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Where is the Bug?

(given computation impact and test case outcomes)

1 public class Circle {
2 private double area;
3 private double perimeter; . .
5 area = radius * radius * Math.PI;
o perimeter = radius * Math.PI; no yes no v
/ }
8 double getArea () {
9 return area; yes no YES
10 }
11 double getPerimeter () {
12 return perimeter; no no YEs
13 }
14 3
I public class CilrcleTest extends TestCase {
2 static Circle circle = new Circle (0);
3 public void tl () {
4 assertEquals (Math.PI, new Circle(l) .getArea(), le-10);
S }
6 public void t2() {
] assertEquals (Z2.0*Math.PI, new Circle(l) .getPerimeter (), 1le-10);
3 }
9 public void t3() {
10 assertEquals (0, circle.getPerimeter (), le-10);
11 }
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Spectrum-Based Fault Localization

(SBFL)

- P : program under investigation

- 1': set of test cases for testing P

. [ : set of code elements in P (e.g., methods, statements, branches)
» M : (binary or integer) spectrum matrix of size |T'| X | E|

» m; ; : dynamic relationship between test 7; and element e;

. R : (binary) results vector of size | T|

. 1, =0 iff ¢, completed without failure

. I': (binary) faults vector of size | E| (used when evaluating SBFL effectiveness)

o jj = 1 iff ; element contains a fault
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The Spectrum Matrix

(dynamic relationship between test cases and code elements)

In the example above

/
i
> Backward Dynamic Program Slice (with test output as the slicing criterion)

” Denoted by M'in the following “slice-based spectrum"

Traditional approach

- m; ;= 1: when executing test 7; element ¢; influences the test case outcome

- m,; = 1 : when executing test ¢, element €; is covered (exercised)

i
> Hit-Based Spectrum (the traditional coverage-based spectrum)

” Denoted by M in the following "Coverage-based spectrum”

(Other definitions exist, e.g. count-based spectrum)




SBFL Approach

Spectrum metrics

Statistical counts foreache € £

. ef (ef’) : number of failing tests that cover (are influenced by) e in M and
M’, respectively

. nf (nf) : failing but not covering (not influenced)
. ep (ep’) : passing and covering (influenced)

- np (np’) : passing but not covering (not influenced)



SBFL Approach

Formulas

SBFL formulas

- Calculate a suspiciousness score for each program element, which is
then used to rank the elements to aid automated debugging

. Examples (same for both M and M’ matrix types):

ef
\/ (ef +nf) - (ef + ep)

ef
ef + ep

Barinel




ef + ep

SBFL Approach

On the example

v 0 1 0
2 [ 1 0 '
B o 0 0
e 1 0
e 0 1

o R 0 1 0
oy 2 1 1
0 1 0 0.5
. F e 1 0 0
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Where is the Bug? (reprise)

(this time using the coverage-based matrix)
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Comparing Slice and Coverage

O Jo O WDN R

private double perimeter;

public Circle (double radius) { “ 1
area = radius * radius * Math.PI; “ 0O 1 0 1 1
perimeter = radius * Math.PI; “ 0

}
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public class Circle {
orivate double area; M 5 6 9 12 | R __
0 1 O O
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double getPerimeter () { “ 1
return perimeter; “ 1 1 0O 1 1
}
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public class CilrcleTest extends TestCase {

static Circle circle = new Circle (0);
public void tl () {
assertEquals (Math.PI, new Circle(l) .getArea(), ) ;

J
public void t2() |

assertEquals ( *Math.PI, new Circle(l) .getPerimeter(), ) ;

J
public void t3() |

assertkEquals (0, circle.getPerimeter(), ) ;

J




So, why is everybody still using
coverage-based spectrum?

» Spoiler: coverage is trivial to compute, and slicers are eemplex impreeise eostly non-existent

- Also, some concepts are more complex with slicing (e.g. what is the “test output” used for
the slicing criterion?)

- Are people ignorant too?



Goal

Short and longer term research objectives

How big is the handicap of coverage-based SBFL compared to the
(theoretically precise) slice-based one?

1.Theoretical analysis

2.Empirical investigation



Theoretical analysis

Assuming a perfect slicer, how coverage and slice-based ranks will compare?

Additional notations

- C(t) C E:arowof M, i.e. set of covered elements by test ¢

« DS(t) C E : arow of M, i.e. backward dynamic slice for test ¢

Assumptions

- | F| = 1, and we denote the faulty element by f and all other elements by n

- VYVt € T are associated with exactly one slicing criterion (rows of M and M’ are compatible)

- VteT:|C|>0and |DSE)| >0

- VieT:R(@) =1= M(,f) =1 (faulty element is covered by all failing tests)

- VieT:R(1)=1= MT(t,f) =1 (faulty element contributes to the slicing criterion in all failing tests)

- Ve T : DSk C C(r) C E (slice is meaningful)



Theoretical analysis

Average slice size

- How much are slices more precise than the coverage?
- And, what is the impact of this on the SBFL performance?

» We use the average slice size as a proxy to the probability that a covered
code element e is also in the slice:




Theoretical analysis

Spectrum metrics

Observations
. Forf, ef' = efand nf’ = nf (because each failing test’s slice includes f)

« Butep'=p-epandnp’'= (1 —p) - -ep+np
- For all other non-taulty elements n, all tour metrics are scaled with p

The effect on SBFL formulas

. Since ef is often in the numerator, the score in the slice-based spectrum
will be typically higher for the faulty element, and lower for the non-faulty



Theoretical analysis

Suspiciousness formulas

- We analyzed several formulas (including Barinel, Tarantula, Ochiai, Dstar,
etc.) and we showed that:

5(f) 2 5(f) and 5'(n) < 5(n)

for any formula S score

 |n other words, coverage-based SBFL will necessarily produce worse

ranking than slice-based one of
Bar'(f) = T > Bar(f)
. Also, the difference is (inversely) determined by p Bar'(n) — — P ef _ Bar(n)

p-ef +p-ep



Empirical investigation
Case study

» Stock tools for coverage-based spectra
 Slicer4J dynamic slicer tool*

 Slice-based spectrum: one row for each assert in each test case which
were then merged (slicing criteria: asserted value)

« Subject program: Time from Defects4J
« 26 bugs with about 14k statements and 4k tests

- Analyzed 9 bugs in details (after excluding others due to various reasons)

* K. Ahmed, M. Lis, and J. Rubin, “Slicer4j: A dynamic slicer for java,” in Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ser. ESEC/FSE 2021. ACM, 2021, p. 1570-1574.



Empirical investigation

Results

« Many problems with slicing results

« E.g. non-covered elements in the slice (we exclude them)

- RQ1: Average slicesize (p ) is
- around 45% (with respect to coverage)

- RQ2: Avg. ranks of faulty elements in slice-based SBFL notably better
« Barinel (43 — 10), DStar (21 — 9), Ochiai (20 — 10), etc.



Empirical investigation

Qualitative results

- RQ3: Manual examination of each bug to find out the reasons for the
differences

- Many superfluous elements in the coverage
« |In some cases, the results were the same

» |n some cases, coverage-based results were better because the slicer
did not include some statements in the slice (errors with passing tests)

« Due to the slicer’s imperfections some of the assumptions were not met
(e.g. slice did not reach the buggy element)



Take away messages

1. Coverage-based SBFL is a big over-approximation of slice-based SBFL
« Coverage-based SBFL necessarily produces worse ranking than slice-based SBFL

- The rate of imprecision (slice size over coverage size) severely influences the formula
performance

2. Theory vs. practice
« Assumptions not always met, but case study supported the theory even with an imperfect slicer
- Coverage is a more simpler concept, e.g. no need for a slicing criterion

3. The area needs more research!
- The SBFL community may not be aware of why coverage is a bad proxy for slice???

- E.g. experiment with hybrid slicing algorithms



https://slicefl.github.io/
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S’(f) > S(f) and S’(n) < S(n) - RQ1: Average slice size (p ) is around 45%
« RQ2:Barinel (43 — 10), DStar (21 — 9)
for any formula $ score . RQ3: Manual examination of each bug

 Research encouraged in the topic!



