A Case Against Coverage-Based
Program Spectra

Péter Attila Soha Tamas Gergely Ferenc Horvath
Béla Vancsics Arpad Beszédes

University of Szeged, Hungary

ICST'23, Dublin, Ireland

Where is the Bug?

(given computation impact and test case outcomes)

1 public class Circle {
2 private double area;
3 private double perimeter; . .
5 area = radius * radius * Math.PI;
o perimeter = radius * Math.PI; no yes no v
/ }
8 double getArea () {
9 return area; yes no YES
10 }
11 double getPerimeter () {
12 return perimeter; no no YEs
13 }
14 3
I public class CilrcleTest extends TestCase {
2 static Circle circle = new Circle (0);
3 public void tl () {
4 assertEquals (Math.PI, new Circle(l) .getArea(), le-10);
S }
6 public void t2() {
] assertEquals (Z2.0*Math.PI, new Circle(l) .getPerimeter (), 1le-10);
3 }
9 public void t3() {
10 assertEquals (0, circle.getPerimeter (), le-10);
11 }

—
N

X

v

Spectrum-Based Fault Localization

(SBFL)

- P : program under investigation

- 1': set of test cases for testing P

. [: set of code elements in P (e.g., methods, statements, branches)
» M : (binary or integer) spectrum matrix of size |T'| X | E|

» m; ; : dynamic relationship between test 7; and element e;

. R : (binary) results vector of size | T|

. 1, =0 iff ¢, completed without failure

. I': (binary) faults vector of size | E| (used when evaluating SBFL effectiveness)

o jj = 1 iff ; element contains a fault

O/1

O/1

O/1

O/1

M e €|E|
t1 O/1 | O/1 | O/
t2 | O/1 | O/1 | O/1
O/1 | O/1 | O/

tm | O/1 | O/1 | O/
F [O/1 | O/1 | O/

The Spectrum Matrix

(dynamic relationship between test cases and code elements)

In the example above

/
i
> Backward Dynamic Program Slice (with test output as the slicing criterion)

” Denoted by M'in the following “slice-based spectrum"

Traditional approach

- m; ;= 1: when executing test 7; element ¢; influences the test case outcome

- m,; = 1 : when executing test ¢, element €; is covered (exercised)

i
> Hit-Based Spectrum (the traditional coverage-based spectrum)

” Denoted by M in the following "Coverage-based spectrum”

(Other definitions exist, e.g. count-based spectrum)

SBFL Approach

Spectrum metrics

Statistical counts foreache € £

. ef (ef’) : number of failing tests that cover (are influenced by) e in M and
M’, respectively

. nf (nf) : failing but not covering (not influenced)
. ep (ep’) : passing and covering (influenced)

- np (np’) : passing but not covering (not influenced)

SBFL Approach

Formulas

SBFL formulas

- Calculate a suspiciousness score for each program element, which is
then used to rank the elements to aid automated debugging

. Examples (same for both M and M’ matrix types):

ef
\/ (ef +nf) - (ef + ep)

ef
ef + ep

Barinel

ef + ep

SBFL Approach

On the example

v 0 1 0
2 [1 0 '
B o 0 0
e 1 0
e 0 1

o R 0 1 0
oy 2 1 1
0 1 0 0.5
. F e 1 0 0

- O

O

Where is the Bug? (reprise)

(this time using the coverage-based matrix)

| H

o 1 0 0
2 ’ 0 ’ 1
3 [0 0 ' 0
e ’ 0 ’
ep ’ 1 ’
B o 0 1 0
; BN
05 05 0 o5 7
ef + ep B o 1 0 0)

Comparing Slice and Coverage

O Jo O WDN R

private double perimeter;

public Circle (double radius) { “ 1
area = radius * radius * Math.PI; “ 0O 1 0 1 1
perimeter = radius * Math.PI; “ 0

}

0 0 1 O
fouble gethrea() | M5 9 12 | R __
1 1 O O

public class Circle {
orivate double area; M 5 6 9 12 | R __
0 1 O O

J

double getPerimeter () { “ 1
return perimeter; “ 1 1 0O 1 1
}

) 3 0 0 1 0

O dJ o Ul dd W

—
N O W

public class CilrcleTest extends TestCase {

static Circle circle = new Circle (0);
public void tl () {
assertEquals (Math.PI, new Circle(l) .getArea(),) ;

J
public void t2() |

assertEquals (*Math.PI, new Circle(l) .getPerimeter(),) ;

J
public void t3() |

assertkEquals (0, circle.getPerimeter(),) ;

J

So, why is everybody still using
coverage-based spectrum?

» Spoiler: coverage is trivial to compute, and slicers are eemplex impreeise eostly non-existent

- Also, some concepts are more complex with slicing (e.g. what is the “test output” used for
the slicing criterion?)

- Are people ignorant too?

Goal

Short and longer term research objectives

How big is the handicap of coverage-based SBFL compared to the
(theoretically precise) slice-based one?

1.Theoretical analysis

2.Empirical investigation

Theoretical analysis

Assuming a perfect slicer, how coverage and slice-based ranks will compare?

Additional notations

- C(t) C E:arowof M, i.e. set of covered elements by test ¢

« DS(t) C E : arow of M, i.e. backward dynamic slice for test ¢

Assumptions

- | F| = 1, and we denote the faulty element by f and all other elements by n

- VYVt € T are associated with exactly one slicing criterion (rows of M and M’ are compatible)

- VteT:|C|>0and |DSE)| >0

- VieT:R(@) =1= M(,f) =1 (faulty element is covered by all failing tests)

- VieT:R(1)=1= MT(t,f) =1 (faulty element contributes to the slicing criterion in all failing tests)

- Ve T : DSk C C(r) C E (slice is meaningful)

Theoretical analysis

Average slice size

- How much are slices more precise than the coverage?
- And, what is the impact of this on the SBFL performance?

» We use the average slice size as a proxy to the probability that a covered
code element e is also in the slice:

Theoretical analysis

Spectrum metrics

Observations
. Forf, ef' = efand nf’ = nf (because each failing test’s slice includes f)

« Butep'=p-epandnp’'= (1 —p) - -ep+np
- For all other non-taulty elements n, all tour metrics are scaled with p

The effect on SBFL formulas

. Since ef is often in the numerator, the score in the slice-based spectrum
will be typically higher for the faulty element, and lower for the non-faulty

Theoretical analysis

Suspiciousness formulas

- We analyzed several formulas (including Barinel, Tarantula, Ochiai, Dstar,
etc.) and we showed that:

5(f) 2 5(f) and 5'(n) < 5(n)

for any formula S score

 |n other words, coverage-based SBFL will necessarily produce worse

ranking than slice-based one of
Bar'(f) = T > Bar(f)
. Also, the difference is (inversely) determined by p Bar'(n) — — P ef _ Bar(n)

p-ef +p-ep

Empirical investigation
Case study

» Stock tools for coverage-based spectra
 Slicer4J dynamic slicer tool*

 Slice-based spectrum: one row for each assert in each test case which
were then merged (slicing criteria: asserted value)

« Subject program: Time from Defects4J
« 26 bugs with about 14k statements and 4k tests

- Analyzed 9 bugs in details (after excluding others due to various reasons)

* K. Ahmed, M. Lis, and J. Rubin, “Slicer4j: A dynamic slicer for java,” in Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ser. ESEC/FSE 2021. ACM, 2021, p. 1570-1574.

Empirical investigation

Results

« Many problems with slicing results

« E.g. non-covered elements in the slice (we exclude them)

- RQ1: Average slicesize (p) is
- around 45% (with respect to coverage)

- RQ2: Avg. ranks of faulty elements in slice-based SBFL notably better
« Barinel (43 — 10), DStar (21 — 9), Ochiai (20 — 10), etc.

Empirical investigation

Qualitative results

- RQ3: Manual examination of each bug to find out the reasons for the
differences

- Many superfluous elements in the coverage
« |In some cases, the results were the same

» |n some cases, coverage-based results were better because the slicer
did not include some statements in the slice (errors with passing tests)

« Due to the slicer’s imperfections some of the assumptions were not met
(e.g. slice did not reach the buggy element)

Take away messages

1. Coverage-based SBFL is a big over-approximation of slice-based SBFL
« Coverage-based SBFL necessarily produces worse ranking than slice-based SBFL

- The rate of imprecision (slice size over coverage size) severely influences the formula
performance

2. Theory vs. practice
« Assumptions not always met, but case study supported the theory even with an imperfect slicer
- Coverage is a more simpler concept, e.g. no need for a slicing criterion

3. The area needs more research!
- The SBFL community may not be aware of why coverage is a bad proxy for slice???

- E.g. experiment with hybrid slicing algorithms

https://slicefl.github.io/

M5 6 9 | 12 | R __ - :|
o1 o o EI .-* IEI
0 1 0 1 1 -_.
13 0 v ... -
M5 6 9 12 | R _ -":': -’
1 1 1 0 0 . |""J. |-'!'
1 1 0 1 1 E-EE.‘. n B
0 0 0 1 0 r
[m] 5
S’(f) > S(f) and S’(n) < S(n) - RQ1: Average slice size (p) is around 45%
« RQ2:Barinel (43 — 10), DStar (21 — 9)
for any formula $ score . RQ3: Manual examination of each bug

 Research encouraged in the topic!

