
A Case Against Coverage-Based
Program Spectra

ICST’23, Dublin, Ireland

Péter Attila Soha Tamás Gergely Ferenc Horváth

Béla Vancsics Árpád Beszédes 

University of Szeged, Hungary

 1 public class CircleTest extends TestCase {

 2 static Circle circle = new Circle(0);

 3 public void t1() {

 4 assertEquals(Math.PI, new Circle(1).getArea(), 1e-10);

 5 }

 6 public void t2() {

 7 assertEquals(2.0*Math.PI, new Circle(1).getPerimeter(), 1e-10);

 8 }

 9 public void t3() {

10 assertEquals(0, circle.getPerimeter(), 1e-10);

11 }

12 }

 1 public class CircleTest extends TestCase {

 2 static Circle circle = new Circle(0);

 3 public void t1() {

 4 assertEquals(Math.PI, new Circle(1).getArea(), 1e-10);

 5 }

 6 public void t2() {

 7 assertEquals(2.0*Math.PI, new Circle(1).getPerimeter(), 1e-10);

 8 }

 9 public void t3() {

10 assertEquals(0, circle.getPerimeter(), 1e-10);

11 }

12 }

 1 public class CircleTest extends TestCase {

 2 static Circle circle = new Circle(0);

 3 public void t1() {

 4 assertEquals(Math.PI, new Circle(1).getArea(), 1e-10);

 5 }

 6 public void t2() {

 7 assertEquals(2.0*Math.PI, new Circle(1).getPerimeter(), 1e-10);

 8 }

 9 public void t3() {

10 assertEquals(0, circle.getPerimeter(), 1e-10);

11 }

12 }

 1 public class CircleTest extends TestCase {

 2 static Circle circle = new Circle(0);

 3 public void t1() {

 4 assertEquals(Math.PI, new Circle(1).getArea(), 1e-10);

 5 }

 6 public void t2() {

 7 assertEquals(2.0*Math.PI, new Circle(1).getPerimeter(), 1e-10);

 8 }

 9 public void t3() {

10 assertEquals(0, circle.getPerimeter(), 1e-10);

11 }

12 }

 1 public class Circle {

 2 private double area;

 3 private double perimeter;

 4 public Circle(double radius) {

 5 area = radius * radius * Math.PI;

 6 perimeter = radius * Math.PI;

 7 }

 8 double getArea() {

 9 return area;

10 }

11 double getPerimeter() {

12 return perimeter;

13 }

14 }

 1 public class Circle {

 2 private double area;

 3 private double perimeter;

 4 public Circle(double radius) {

 5 area = radius * radius * Math.PI;

 6 perimeter = radius * Math.PI;

 7 }

 8 double getArea() {

 9 return area;

10 }

11 double getPerimeter() {

12 return perimeter;

13 }

14 }

 1 public class Circle {

 2 private double area;

 3 private double perimeter;

 4 public Circle(double radius) {

 5 area = radius * radius * Math.PI;

 6 perimeter = radius * Math.PI;

 7 }

 8 double getArea() {

 9 return area;

10 }

11 double getPerimeter() {

12 return perimeter;

13 }

14 }

 1 public class Circle {

 2 private double area;

 3 private double perimeter;

 4 public Circle(double radius) {

 5 area = radius * radius * Math.PI;

 6 perimeter = radius * Math.PI;

 7 }

 8 double getArea() {

 9 return area;

10 }

11 double getPerimeter() {

12 return perimeter;

13 }

14 }

Where is the Bug?
(given computation impact and test case outcomes)

impact? 5 6 9 12 pass/fail

t1 yes no yes no ✓

t2 no yes no yes ✗

t3 no no no yes ✓

“Program Slicing” + “Spectrum
Based Fault Localization”

impact? 5 6 9 12 pass/fail

t1 yes no yes no ✓

t2 no yes no yes ✗

t3 no no no yes ✓

Spectrum-Based Fault Localization
(SBFL)

• : program under investigation

• : set of test cases for testing

• : set of code elements in (e.g., methods, statements, branches)

• : (binary or integer) spectrum matrix of size

• : dynamic relationship between test and element

• : (binary) results vector of size

• iff completed without failure

• : (binary) faults vector of size (used when evaluating SBFL effectiveness)

• iff element contains a fault

P

T P

E P

M |T | × |E |

mi,j ti ej

R |T |

ri = 0 ti
F |E |

fj = 1 ej

M e1 … e|E|

t1 0/1 0/1 0/1

t2 0/1 0/1 0/1

… 0/1 0/1 0/1

t|T| 0/1 0/1 0/1

F 0/1 0/1 0/1

R

0/1

0/1

0/1

0/1

The Spectrum Matrix
(dynamic relationship between test cases and code elements)

In the example above

• : when executing test element influences the test case outcome

Backward Dynamic Program Slice (with test output as the slicing criterion)

Denoted by in the following

Traditional approach

• : when executing test element is covered (exercised)

Hit-Based Spectrum (the traditional coverage-based spectrum)

Denoted by in the following

(Other definitions exist, e.g. count-based spectrum)

m′￼i,j = 1 ti ej ri

M′￼

mi,j = 1 ti ej

M

“slice-based spectrum”

“coverage-based spectrum”

SBFL Approach
Spectrum metrics

Statistical counts for each

• () : number of failing tests that cover (are influenced by) in and
, respectively

• () : failing but not covering (not influenced)

• () : passing and covering (influenced)

• () : passing but not covering (not influenced)

e ∈ E

ef ef′￼ e M
M′￼

nf nf′￼

ep ep′￼

np np′￼

SBFL Approach
Formulas

SBFL formulas

• Calculate a suspiciousness score for each program element, which is
then used to rank the elements to aid automated debugging

• Examples (same for both and matrix types):M M′￼

ef
ef + ep

Barinel

ef2

ep + nf

DStar

ef
(ef + nf) ⋅ (ef + ep)

Ochiai

M’ 5 6 9 12 R
t1 1 0 1 0 0
t2 0 1 0 1 1
t3 0 0 0 1 0
ef’ 0 1 0 1
ep’ 1 0 1 1
nf’ 1 0 1 0
np’ 1 2 1 1

Barinel’ 0 1 0 0.5
F 0 1 0 0

SBFL Approach
On the example

M’ 5 6 9 12 R
t1 1 0 1 0 0
t2 0 1 0 1 1
t3 0 0 0 1 0
ef’ 0 1 0 1
ep’ 1 0 1 1
nf’ 1 0 1 0
np’ 1 2 1 1

Barinel’ 0 1 0 0.5
F 0 1 0 0

ef
ef + ep

Where is the Bug? (reprise)
(this time using the coverage-based matrix)

M 5 6 9 12 R
t1 1 1 1 0 0
t2 1 1 0 1 1
t3 0 0 0 1 0
ef 1 1 0 1
ep 1 1 1 1
nf 0 0 1 0
np 1 1 1 1

Barinel 0.5 0.5 0 0.5
F 0 1 0 0

ef
ef + ep

M 5 6 9 12 R
t1 1 1 1 0 0
t2 1 1 0 1 1
t3 0 0 0 1 0
ef 1 1 0 1
ep 1 1 1 1
nf 0 0 1 0
np 1 1 1 1

Barinel 0.5 0.5 0 0.5
F 0 1 0 0

?

Comparing Slice and Coverage
 1 public class Circle {

 2 private double area;

 3 private double perimeter;

 4 public Circle(double radius) {

 5 area = radius * radius * Math.PI;

 6 perimeter = radius * Math.PI;

 7 }

 8 double getArea() {

 9 return area;

10 }

11 double getPerimeter() {

12 return perimeter;

13 }

14 }

 1 public class CircleTest extends TestCase {

 2 static Circle circle = new Circle(0);

 3 public void t1() {

 4 assertEquals(Math.PI, new Circle(1).getArea(), 1e-10);

 5 }

 6 public void t2() {

 7 assertEquals(2.0*Math.PI, new Circle(1).getPerimeter(), 1e-10);

 8 }

 9 public void t3() {

10 assertEquals(0, circle.getPerimeter(), 1e-10);

11 }

12 }

M’ 5 6 9 12 R
t1 1 0 1 0 0
t2 0 1 0 1 1
t3 0 0 0 1 0

M 5 6 9 12 R
t1 1 1 1 0 0
t2 1 1 0 1 1
t3 0 0 0 1 0

So, why is everybody still using
coverage-based spectrum?

• Spoiler: coverage is trivial to compute, and slicers are complex imprecise costly non-existent

• Also, some concepts are more complex with slicing (e.g. what is the “test output” used for
the slicing criterion?)

• Are people ignorant too?

Goal
Short and longer term research objectives

How big is the handicap of coverage-based SBFL compared to the
(theoretically precise) slice-based one?

1.Theoretical analysis

2.Empirical investigation

Theoretical analysis
Assuming a perfect slicer, how coverage and slice-based ranks will compare?

Additional notations

• : a row of , i.e. set of covered elements by test

• : a row of , i.e. backward dynamic slice for test

Assumptions

• , and we denote the faulty element by and all other elements by

• are associated with exactly one slicing criterion (rows of and are compatible)

• and

• (faulty element is covered by all failing tests)

• (faulty element contributes to the slicing criterion in all failing tests)

• (slice is meaningful)

C(t) ⊆ E M t

DS(t) ⊆ E M′￼ t

|F | = 1 f n

∀t ∈ T M M′￼

∀t ∈ T : |C(t) | > 0 |DS(t) | > 0

∀t ∈ T : R(t) = 1 ⇒ M(t, f) = 1

∀t ∈ T : R(t) = 1 ⇒ M′￼(t, f) = 1

∀t ∈ T : DS(t) ⊆ C(t) ⊆ E

Theoretical analysis
Average slice size

• How much are slices more precise than the coverage?

• And, what is the impact of this on the SBFL performance?

• We use the average slice size as a proxy to the probability that a covered
code element is also in the slice:e

p =
∑t∈T

|DS(t) |
|C(t) |

|T |

Theoretical analysis
Spectrum metrics

Observations

• For , and (because each failing test’s slice includes)

• But and

• For all other non-faulty elements , all four metrics are scaled with

The effect on SBFL formulas

• Since is often in the numerator, the score in the slice-based spectrum
will be typically higher for the faulty element, and lower for the non-faulty

f ef′￼ = ef nf′￼ = nf f

ep′￼ = p ⋅ ep np′￼ = (1 − p) ⋅ ep + np

n p

ef

Theoretical analysis
Suspiciousness formulas

• We analyzed several formulas (including Barinel, Tarantula, Ochiai, Dstar,
etc.) and we showed that:

 and

for any formula score

• In other words, coverage-based SBFL will necessarily produce worse
ranking than slice-based one

• Also, the difference is (inversely) determined by

S′￼(f) ≥ S(f) S′￼(n) ≤ S(n)

S

p

Empirical investigation
Case study

• Stock tools for coverage-based spectra

• Slicer4J dynamic slicer tool*

• Slice-based spectrum: one row for each assert in each test case which
were then merged (slicing criteria: asserted value)

• Subject program: Time from Defects4J

• 26 bugs with about 14k statements and 4k tests

• Analyzed 9 bugs in details (after excluding others due to various reasons)

* K. Ahmed, M. Lis, and J. Rubin, “Slicer4j: A dynamic slicer for java,” in Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ser. ESEC/FSE 2021. ACM, 2021, p. 1570–1574.

Empirical investigation
Results

• Many problems with slicing results

• E.g. non-covered elements in the slice (we exclude them)

• RQ1: Average slice size () is

• around 45% (with respect to coverage)

• RQ2: Avg. ranks of faulty elements in slice-based SBFL notably better

• Barinel (43 → 10), DStar (21 → 9), Ochiai (20 → 10), etc.

p

Empirical investigation
Qualitative results

• RQ3: Manual examination of each bug to find out the reasons for the
differences

• Many superfluous elements in the coverage

• In some cases, the results were the same

• In some cases, coverage-based results were better because the slicer
did not include some statements in the slice (errors with passing tests)

• Due to the slicer’s imperfections some of the assumptions were not met
(e.g. slice did not reach the buggy element)

Take away messages

1. Coverage-based SBFL is a big over-approximation of slice-based SBFL

• Coverage-based SBFL necessarily produces worse ranking than slice-based SBFL

• The rate of imprecision (slice size over coverage size) severely influences the formula
performance

2. Theory vs. practice

• Assumptions not always met, but case study supported the theory even with an imperfect slicer

• Coverage is a more simpler concept, e.g. no need for a slicing criterion

3. The area needs more research!

• The SBFL community may not be aware of why coverage is a bad proxy for slice???

• E.g. experiment with hybrid slicing algorithms

M’ 5 6 9 12 R
t1 1 0 1 0 0
t2 0 1 0 1 1
t3 0 0 0 1 0

M 5 6 9 12 R
t1 1 1 1 0 0
t2 1 1 0 1 1
t3 0 0 0 1 0

 and

for any formula score

S′￼(f) ≥ S(f) S′￼(n) ≤ S(n)

S

• RQ1: Average slice size () is around 45%

• RQ2: Barinel (43 → 10), DStar (21 → 9)

• RQ3: Manual examination of each bug

• Research encouraged in the topic!

p

https://slicefl.github.io/

