iteration step. Select a new test case alternatingly from
the first and then from the second base reduced set. The
selection takes place in the order the tests were selected
by the base reduction algorithms.

3) Repeat step 2 until the combined test suite reaches the
desired size.

Clearly, if the intersection is large then the combined test set
will be probably suitable for both tasks. However, if it is small,
the combined set will be dominated by a union of the two
base sets each according to their own order of elements. We
will combine the Partition-based method with both coverage-
based approaches, and will refer to them as Partition-Naive
and Partition-Additional methods. In order to be able to make
comparable measurements we will compute reduced test suite
sizes following the natural sizes produced by the Partition-
based method in its iterations.

E. Summary of the reduction methods

We define more formally and give an example for our total
of five test suite reduction methods introduced above. Let T
be the set of all test cases and let k be the reduction size.
Then five (base and combined) reduction algorithms selecting
k test cases are the following:

P k(T) = {the first k elements of Partition-based reduction}
Nk(T) = {the first k elements of Naive coverage reduction}
Ak(T) = {the first k elements of Additional coverage red.}

PNk(T) =P k(T) ∩Nk(T)∪
{alternate remaining elements from P k(T)

and Nk(T) in their order up to
∣∣PNk(T)

∣∣ = k}
PAk(T) =P k(T) ∩Ak(T)∪

{alternate remaining elements from P k(T)

and Ak(T) in their order up to
∣∣PAk(T)

∣∣ = k}

Figure 2 shows the reduced test suites for our example.

P 4(T) = {t5, t3, t1, t6}
N4(T) = {t2, t3, t4, t5}
A4(T) = {t2, t1, t3, t4}

PN4(T) = {t5, t3, t1, t2}
PA4(T) = {t3, t1, t5, t2}

Fig. 2. Example results of reduction methods.

IV. MEASUREMENTS

This section gives an overview of the subject programs
investigated in our experiments: a collection of small to big
programs with corresponding test suites. Our set of subject
systems consists of three types of programs: programs from
the SIR repository [7] traditionally used in fault localization
research, three medium size programs and two industrial
size open source systems. The SIR set of programs includes
programs from the the so-called Siemens suite as well (without
‘replace’, because we were unable to extract test case data
from the downloaded version).

Our data set included two large industrial software systems
from the open source domain. The first one was the WebKit
system, which we have already used in some of our previous
investigations [12], [13]. WebKit is a popular open source
web browser engine integrated into several leading browsers

by Apple, KDE, Google, Nokia, and others [9]. In our mea-
surements we used the Qt port of WebKit called QtWebKit
on x86_64 Linux platform. The presented data have been
computed on revision r91555 (July 2011). The other large
system we used was the GNU Compiler Collection (GCC),
the well-known open source compiler system [8]. We chose
revision r184199 (configured for C and C++ languages only)
for our experiments from February 2012.

Table I summarizes the subject systems and their basic
properties. We performed our measurements on the granularity
of procedures, hence all statistics are given correspondingly.
Column 5 shows the ratio of tests and procedures, which
may be interesting for analyzing the different detection and
localization results. This ratio is much higher (over 100) in the
case of SIR programs than for the big programs, where these
two values are comparable. The 6th column shows the number
of revisions for each program. Except when noted otherwise,
all following measurements were performed for each revision
and average values were calculated.

A. Fault data

The next two columns in Table I show how many and what
kind of known faults were available for these programs. In
the case of SIR programs, only space included real faults
in the form of code annotations, the others were seeded by
the repository authors. Although individual seeded faults are
similar to real ones, the whole set of artificial faults is of course
not as valuable as real faults. Hence from the SIR repository
we mostly present results for the space program.

For WebKit, we used a data mining approach to identify
most probable faults, which included the analysis of the
version control repository and the bug tracking system as
follows. The source code of WebKit includes ChangeLog files
which contain descriptions about the changes of the system
and one or more links to the corresponding entries stored in
the bug tracking system of WebKit (Bugzilla). We analyzed
the ChangeLog files to collect those commits which corrected
bugs. To decide whether the examined bug existed in the given
revision we used the Bugzilla entries. We suppose that the
bug continuously existed from its reporting date – when the
Bugzilla entry was created – to its correction date – when
the fix was committed to the source code repository. Only
those bugs were taken into account whose lifetime overlapped
the date of examined revision. And finally, we analyzed the
difference between the two subsequent revisions to find out
which source code elements had to be changed to correct the
given bug (more details can be found in [14]).

In this work we enhanced Bugzilla-based fault mining
results by manual investigations. The main drawback of the
Bugzilla-based method is that WebKit developers do not
distinguish bugs and feature requests: formally the same kind
of bug reports are used for reporting bugs and implementing
new features. The bug miner tool reported 21 bugs based on
pattern matching, which were corrected within 1 month period
following revision r91555, our version of interest. All 21 bug
reports were manually investigated at two levels: (1) whether

TABLE I
MEASUREMENT OBJECTS AND PARTITION STATISTICS (* SEE TEXT)

Program name Lines Procs Tests Tests/Proc Vers Faults Fault type Cov. % Diff. % avg |πi| avg |πi| %
space (SIR) 6.2K 136 13,570 99.89 38 38 Real 100% 30.00% 1.40449 1.03%
printtokens (Siemens) 726 18 4,130 229.44 5 7 Seeded 100% 1.28% 1.63636 9.09%
printtokens2 (Siemens) 570 19 4,115 216.58 10 10 Seeded 100% 0.22% 2.71429 14.29%
schedule (Siemens) 412 18 2,650 147.22 9 10 Seeded 100% 5.20% 1.28571 7.14%
schedule2 (Siemens) 374 16 2,710 169.38 10 10 Seeded 100% 2.16% 1.33333 8.33%
tcas (Siemens) 173 9 1,608 178.67 37 41 Seeded 100% 0.44% 1.5 16.67%
totinfo (Siemens) 565 7 1,052 150.29 20 20 Seeded 100% 0.58% 1.66667 23.81%
augeas 86.1K 784 273 0.35 278 – – 100%* 70.62% 5.65185 0.72%
bison 34.3K 625 597 0.96 827 – – 100%* 69.03% 25.934 4.15%
dateutils 18.4K 349 522 1.50 883 – – 100%* 59.84% 2.766 0.79%
GCC 6.2M 20,372 128,230 6.29 1 – – 100%* 44.51% 1.83399 0.01%
WebKit 4.5M 46,400 21,987 0.47 1 68 Mined 100%* 88.40% 1.98605 0.00%

the bug report is a bug or feature; and (2) whether extracted
procedures really take part in the bugfix. We found that from
these 17 were indeed bug fixes, while in the other cases
the type of modification was more like development of new
features, migration or code refactoring. Altogether 88 methods
took part in the correction of the 17 bug reports, from which
68 methods were covered by the test suite. We used these 68
procedures as inputs in fault localization experiments.

B. Coverage

The next column in Table I shows the procedure level
coverage ratio of the full test suites in percent. Programs of the
SIR repository are provided test cases that cover all methods.
The space program is the only larger program consisting
of 136 methods and 13570 tests. Industrial software have
two orders of magnitude larger size and they have large
test suites. For the sake of easier comparison, for the larger
programs where the 100% coverage is not satisfied in the
basic case, we considered only those tests which were run
and only those methods which were covered by test cases.
For example, the r91555 revision of WebKit has 25,854 test
cases in the test suite, from which 3,867 were not run by the
automatic regression tests. This program consists of 72,504
procedures overall, from which only 46,400 were covered. The
next column in the table shows how many different coverage
vectors exist in the test suite. This number essentially shows
the redundancy existing in the test cases as far as procedure
level coverage is concerned. Programs with high relative ratio
of test cases naturally tend to be more redundant.

C. Fault localization partitions

Procedure partitions will be the base for our partition-based
reductions and measurements so we collected some basic
statistics about them. In the last two columns in the table, the
average size of partitions and their size relative to the whole
program can be seen. If the programs’ test suites exhibit very
fine partitioning with many small partitions, fault localization
could be better and vice versa. We can observe that, generally,
there are a lot of small partitions in the programs. The two
biggest programs’ partitions have an average size smaller than
two, while there are some outlier programs with an average
of 14–24% of all procedures. Partition sizes showed similar
distributions for the whole program set. In the case of WebKit

99.71% of the partitions were below partition size 30 and there
were 2,051 partitions of size one.

V. METRIC-BASED RESULTS

In this section we compare and evaluate the five test re-
duction methods using fault detection and localization metrics
defined earlier. These metrics rely on the coverage data and
do not use the information which tests passed or failed. We
thoroughly evaluate metric values measured on programs de-
tailed in the previous section. First we present and evaluate our
experiments using three representative systems. We selected
the space program from the SIR repository and two large
real-world systems, GCC and WebKit. For space we provide
average numbers computed for all versions while for the other
two programs we measured one version each.

For each program and reduction method, we computed
reduced test suites with various sizes according to the
sizes imposed by the Partition-based algorithm’s iterations
(1, 3, 7, 15, . . .). The aim was to observe the internal behaviour
of methods starting from small to growing test set sizes.
Figure 3 shows both FD and FL metrics for space, GCC and
WebKit. The x axis in the figure shows the actual iteration
number, for example iteration 7 means that all algorithms are
set to select 27−1 = 127 tests. This naturally implies that the
sizes on this axis are represented in a logarithmic scale. This
notation is used in the remaining sections of the paper.

In the figure, FD values show an increasing trend as the
coverage is increasing by adding new test cases, while the
FL metric is decreasing. Examining the space program, the
Additional coverage method shows the best results in the
case of fault detection metric. It reaches the 100% coverage
much earlier than others. Surprisingly, Naive coverage method
behaves worst: it starts with a relatively high FD value, but
the Partition algorithm reaches it in 3 iterations. From the
localization point of view, the Partition algorithm produces
the best results, closely followed by the combined methods.
These results are in line with our intuition: each method is
best the purpose it is designed for. In addition, the combined
algorithms reached good results in fault localization. Large
systems show slightly different picture: good fault detection
and localization capability is reached only at higher reduction
sizes. The Additional algorithm in initial iterations is slightly
better even for localization than the Partition algorithm.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Partition

Naive coverage

Additional coverage

Partition*Naive

Partition*Additional

Iterations

FD space

FL space

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Partition

Naive coverage

Additional coverage

Partition*Naive

Partition*Additional

Iterations

FD GCC

FL GCC

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Partition

Naive coverage

Additional coverage

Partition*Naive

Partition*Additional

Iterations

FD WebKit

FL WebKit

Fig. 3. FD and FL metric changes for the different reduction sizes for space, GCC and WebKit

Given the low success of the Naive coverage algorithm,
in the following we concentrate on the Partition and Addi-
tional coverage algorithms and their combination. For deeper
investigations we narrow down the observed reduction sizes.
In Figure 4 results of selected iterations are presented as
bar-charts; FD iterations are listed in the upper part, while
FL results are presented in the bottom part. For space the
results are almost the same after 5-6 iterations (63 tests), so in
Figure 4 only the initial iterations are shown. At this phase the
Additional coverage algorithm produced the best FD metrics,
while the best FL metric had the Partition-based algorithm.
The combined Partition-Additional algorithm is a close second
during all iterations. For GCC and WebKit, initial iterations
of both FD and FL metrics dominated by the Additional
algorithm, while the Partition-Additional algorithm was always
close to the best result. After some iterations the combined
algorithm produced the best FL metric values both for GCC
and WebKit, which emphasizes the role of the Partition-based
algorithm. For large programs these reduction sizes are closer
to a real-life scenario: from more than 20,000 test cases a
reduced test plan likely contains at least a few hundred test
cases (iterations 8 and above). The coverage-centric Additional
algorithm sometimes precedes the Partition-based algorithm,
which is probaly due to the lower relative number of test cases
of WebKit compared to GCC and space.

TABLE II
TWO BEST REDUCTION METHODS IN TERMS OF FL AND FD METRICS

Program name FL 1st FL 2nd FD 1st FD 2nd

space Part Part*Add Add Part*Add
printtokens Part Part*Add Add Naive
printtokens2 Part Part*Add Add Naive
schedule Part Part*Add Add Naive
schedule2 Part*Add Part Add Naive
tcas Part Part*Add Add Naive
totinfo Part Part*Add Add Naive
augeas Part Part*Nai Add Part*Add
bison Part Part*Add Add Part*Add
dateutils Part*Add Part Add Part*Add
GCC Part*Add Add Add Part*Add
WebKit Add Part*Add Add Part*Add

To give an overall view of all programs, we prepared brief
statistics about which algorithms performed best for the two
scenarios. For each program we counted the winners in all
iterations and in Table II we provide the two best algorithms
in terms of our metrics. For fault localization purposes the Par-
tition algorithm is the best method while usually the combined
Partition-Additional version is the second best. Results slightly

differ for large programs: Additional method is the second for
GCC and first for WebKit. For fault detection the Additional
algorithm produced best results – not surprisingly, the algo-
rithm is constructed so that in each step the best available
test case is selected for higher coverage. The Naive coverage
algorithm is the second for several small programs, but for
larger and industrial size programs the combined Partition-
Additional method immediately follows the best result.

We summarize and compare our findings with the score-
based measurements in Section VII.

VI. SCORE-BASED RESULTS

Our second approach to experimentally investigate the
reduction methods was to measure the fault detection and
localization accuracies of the reduced test suites on actual
faults (called scores). This may provide additional insights to
the performance of the methods, however these results will
particularily depend on the used test sets and related faults
and hence should be generalized with caution.

A. Measuring detection and localization scores

The successfulness of a reduced test suite in terms of fault
detection (the FD score) will be measured by a metric defined
by Rothermel and Harrold as inclusiveness [11]. It is the ratio
of the failing test cases included in the reduced test suite
relative to the total number of failing test cases when executing
the complete test suite:

FD score =
failing tests included

total failing tests

Naturally, the FD score is best if it has the value 1 and
in the worst case it is 0. For the purposes of the present
article we rely on one specific fault localization technique,
Tarantula [10], [6]. The FL score will be calculated as the
diagnosis accuracy, the term often used in fault localization.
It essentially means measuring the distance between the actual
program fault and the resulting program element given by
a technique’s ranking. There have been various evaluation
metrics proposed for this purpose, which are usually based on
the amount of program elements one has to investigate before
finding the (first) fault. The following method uses the average
ranking position for each program element in their respective
groups of same values to alleviate the problem of two or more
elements with the same ranking value. More precisely, for
our selected ranking technique we first compute the average

0

0,2

0,4

0,6

0,8

1

1 2 3 4 Iter.Iter.

FD space

0,75

0,8

0,85

0,9

0,95

1

7 8 9 10 11 12 13 14 15 16 17It.

FD GCC

0,82

0,84

0,86

0,88

0,9

0,92

0,94

0,96

0,98

1

10 11 12 13 14 15Iter.

FD WebKit

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

1 2 3 4

Partition

Additional coverage

Partition*Additional

Iter.

FL space

0

0,005

0,01

0,015

0,02

0,025

0,03

7 8 9 10 11 12 13 14 15 16 17

Partition

Additional coverage

Partition*Additional

It.

FL GCC

0

0,002

0,004

0,006

0,008

0,01

0,012

0,014

0,016

0,018

10 11 12 13 14 15

Partition

Additional coverage

Partition*Additional

Iter.

FL WebKit

Fig. 4. FD and FL metric changes for selected range of iterations

ranking position 0 ≤ R ≤ N − 1. Let ri denote the actual
ranking value calculated by the technique for pi (i = 1 . . . N),
and let 1 ≤ d ≤ N be the index of the program element we
know to contain the fault. Then:

R =
|{i|ri > rd}|+ |{i|ri ≥ rd}| − 1

2

The FL (or diagnosis accuracy) score is then computed as
the relative number of program elements that need not be
investigated by traversing the ranking starting from the highest
rank and ending in the average ranking position R:

FL score = 1− R

N − 1

Similarly, FL score is best with value 1 meaning that 100%
of the program elements can be skipped, and 0 means that
none can be skipped, making it the worst value.

B. Results

In this set of experiments we will present detailed results
for two programs, space and WebKit. Program space and
its test suite are sufficiently large and, as opposed to the
other programs in the SIR set, it includes real faults. For this
program, we could use 38 faults, one for each revision, and
in all cases exactly one procedure was faulty. From the bigger
programs we had access to fault data only for WebKit, but in
this case the faults were gained by semi-automatic heuristic
mining methods, as presented earlier in this paper. We worked
with 68 faulty procedures that belonged to 17 actual bugs (we
used only one revision in WebKit).

First, we measured the FD and FL scores for the two subject
programs for all reductions produced by the 5 methods without
any additional filtering of the data and calculated their total
average. Figure 5 shows the results for program space. We
do not show the detailed results for WebKit at this point,
instead we will present related results later in this section.
The FD scores mainly showed the expected values with some
interesting details. In the charts we included an additional
data point, called Statistically expected that corresponds to
the expected score value of a random reduction of the given

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Partition

Naive coverage

Additional coverage

Partition*Naive

Partition*Additional

Stat. expected

FD score space

It.

0,5

0,55

0,6

0,65

0,7

0,75

0,8

0,85

0,9

0,95

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Partition

Naive coverage

Additional coverage

Partition*Naive

Partition*Additional

FL score space

It.

Fig. 5. FD and FL score changes for the different reduction sizes for space

size (assuming uniform distribution of failing test cases it
will be proportional to the reduction size). In almost all
cases all reduction methods produced slightly better scores
but there are two different winners for the two programs.
For space, Naive coverage proved to be the best while for
WebKit it was the Additional coverage. The result for space
was surprising because we expected Additional coverage here
as well. We speculate that it was due to the unusually large
number of test cases compared to the program size (13,570 test
cases compared to 125 procedures). Namely, since the total
coverage for this program was reached relatively early with
the Additional coverage method (8 test cases covered all 125
procedures), all subsequently added test cases were selected
arbitrarily, as opposed to the Naive coverage method where in
each step the highest coverage was chosen hence there were
more chances to include failing test cases.

Looking at the charts for the FL scores, we could not
observe a remarkably big difference among the different
reduction methods, contrary to our findings for the metrics in
the previous section. Additional coverage showed best results
in the highest number of cases but also the partition and the
respective combined method won several times. Similarly, for
WebKit we did not observe any significantly better method
either. Therefore, we performed various filtering to the data
to discover the most relevant cases. First, we decided that
we should consider only reduction of certain size. Namely,
looking at the FD scores we observed that in the first several
iterations of the reduction algorithms there were very few
failing test cases included. Only around iteration 10 (which
is 1023 test cases) the best performing reduction included
about 25% of the failing test cases. This means that with this
and even smaller rate of failing test cases, fault localization
could begin with a quite big handicap and chances to get
acceptable results would be low. Indeed, in the first 5 iterations
with different sizes for WebKit the FD score was actually 0
making the corresponding FL scores exactly 0.5. In the last few
iterations reduction was too small anyway, hence we decided
to concentrate on iterations 10–12 with both programs (sizes
1023, 2047 and 4095).

The second adjustment we performed was that we ignored
from FL score calculation those program elements that could
definitely be excluded as potentially faulty ones because they
were not covered by any of the test cases in the reduced sets.
This was required as we noticed that without this filtering,
for WebKit the scores were quite low; close to the 0.5 value,
which is the score given to program elements that all have
the same risk value of 0. With this filtering instead of 68
we got 63, 64 and 67 procedures for WebKit in these three
sizes, respectively. For space there were no such elements. The
corresponding results can be seen in Figure 6. In these charts
we also exluded the two Naive coverage methods because they
showed the worst results overall. FD scores are the same as in
the previous charts but we can observe changes with this data
set regarding the FL score. Namely, in all of these cases the
Partition-based method outperformed the others, which was
not the case for WebKit without the filtering.

0

0,1

0,2

0,3

0,4

0,5

0,6

10 11 12

Partition

Additional coverage

Partition*Additional

Iter.

FD score space

0

0,1

0,2

0,3

0,4

0,5

10 11 12

Partition

Additional coverage

Partition*Additional

Iter.

FD score WebKit

0

0,2

0,4

0,6

0,8

1

10 11 12

Partition

Additional coverage

Partition*Additional

Iter.

FL score space

0,545

0,55

0,555

0,56

0,565

0,57

0,575

0,58

0,585

10 11 12

Partition

Additional coverage

Partition*Additional

Iter.

FL score WebKit

Fig. 6. FD and FL score changes for space and WebKit

A closer investigation of the results for both FD and FL
scores will underline the superiority of the Partition-based

method for fault localization-aware reduction over coverage-
based approaches. Namely, compare any case when the
Partition-based reduction produced the best FL score to the
corresponding FD score, which was smaller than any other
reduction in its category. This means that better localization
could be obtained by a test set with fewer failig tests of the
same size reduction using the partition-based approach than
with the coverage-based ones. In other words, the Partition-
based algorithm selected fewer failing test cases but they
were better in terms of localization. For instance, in the
case of the 1023 test suite size for space, the Partition-
based reduction selected an average of 181 failing test cases,
while the Additional coverage selected 201, yet Partition-based
reduction resulted in better fault localization.

In our last set of investigations we looked at the relatively
low average FL scores obtained for WebKit. It turned out
that it was generally due to the fact that there were several
fault localization cases with really low scores compared to the
smaller number of high scores and these data points influenced
badly the average values. We believe that the relatively high
number of such low scores were due to: (1) WebKit’s faults
were mined using heuristic approaches with no guarantee for
their validity, (2) the faulty procedures were all taken together
regardless of the bugs they were related to and (3) there
could usually be assigned more than one faulty elements to
each bug. To alleviate this problem we excluded from FL
score computation those program elements whose Tarantula
risk values were smaller that 0.5, in other words we worked
only with those elements that had more failing test cases than
passing ones. The modified scores obtained with this filtering
can be seen in Figure 7. We can see that the FL scores
were usually above 0.9, but the relative difference between the
reduction methods was similar as with the unfiltered version.

0,5

0,55

0,6

0,65

0,7

0,75

0,8

0,85

0,9

0,95

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Partition

Naive coverage

Additional coverage

Partition*Naive

Partition*Additional

FL score WebKit

It.

Fig. 7. FL score changes for the different reduction sizes for WebKit when
only high risk values are used

VII. DISCUSSION

To address the research questions set forth at the beginning
of the article, we followed a dual approach: using conceptual
metrics that could predict the actual fault detection and lo-
calization (Section V) and with actual faults on some of the
subject systems (Section VI). The two sets of measurements
showed slightly different results at some points, which is not
that much surprising since the metrics are based on heuristics
that could behave differently in real scenarios and, second,

we had access to a limited set of actual faults, which make
difficult the overall generalization of the results. However, for
the most parts of the results they align so we can answer the
research questions as follows.

RQ1 – Reduction for fault detection vs. fault localization:
In terms of fault detection, coverage-based methods seem to
be the clear winners, as expected. In the case of metric-
based measurements we found that Additional coverage is
always the best, which was also the case in most score-
based measurements, except that Naive coverage outperformed
the rest in some cases (see results for space, for instance).
For fault localization, our expectation was that the Partition-
based method will be the best performing. In metric-based
measurements it was true for smaller programs while for
bigger ones and the most relevant reduction sizes its combined
version with Additional coverage was slightly better. Score-
based measurements supported that Partition-based method is
the best for the most relevant reduction sizes in the relevant
subjects with faults, space and WebKit. In this case, however,
filtering non-covered program elements after reduction was
necessary. In summary, coverage-based reduction is usually
better for fault detection, while for fault localization Partition-
based reduction showed better results. As Figure 6 shows, fault
localization was more successful with fewer failing test cases
coming from Partition-based reduction than failing test cases
reduced for fault detection.

RQ2 – Combined reduction methods: When both fault
detection and localization are important for a reduced test
suite, a suitable trade-off could be to use a combined reduction
method. As our results show, the combination of Partition-
based and Additional coverage-based reduction is a viable
trade-off. Our metrics-based measurements showed that this
combined method usually produced results that are between its
two base methods, furthermore the metric was usually closer
to the better one. The combined approach was always among
the best or second best performing methods in terms of fault
localization, and it was the second best for fault detection
in the case of bigger programs. In score-based measurements
this trend was not always true but the combined method
performed relatively good as well, in some cases it even
outperformed the other ones. An additional conclusion from
our experiments was that the Naive coverage-based reduction
usually performed very bad, despite it is the most widely
cited approach in the literature. This is probably due to
its simplicity of computation (compared to the Additional
coverage method, for instance), however we propose to use at
least its combination with the Partition-based approach method
if the Additional coverage is not feasible. Naive coverage
combined with Partition reduction showed comparable results
to the other combined method.

A. Threats to validity

In contrast to many other works on fault localization and
fault detection, we performed our experiments on the level
of granularity of procedures (functions and methods) because
we wanted to apply our approach on large programs and test

suites. However, we expect that our approach and the results
can be generalized to other granularities as well. As other
authors also found, finer granularity analysis outperformed
courser granularity only by a relatively small margin over-
all [15]. Some of our experiments involved “known” faults, in
other words program locations annotated as being faulty. Some
data of this kind were originated in the SIR repository and
were actually seeded faults. The other set (for WebKit) was
based on data mining techniques, and its absolute reliability
cannot be guaranteed. The main reason for this uncertainty
was that the data was mined from the textual comments in the
bug reporting database and revision logs, which may include
noise. When possible, we used manual verification of the data.

VIII. RELATED WORK

We briefly overview the main results in fault detection
and localization. Fault detection is a widely researched area
which includes some topics related to our research such as
test selection and prioritization. An overview of regression
test selection techniques has been presented by Rothermel and
Harrold, who introduced a framework to evaluate the different
techniques [11]. They defined the evaluation criterion called
inclusiveness, as the ratio of the failing test cases included in
the selection relative to the total number of failing test cases of
the complete test suite. We call this criterion FD score in our
work. Another survey has been presented by Yoo et al. [2].

Rothermel et al. [3] presented six coverage based prioritiza-
tion techniques for fault detection. All six techniques improved
the fault detection capability of baseline algorithms. Wong
et al. suggested that regression test reduction techniques can
lower the number of executed test cases without significantly
reducing the fault-detection capabilities of test suites [16].
However, Rothermel et al. examined the costs and benefits of
test-suite reduction techniques and their results show that the
fault-detection capabilities of test suites can be severely com-
promised by test-suite reduction [17]. In another study, Roter-
mel and Harrold [18] found that coverage-based test suites
may provide test selection results superior to those provided
by test suites that are not coverage-based. Elbaum et al. [15]
conducted a set of empirical studies and assessed whether fine-
grained (statement level) prioritization techniques outperform
coarse-grained (function level) ones. The authors found that
the latter produce only marginally worse results in most cases,
in turns of effectiveness.

Yu et al. [5] investigated the effect of test suite reduction
on fault localization capability. The authors implemeted two
reduction strategies, the Statement based reduction and Vector
based reduction. The goal of the former is to produce a
reduced test suite that executes the same set of statements as
the unreduced test suite. This reduction method is similar to
our coverage methods. Vector-based reduction aims to produce
a reduced test suite that executes the same set of statement
vectors as the unreduced test suite. A statement vector is
the set of statements executed by one test case. The authors
found that if a test suite is reduced using statement-based
strategies, the fault-localization technique will almost always

perform worse and if a test suite is reduced using vector-
based strategies, the fault-localization technique will almost
always perform the same. However, no specially designed
reduction methods have been presented that are more suitable
for fault localization. Baudry et al. [19] emphasize the contrast
between reduction and fault localization methods, because the
localization is more precise when more trace information is
available from test cases. This problem is one of the central
topics of our research as well. The authors also investigated
how to increase diagnosis accuracy by extending the test suite.
They systematically add test cases while trying to maximize
the number of test case groups which can be distinguished.

Several studies use the so-called Siemens suite to evaluate
their approaches. Initially, Hutchins et al. [20] used seven C
programs with 141 to 512 lines of code to experiment with
data flow- and control flow-based test adequacy criteria. The
authors increased their test suite by adding 132 versions of the
programs by inserting faults into the code. The Siemens suite
has been extended since this early study and it is a central
database for evaluation of fault detection and localization
methods, also as part of the Software Infrastructure Repository
(SIR) database [7], which we used as well.

IX. CONCLUSIONS

Following upon previous results, this paper underlined that
coverage-based test suite reduction traditionally used for fault
detection, may have a negative impact on an also important
test suite property, fault localization capability. We presented
an approach to reduce test suites with this property in mind.
This algorithm, the Partition-based method, is then combined
with traditional coverage-based approaches to offer a com-
promise solution for cases when both fault detection and
localization are important. Our experimental results showed
that Additional coverage-based reduction was clearly better
for fault detection than fault localization, while Partition-based
reduction in many cases outperformed coverage-based ones in
the fault localization setting. The combined approach proved
to be a suitable alternative, although the distinction was not
always evident. In addition, the traditional Naive coverage-
based method performed poorly in both situations.

We designed our reduction algorithms, the metric and score
calculations so that they could be applied for real life systems
as well, not only on experimental programs and tests. Thus
we were able to apply the methods to and measure industrial
size programs and test suites including GCC and WebKit
with real faults. In the present work, we used procedure level
granularity, but in the future we plan to work on combining this
approach with statement-level granularity and hence increase
precision while maintaining scalability. Investigation of ways
for selecting test suite size is another future research topic.

This research extends previous works towards handling the
whole test-diagnose-fix cycle in terms of test suite optimiza-
tion. We believe that one should always care for all the
different activites in this complex process and that suitable
combined approaches are required. This paper concentrated
on the first two stages but on a longer perspective also the

fault fixing aspect should be in focus; in other words, how
test suites could be optimized to help in the fixing process as
well, and not only in fault detection and localization.

ACKNOWLEDGMENT

This research was supported by the Hungarian national grant
GOP-1.1.1-11-2011-0039.

REFERENCES

[1] M. J. Harrold, “Testing: A roadmap,” in Proceedings of the Conference
on The Future of Software Engineering at ICSE’00, 2000, pp. 61–72.

[2] S. Yoo and M. Harman, “Regression testing minimization, selection and
prioritization: a survey,” Software Testing, Verification and Reliability,
vol. 22, no. 2, pp. 67–120, 2012.

[3] G. Rothermel, R. J. Untch, and C. Chu, “Prioritizing test cases for
regression testing,” IEEE Trans. Softw. Eng., vol. 27, no. 10, pp. 929–
948, Oct. 2001.

[4] M. J. Harrold, G. Rothermel, R. Wu, and L. Yi, “An empirical investiga-
tion of program spectra,” in Proc. of the 1998 ACM SIGPLAN-SIGSOFT
workshop PASTE ’98. ACM, 1998, pp. 83–90.

[5] Y. Yu, J. A. Jones, and M. J. Harrold, “An empirical study of the effects
of test-suite reduction on fault localization,” in Proc. of the International
Conference on Software Engineering (ICSE). ACM, 2008, pp. 201–210.

[6] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of test infor-
mation to assist fault localization,” in 24th International Conference on
Software Engineering, ser. ICSE ’02. ACM, 2002, pp. 467–477.

[7] H. Do, S. Elbaum, and G. Rothermel, “Supporting controlled experi-
mentation with testing techniques: An infrastructure and its potential
impact,” Empirical Software Engineering, vol. 10, no. 4, pp. 405–435,
2005.

[8] “GCC, the GNU Compiler Collection,” http://gcc.gnu.org/, last visited:
2013-09-11.

[9] “The WebKit open source project,” http://www.webkit.org/, last visited:
2013-09-10.

[10] J. A. Jones and M. J. Harrold, “Empirical evaluation of the tarantula
automatic fault-localization technique,” in Proc. of International Con-
ference on Automated Software Engineering. ACM, 2005, pp. 273–282.

[11] G. Rothermel and M. J. Harrold, “Analyzing regression test selection
techniques,” IEEE Trans. Softw. Eng., vol. 22, no. 8, pp. 529–551, 1996.

[12] Á. Beszédes, L. Schrettner, B. Csaba, T. Gergely, J. Jász, and T. Gy-
imóthy, “Empirical investigation of SEA-based dependence cluster prop-
erties,” in Proc. of IEEE International Working Conference on Source
Code Analysis and Manipulation (SCAM’13), Sep. 2013, pp. 1–10.

[13] L. Schrettner, J. Jász, T. Gergely, Á. Beszédes, and T. Gyimóthy, “Impact
analysis in the presence of dependence clusters using Static Execute
After in WebKit,” in Proc. of IEEE International Working Conference
on Source Code Analysis and Manipulation (SCAM), 2012, pp. 24–33.

[14] Z. Tóth, G. Novák, R. Ferenc, and I. Siket, “Using version control
history to follow the changes of source code elements,” in 17th European
Conference on Software Maintenance and Reengineering, CSMR 2013.
IEEE Computer Society, 2013, pp. 319–322.

[15] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Test case prioritiza-
tion: A family of empirical studies,” IEEE Trans. Softw. Eng., vol. 28,
no. 2, pp. 159–182, Feb. 2002.

[16] W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur, “Effect
of test set minimization on fault detection effectiveness,” in Proc. of
International Conference on Software Engineering, 1995, pp. 41–50.

[17] G. Rothermel, M. J. Harrold, J. von Ronne, and C. Hong, “Empirical
studies of test-suite reduction,” Software Testing, Verification and Reli-
ability, vol. 12, no. 4, pp. 219–249, 2002.

[18] G. Rothermel and M. J. Harrold, “Empirical studies of a safe regression
test selection technique,” IEEE Transactions on Software Engineering,
vol. 24, no. 6, pp. 401–419, Jun. 1998.

[19] B. Baudry, F. Fleurey, and Y. Le Traon, “Improving test suites for
efficient fault localization,” in 28th international conference on Software
engineering, ser. ICSE ’06. ACM, 2006, pp. 82–91.

[20] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, “Experiments on
the effectiveness of dataflow- and control-flow-based test adequacy cri-
teria,” in Proceedings of the 16th International Conference on Software
Engineering, ICSE-16, 1994, pp. 191–200.

