
Feature Level Complexity and Coupling Analysis
in 4GL Systems

András Kicsi1, Viktor Csuvik1, László Vidács1,2, Árpád Beszédes1, and
Tibor Gyimóthy1,2

1 Department of Software Engineering
2 MTA-SZTE Research Group on Artificial Intelligence

University of Szeged, Hungary
{akicsi,csuvikv,lac,beszedes,gyimothy}@inf.u-szeged.hu

Abstract. Product metrics are widely used in the maintenance and evo-
lution phase of software development to advise the development team
about software quality. Although most of these metrics are defined for
mainstream languages, several of them were adapted to fourth generation
languages (4GL) as well. Usual concepts like size, complexity and cou-
pling need to be re-interpreted and adapted to program elements defined
by these languages. In this paper we take a further step in this process
to address product line development in 4GL. Adopting product line ar-
chitecture is a necessary step to handle challenges of a growing number
of similar product variants. The product line adoption process itself is
a tedious task where features of the product variants play crucial role.
Features represent a higher level of abstraction that are cross-cutting to
program elements of 4GL applications. We propose a set of metrics re-
lated to features by linking existing program elements to metrics and by
relating features with each other. The focus of this study is on complex-
ity and coupling metrics. We provide a metrics based analysis of several
variants of a large scale industrial product line written in the Magic XPA
4GL language.

Keywords: Product lines, SPL, feature analysis, 4GL, quality, metrics, com-
plexity, coupling

1 Introduction

Quality assurance tools rely heavily on the use of product metrics. Despite the
great variety of metrics that are already defined for mainstream languages [1],
there exists only a few solutions for fourth generations languages (4GL). The
structure of these languages are closer to human thinking and part of the program
logic is provided by the environment itself. Usual notions of size, complexity and
coupling need to be re-interpreted in these cases. Building on previous works on
metrics based quality assurance for 4GL [2, 3] we take new direction to extend
metrics towards product line architectures. Maintaining and releasing similar



new products accumulates significant overhead over time. The natural way of
handling new customer needs is the clone-and-own approach, where product
variants have parallel life cycles in independent repositories. Introducing product
line architecture offers a long term solution to these challenges [4]. Product line
adoption is usually approached from three directions: the proactive approach
starts with domain analysis and applies variability management from scratch.
The reactive approach incrementally replies to the new customer needs when
they arise. Finally, the extractive approach analyzes existing products to obtain
feature models and build the product line architecture [5]. An advantage of
the extractive approach in general is that several reverse engineering methods
exist to support feature extraction and analysis [6]. Static analysis methods for
obtaining structural information and dependencies and the analysis of dynamic
execution traces foster feature detection and location activities [7, 8].

In this paper we propose product metrics at the feature level. These metrics
are extensions of usual complexity and coupling metrics linked to features. Our
work is motivated by a research project where product line architecture is to
be built based on an existing set of products. The subject system is a high
market value logistical wholesale system, which has been adapted to various
domains in the past using clone-and-own method. Product variants of this system
were written in different main versions of Magic 4GL in more than 20 years. In
this current work we concentrate on complexity [9] and coupling metrics. The
proposed metrics play a role in the product line adoption process and can be
used in the future maintenance and evolution of the product line. We provide
the following contributions: (1) we propose metrics at the feature level for Magic
4GL; (2) we describe empirical experiments of 4 product variants of a large
scale industrial system; and (3) we analyze 4 product variants and 10 high level
features of the product line using the proposed metrics.

The paper is organized as follows. We present the background of our research
in the next section by depicting the variability in systems developed by a software
company using the Magic language. We introduce the proposed feature level
metrics on complexity and coupling in Section 3. Measurements on 4 product
variants and the analysis based on 10 high level features of the product line are
presented in Section 4. Related work is discussed in Section 5, and we conclude
the paper in the last section.

2 Background

The most important parts of a Magic application are illustrated in Figure 1.
An application written in Magic usually consists of one or more projects. These
projects contain tasks which are units that handle the actual work done by
the application. They can control logic units that define the background logic
and make use of data stored in data objects. Tasks are the closest things we
would call methods in a traditional language. A task can contain other tasks too,
which defines a hierarchy. The topmost level of these tasks are called programs
which can be viewed as distinguished tasks. Programs are usually small enough



Menu Project

Application

Data Object

Program/Task

Logic Unit

Logic Line Column

Menu Entry

Program
Menu

Program Ref

hasSubTask

calls

hasLogicUnit

hasLogicLine

1

*

1

1..*

1

*

hasProgram
1

*

hasProject
1

1..*

uses

hasTable

1

*

1

*

hasColumn

hasMenuEntry
1

*

1..* 1

hasProgram
1

0..1

calls

Fig. 1. An illustration of the main components of a Magic system

units that we can handle as a process working towards a single goal, which can
make programs ideal units for feature extraction. Programs can also be called by
elements called menus. A menu is a control unit inside the application through
which calls can be initiated to perform different processes.

Software quality is a highly researched subject with properly defined quality
metrics in many specific fields of software development. This also involves SPL
adoption and even Magic. Software quality is not highly different in 4GL sys-
tems than in a traditional environment, most common quality metrics can be
computed but there may be a need to redefine or modify some or adopt new
ones. Quality can be defined to 4GL systems just as well as to any other branch
of software development. Some metrics are already well defined for Magic tasks
and systems too [9].

Complexity as a quality metric is also a popular field of research. Since com-
plexity can be understood in many ways many different complexities exist even
in the same domain. Undoubtedly the best complexity metrics are the ones that
correlate best with the opinions of the users, in this case most frequently the
developers. Scientific work has already compared several of these metrics based
on user questionnaires [10] even in the 4GL domain, including Magic [9].



3 Proposed Metrics

Features represent a higher level abstraction over program code. This is the area
where domain experts and developers need to interact: features provide a logical
view of system functionality, while they are implemented by various parts of
the program code. In previous work we provided methods for feature extraction
based on textual similarity and call graphs [11, 12]. Our textual similarity based
extraction relies on the Latent Semantic Indexing (LSI) technique. Textual sim-
ilarity is often referred to as Information Retrieval (IR) in scientific literature,
we use this abbreviation in the following chapters.

We consider features as sets of Magic programs that take part in their imple-
mentation. These sets usually have overlaps since programs can be used by more
than one feature. In this work we present our results computed on the topmost
level of features we have been provided with by domain experts, which involves
10 high level features and represent the main functions of the system. Their size
properties after extraction can be observed in Table 1 and Figure 2 the values
representing the number of programs implementing each feature, working with
more than 2000 programs in total. We worked with four variants of the subject
system, their properties are further defined in Section 4.

Table 1. The recovered number of programs for each feature of the variants with
call-graph (CG) and information retrieval (IR) based extraction

Variant CG-V1 CG-V2 CG-V3 CG-V4 IR-V1 IR-V2 IR-V3 IR-V4

Manufacturing 49 48 47 405 12 13 12 12
Interface 5 5 5 68 36 43 34 22
Access management 13 83 12 421 37 44 36 125
Quality control 152 146 146 441 60 82 60 113
Stock control 348 352 339 769 208 225 209 312
Administrator interventions 198 196 190 647 202 392 205 312
Supplier order management 156 155 156 466 206 235 201 335
Invoicing 272 267 265 602 278 299 274 394
Master file maintenance 70 68 66 467 266 299 259 374
Customer orders 294 290 288 457 193 208 190 276

In this section we define several metrics that we deemed suitable for mea-
suring the properties of features. Some of our proposed feature level metrics are
extensions of already defined metrics on program level. In many cases these can
be summed up or averaged to get suitable measurements for feature level too. In
other cases we define new ways that didn’t exist on program level. Feature level
metrics can also be utilized in the analysis of not just features but the whole
system itself or the feature extraction process.



0

100

200

300

400

500

600

700

800

900

Manufacturing Interface Access
management

Quality control Stock control Administrator
interventions

Supplier order
management

Invoicing Master file
maintenance

Customer orders

CG-V1 CG-V2 CG-V3 CG-V4 IR-V1 IR-V2 IR-V3 IR-V4

Fig. 2. Number of programs for each feature with call-graph (CG) and the information
retrieval (IR) based extraction

3.1 Coupling

Coupling metrics for features represent the differences in their inner and outer
references. A high number of valid outer references can possibly imply bad mod-
ular design.

Coupling Between Features (CBF): One of the most straightforward coupling
metric can be the number of features a feature in question is calling. This number
is computed by inspecting the programs of the features. If we imagine features as
sets of programs, we can easily see that there is a call between features if there is
at least one call between the set of programs of both features. Coupling between
features measures only the outgoing calls from each feature. It can be viewed as
a metric letting us know how many other features does a single features depend
on. Being aware of dependence can be valuable for instance if we decide not
to provide a feature, the other features that depend on this can potentially be
crippled and if we want to provide those features we may have to bridge this gap
created.

Coupling Between Programs Inside Features (CBTIF): While coupling be-
tween features measures the outgoing calls from each feature, knowing of the
inside structure of a feature can be just as important. For this we can count
the calls with both participating programs inside the same feature. This is cou-
pling between programs inside a feature, which does not represent a number of
features but a number of calls, thus usually higher than CBF.

Sum of Coupling Between Programs and Data Objects (SCTBDO): Feature
coupling can be also viewed at the data object level. The number of used data
objects is a metric that already exists for each program, it is useful for measuring
the extent of data used by each program. The total of this number for each
feature can give us the sum of coupling between programs and data objects,
which provides information about the same thing. On feature level this can be
interesting information since we can see how much each feature relies on stored
data, thus getting a more complete picture of the feature itself.



Program Clarity (PC): Another piece of interesting information can be de-
rived from the number of features a single program is connected to. If a program
is only connected to a sole feature it can be more easily maintainable with less
consideration of the subsequent changes in functionality because the effects of a
change only affect one feature. Additionally if the customer decides not to require
a specific feature, the programs of this feature can be excluded. A number indi-
cating this condition which we called program clarity represents the percentage
of programs that are unique to that single feature.

3.2 Complexity

The quantification of software complexity is a basic idea that is widely used
throughout software development. Complexity can be defined in many ways,
and this is the same with feature complexity. Since a feature is handled as a set
of programs that aims to reach a common goal, the complexity of the feature is
derived from the complexity of its programs.

As established in the paper of Nagy et al. [9] in Magic context the generally
used McCabe complexity measure is not really suitable for representing the real
complexity of a program. On the other hand Halstead complexity metics [13]
correlated well with the opinions of the experienced developers involved. To
complete Halstead complexity metrics we us the following values:

– n1 : the number of distinct operators
– n2 : the number of distinct operands
– N1: the total number of operators
– N2 : the total number of operands

Halstead Volume (HV): It represents the magnitude of information inside a
feature, more precisely the bits required for its coding. This can be also inter-
preted as a measure describing the amount of information a reader of the code
must attain to completely understand the feature itself. Since a feature can in-
volve many programs this number is usually very high. As it can be seen from
its formula this measure involves all operators and operands in the feature. It
computes as follows:

HV = (N1 + N2) ∗ log2(n1 + n2)

Halstead Difficulty (HD): It can be used to measure fault sensitivity. The
important factors in this property are the number of distinct operators inside a
feature and the ratio of all and distinct operands. Both of these properties result
in more sensitivity. It computes as follows:

HD =
(n1

2

)
∗
(N2

n2

)
Other metrics that can relevantly measure complexity on feature level include

Halstead Vocabulary which describes the sum of all distinct operators and dis-
tinct operands in a feature, Halstead Effort (HE) which describes the product of



volume and effort and represents the developer effort of the code. Henry-Kafura
Complexity (HKC) can also be valuable which works with the inner and outer
calls of the features, practically building complexity on coupling information. It
computes as:

HKC = (N1 + N2) ∗ (fan-in ∗ fan-out)2

During our work we also computed these measures.

4 Experiments and Analysis

In this section we present some of the results of the proposed metrics of four
variants of our system under study and we examine their possible meanings to
comparison of features and to variants also.

The four variants under study will be mentioned simply as V1, V2, V3 and
V4. These are all real variants of the system that are currently under use by
customers of our industrial partner. To our knowledge V4 differs from the other
variants significantly, while the others share a great number of programs and
support a very similar set of functions but still vary somewhat in the specifics.
Table 2 displays the size and properties of these four variants. From these data it
is even more clear that V4 is the largest variant although V2 has the most tasks.
V1 and V3 are very similar both in our experiences and their characteristics.

Table 2. The characteristics of the variants under analysis

Variant Logic Lines Tasks Programs Data Objects

V1 366 328 13 365 2 001 699
V2 467 823 25 457 2 719 703
V3 355 604 13 151 2 001 697
V4 518 304 18 291 4 251 1 065

In the remaining part of the section we present a number of results and
discuss the meaning of the data retrieved. Experiments were done on all top level
features of all four variants on both call graph (CG) and information retrieval
(IR) based feature extraction outputs. We present the results in graphic format.
Due to space limitations and for the elimination of monotony we only display
the results found most notable.

We can note that through all variants the IR technique seems to provide
more stable numbers while the CG technique usually shows large differences
between variants and even features of the same variant. This does not mean
that the CG technique would be inferior in any way, and from our previous
knowledge we are aware that the output of the IR based extraction contains a
large amount of noise as a result of short feature names which have served as
queries for Latent Semantic Indexing. The seemingly more stable results can even
be a consequence of the noise itself. The CG based extraction on the other hand



can produce a variable number of programs for each feature and each variant.
These calls found by the call graph technique are present in the system itself
and provide a less conceptual grouping. It is also important to note that with
the call graph technique we find a high number of more general programs that
are connected to nearly every feature. Even considering these differences we can
find that the results of the metrics still move along very similar curves in case
of both extraction techniques.

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

9,00

10,00

Manufacturing Interface Access
management

Quality control Stock control Administrator
interventions

Supplier order
management

Invoicing Master file
maintenance

Customer
order

reception

Coupling Between Features (CBF) with CG and IR Based Feature Extraction

IR - V1

IR - V2

IR - V3

IR - V4

CG - V1

CG - V2

CG - V3

CG - V4

Fig. 3. Coupling Between Features at each variant with call graph and information
retrieval based feature extraction

The results of the proposed Coupling Between Features metric can be seen
in Figure 3. As on the following figures, the columns represent the results of
measurements done on IR based extraction while the lines represent the results
of the extraction based on CG. The maximum of feature coupling is 9 since
there are 10 features on top level hence this is the true maximum number of
features another feature can call. As it can be seen in the case of IR based
extraction many features achieve this with a minimal coupling of 4 in overall.
With CG based extraction on the other hand only one feature, Administrator
interventions of V4 achieves this high level while the minimal coupling is at the
Access management feature of V3 which appears to be calling no other feature
at all. In the IR case the high values are caused by the already mentioned noise
as well as other factors like how general the concept of each feature is. It is
apparent that in this case the features achieving the lower coupling values are
also the same that had the lowest number of programs, but this can also be a
consequence of the more specific text of the feature that the IR based extraction
could benefit from. Access management seems to be the most diverse feature
in both cases with different values at nearly every variant. This is probably the
consequence of different customer requests and needs about user permissions. It
can be also noted that though V4 is significantly larger than the other variants,
its coupling values are only slightly higher. It can also be noted here that CG
and IR seem to move along similar curves.



0,00

20,00

40,00

60,00

80,00

100,00

Manufacturing Interface Access
management

Quality control Stock control Administrator
interventions

Supplier order
management

Invoicing Master file
maintenance

Customer
order

reception

Program Clarity (PC) with CG and IR Based Feature Extraction

IR - V1

IR - V2

IR - V3

IR - V4

CG - V1

CG - V2

CG - V3

CG - V4

Fig. 4. Program Clarity at each variant with call graph and information retrieval based
feature extraction

Figure 4 represents our results of Program Clarity. High clarity means that
there are more programs of the feature that only contribute to that single feature.
This metric is somewhat the opposite of CBF since it measures the self reliance
of features opposed to the reliance on others. This can also be seen from the
results themselves, CG-V3 achieves the greatest clarity which also had the lowest
coupling, and particularly with IR we can see that the values seem to be quite on
the opposite side of the scale at each feature. Still some interesting exceptions are
present like the values of Quality control in the CG case which was at a medium
level considering coupling and one of the lowest at clarity. The highest values are
of the Access management feature of V3 and the Interface of V1 and V3. These
features all consist of a low number of programs with only 12 and 5 programs
at CG which can contribute to high clarity but this raises questions about the
Interface feature of V2 which also contains only 5 programs but achieves a much
lower value.

0,00 5000,00 10000,00 15000,00 20000,00 25000,00 30000,00 35000,00 40000,00 45000,00

Manufacturing

Interface

Access management

Quality control

Stock control

Administrator interventions

Supplier order management

Invoicing

Master file maintenance

Customer order reception

Sum of Coupling Between Data Objects with CG and IR based feature 
extraction

IR - V1

IR - V2

IR - V3

IR - V4

CG - V1

CG - V2

CG - V3

CG - V4

Fig. 5. Sum of Coupling Between Data Objects with CG and IR based feature extrac-
tion



The results of the Sum of Coupling Between Data Objects are presented
in Figure 5. This metric is meant to measure each feature’s reliance on stored
data. Since it sums the values of programs it is logical for larger systems to
achieve greater values. This is the exact case that seems to happen seeing that
V4 dominates every single feature. It is interesting though that this only seems
to happen in the CG case. In case of IR the highest values are also usually
achieved by V4 but to a significantly less extent. It is apparent that in most
cases CG achieves higher values than IR. This can stem from the fact that
Magic is a highly data intensive language and there are a lot of programs that
manipulate data for a feature. Since the main goal of these programs can be
data object interaction there may be less text for information retrieval to build
upon, hence these programs are overlooked. CG on the other hand is aware of
the calls themselves which are made in case of data reliance and discovers these
programs easily.

0,00
10000000,00
20000000,00
30000000,00
40000000,00
50000000,00
60000000,00
70000000,00
80000000,00
90000000,00

100000000,00

Halstead Value (HV) with CG and IR based Feature 
Extraction

CG - V4

CG - V3

CG - V2

CG - V1

IR - V4

IR - V3

IR - V2

IR - V1

0,00
500000,00

1000000,00
1500000,00
2000000,00
2500000,00
3000000,00
3500000,00
4000000,00
4500000,00

Halstead Value (HV) with CG and IR based Feature 
Extraction - without CG-V4

IR - V1

IR - V2

IR - V3

IR - V4

CG - V1

CG - V2

CG - V3

Fig. 6. Left: Halstead Value with CG and IR based feature extraction. Right: Halstead
Value with CG and IR, disproportionally large values filtered out for easier analysis

Considering complexity we can see similar trends as with SCBDO, CG-V4
dominates the results in every case and seems disproportionally large on the
figures. Figure 6 represents the results of Halstead Value, which measures the
the information value of features. On the left side we can see that CG-V4 takes up
most of the space, indicating that V4 is the most complex variant of these four,
having a large amount of non-trivial code and can be much harder to understand
in its entirety. On the right side we filtered out CG-V4 to have a chance to get
a better look at the values of the other cases. As it can be seen CG usually
produces programs with higher complexity. This can also be a consequence of
IR overlooking a number of programs with complex logic or data manipulation
that have less lexical information value and are much more meaningful on the
data or logic side. We can also note here that while IR remains relatively low in
case of every feature it can be seen that IR follows CG values, just to a much
lesser extent.



0,00
10000,00
20000,00
30000,00
40000,00
50000,00
60000,00
70000,00
80000,00
90000,00

100000,00

Halstead Difficulty (HD) with CG and IR based Feature 
Extraction

CG - V4

CG - V3

CG - V2

CG - V1

IR - V4

IR - V3

IR - V2

IR - V1

0,00

500,00

1000,00

1500,00

2000,00

2500,00

3000,00

Halstead Difficulty (HD) with CG and IR based Feature 
Extraction - without CG-V2 and CG-V4

IR - V1

IR - V2

IR - V3

IR - V4

CG - V1

CG - V3

Fig. 7. Left: Halstead Difficulty with CG and IR based feature extraction. Right: Hal-
stead Difficulty with CG and IR, disproportionally large values filtered out for easier
analysis

Figure 7 shows the results of Halstead Difficulty. This metric measures fault
sensitivity. As we have already seen in the case of HV, the CG based extraction
of V4 produces a set of programs with very high complexity. This can also be
seen here, on the left side of the figure. Surprisingly, there is also one feature,
Invoicing of CG-V2 that achieved the same magnitude of HD value. This is
a very interesting matter since the number of programs extracted here, 267 is
very close to the values of V1 and V3 and much less than V4’s 602 programs
even if invoicing is usually one of the most complex methods in each case. One
possible explanation for this can come from the number of tasks of the variants.
As we could see from Table 2, V2 has a very high number of tasks, significantly
higher than every other variant, while its number of programs falls somewhere in
between. This has to mean that V2’s programs contain more subtasks than the
programs of other variants. Since we could see from our previous metrics that V2
nearly always achieves lower values than V4 we could wonder how this difference
in program sizes failed to influence any of the metrics. The answer could be that
a major part of the extra tasks inside V2 are contributing to the Invoicing feature
providing more functions upon specific requests of the customer. Since HV is not
exactly high in this case it can mean that while the feature did not gain much
complexity, it became much more fault sensitive, thus this feature could be hard
to maintain and deserves consideration of refactoring. On the right side of the
figure we also filtered out CG-V4 and CG-V2 for easier glance at the rest of
variants. We can see that these results usually move along the same curves as
HV.

Finally, we would like to emphasize that these metrics are not only capable of
revealing meaningful information about systems, features and outputs of feature
extraction methods but can also be combined in several ways to attain even
more understanding. Some metrics are dependent on the number of programs
or tasks in a feature, which in some cases can be beneficial but in others it can
hide some significant differences. To eliminate this we can divide the metric with
the number of programs or tasks inside a feature. For example we could do this



0

500000

1000000

1500000

2000000

2500000

3000000

HKC/Number of Tasks with CG and IR Based Feature Extraction

IR - V1

IR - V2

IR - V3

IR - V4

CG - V1

CG - V2

CG - V3

CG - V4

Fig. 8. Henry-Kafura Complexity in proportion to the number of programs at each
variant with CG and IR based feature extraction

to any complexity metric to get the average complexity of programs or tasks of
each feature or to SCBDO to get average reliance on data. These can paint a
much different picture. For instance Henry-Kafura Complexity provides similar
data to HV with a difference of some IR values becoming significantly higher.
On the other hand if we divide it by the number of tasks we get an average HKC
value of tasks in each feature, this is illustrated in Figure 8. From this figure
we can see that IR values are usually higher most probably because of the high
number outer calls we have seen at the CBF metric. Even considering this it
is apparent that IR and CG values move along the same lines meaning that on
task level the features tend to behave the same way with both feature extraction
methods.

Considering these findings our opinion is that feature level metrics are suit-
able for the analysis of features in variants of Magic systems. Properly utilizing
these we can come to realizations that can greatly aid not just product line
adoption but also ease the future maintenance of a system.

5 Related work

By the time the 4GL paradigm arisen, most papers coped with the role of those
languages in software development, including discussions demonstrating their
viability. The paradigm is still successful, although only a few works are pub-
lished about the automatic analysis and modeling 4GL or specifically Magic
applications. The maintenance of Magic applications is supported by cost esti-
mation and quality analysis methods [14, 15, 9]. Architectural analysis, reverse
engineering and optimization are visible topics in the Magic community [16, 17,
3, 2], and after some years of Magic development migration to object-oriented
languages [18] as well.



Measuring the complexity of a software at source code level is approached
from many directions. First, and still popular complexity measures (McCabe
[19], Halstead [13], Lines of Code [20]) were surveyed by Navlakha [21]. A re-
cent survey which sums up complexity measures was published by Sheng Yu
et al. [22]. In 3GL context there are papers available to analyze the correlation
between certain complexity metrics. For instance, Meulen et al. [23] showed that
there are very strong connections between LOC and HCM, LOC and CCM in
C/C++ programs. In 4GL environment, to our best knowledge, there were no
previous researches to measure structural complexity and copupling attributes
of a Magic application at feature level. For other 4GLs there are some attempts
to define metrics to measure the size of a project [14], [15], [24]. There are also
some industrial solutions to measure metrics in 4GL environment. For instance
RainCode Roadmap3 for Informix 4GL provides a set of predefined metrics about
code complexity (number of statements, cyclomatic complexity, nesting level),
about SQLs (number of SQL statements, SQL tables, etc.), and about lines
(number of blank lines, code lines, etc.). In the world of Magic, there is a tool
for optimization purposes too called Magic Optimizer4 which can be used to per-
form static analysis of Magic applications. It does not measure metrics, but it is
able to locate potential coding problems which also relates to software quality.

Software product line extraction is a time-consuming task. To speed up this
activity, many semi-automatic approaches has been proposed [25–27]. Reverse
engineering is a popular approach which has recently received an increased at-
tention from the research community. With this technique missing parts can
be recovered, feature models can be extracted a set of features, etc. [25, 28].
Applying these approaches companies can migrate their system into a software
product line. However, changing to a new development process is risky and
may have unnecessary costs. The work of J. Krüger et al. [29] supports cost
estimations for the extractive approaches and provides a basis for further re-
search. Feature models are considered first class artifacts in variability model-
ing. Haslinger et al. [27] present an algorithm that reverse engineers a FM for
a given SPL from feature sets which describe the characteristics each product
variant provides. She et al. [30] analyze Linux kernel (which is a standard subject
in variability analysis) configurations to obtain feature models. Within product
line research a related aim is to make systems dynamically configurable, which
is a problem known as Dynamic SPL [31–35].

In this paper we introduce novel feature level metrics for the Magic 4GL
language, which topic is not directly addressed in the related literature.

6 Conclusions

In this paper we reported experiments carried out on 4 variants of a large scale
logistics wholesale system. The system is implemented in the Magic 4GL lan-
guage. In this context the usual product metrics need to be adapted to the

3 http://www.raincode.com/fglroadmap.html
4 http://www.magic-optimizer.com/



unique properties of the language. We extended the state of the art methods by
feature oriented metrics applicable to Magic programs. Experiments were con-
ducted to compute metrics on these variants using high level features defined by
domain experts of the developer company. We provided insights into the feature
structure in two dimensions: feature coupling and complexity. We demonstrated
the usability of feature oriented metric analysis in the large on variants contain-
ing 2000 to 4000 Magic programs. We have shown that the proposed feature
level metrics are suitable for highlighting previously not visible information with
special value in the analysis and even the maintenance of the systems. Their
appropriate utilization can highlight the properties of feature extraction and
the system itself and even point out specific weak spots that deserve further
attention.

Acknowledgements

The project has been supported by the European Union, co-financed by the
European Social Fund (EFOP-3.6.3-VEKOP-16-2017-00002). We acknowledge
the help of Magic experts of the SZEGED Software Llc.

References

1. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE
Transactions on Software Engineering 20(6) (Jun 1994) 476–493

2. Nagy, C., Vidács, L., Ferenc, R., Gyimóthy, T., Kocsis, F., Kovács, I.: MAGISTER:
Quality Assurance of Magic Applications for Software Developers and End Users.
In: 26th IEEE International Conference on Software Maintenance, IEEE Computer
Society (September 2010) 1–6

3. Nagy, C., Vidács, L., Ferenc, R., Gyimóthy, T., Kocsis, F., Kovács, I.: Solutions for
reverse engineering 4gl applications, recovering the design of a logistical wholesale
system. In: Proceedings of CSMR 2011 (15th European Conference on Software
Maintenance and Reengineering), IEEE Computer Society (March 2011) 343–346

4. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns.
Addison-Wesley Professional (2001)

5. Krueger, C. In: Easing the Transition to Software Mass Customization. Springer
Berlin Heidelberg, Berlin, Heidelberg (2002) 282–293

6. Kästner, C., Dreiling, A., Ostermann, K.: Variability Mining: Consistent Semi-
automatic Detection of Product-Line Features. IEEE Transactions on Software
Engineering 40(1) (2014) 67–82

7. Assunção, W.K.G., Vergilio, S.R.: Feature location for software product line migra-
tion. In: Proceedings of the 18th International Software Product Line Conference
on Companion Volume for Workshops, Demonstrations and Tools - SPLC ’14, New
York, New York, USA, ACM Press (2014) 52–59

8. Eyal-Salman, H., Seriai, A.D., Dony, C., Al-msie’deen, R.: Recovering traceability
links between feature models and source code of product variants. In: Proceedings
of the VARiability for You Workshop on Variability Modeling Made Useful for
Everyone - VARY ’12, New York, New York, USA, ACM Press (2012) 21–25



9. Nagy, C., Vidács, L., Ferenc, R., Gyimóthy, T., Kocsis, F., Kovács, I.: Complexity
measures in 4gl environment. In: Computational Science and Its Applications -
ICCSA 2011, Lecture Notes in Computer Science. Volume 6786 of Lecture Notes
in Computer Science., Springer Berlin / Heidelberg (2011) 293–309

10. Katzmarski, B., Koschke, R.: Program complexity metrics and programmer opin-
ions. In: 2012 20th IEEE International Conference on Program Comprehension
(ICPC), IEEE (jun 2012) 17–26

11. Kicsi, A., Vidács, L., Beszédes, A., Kocsis, F., Kovács, I.: Information retrieval
based feature analysis for product line adoption in 4gl systems. In: Proceedins of
the 17th International Conference on Computational Science and Its Applications
– ICCSA 2017, IEEE (2017) 1–6

12. Kicsi, A., Vidács, L., Csuvik, V., Horváth, F., Beszédes, r., Kocsis, F.: Supporting
product line adoption by combining syntactic and textual feature extraction. In:
New Opportunities for Software Reuse - 17th International Conference on Software
Reuse (ICSR 2018). Volume 10826 of Lecture Notes in Computer Science., Springer
International Publishing (2018) 1–16

13. Halstead, M.H.: Elements of Software Science (Operating and programming sys-
tems series). Elsevier Science Inc., New York, NY, USA (1977)

14. Verner, J., Tate, G.: Estimating Size and Effort in Fourth-Generation Develop-
ment. IEEE Software 5 (1988) 15–22

15. Witting, G., Finnie, G.: Using Artificial Neural Networks and Function Points to
Estimate 4GL Software Development Effort. Australasian Journal of Information
Systems 1(2) (1994) 87–94

16. Harrison, J.V., Lim, W.M.: Automated Reverse Engineering of Legacy 4GL Infor-
mation System Applications Using the ITOC Workbench. In: 10th International
Conference on Advanced Information Systems Engineering, Springer-Verlag (1998)
41–57

17. Ocean Software Solutions: Homepage of Magic Optimizer. http://www.magic-
optimizer.com (last visited February 2018)

18. M2J Software LLC: Homepage of M2J. http://www.magic2java.com (last visited
February 2018)

19. McCabe, T.: A complexity measure. IEEE Transaction on Software Engineering
SE-2(4) (dec 1976)

20. Albrecht, A.J., Gaffney, J.E.: Software function, source lines of code, and de-
velopment effort prediction: A software science validation. IEEE Transaction on
Software Engineering 9 (November 1983) 639–648

21. Navlakha, J.K.: A survey of system complexity metrics. The Computer Journal
30 (June 1987) 233–238

22. Yu, S., Zhou, S.: A survey on metric of software complexity. In: Proceedings of
ICIME 2010, The 2nd IEEE International Conference on Information Management
and Engineering. (April 2010) 352–356

23. van der Meulen, M., Revilla, M.: Correlations between internal software metrics
and software dependability in a large population of small C/C++ programs. In:
Proceedings of ISSRE 2007, The 18th IEEE International Symposium on Software
Reliability. (November 2007) 203–208

24. MacDonell, S.: Metrics for Database Systems: An Empirical Study. IEEE Inter-
national Symposium on Software Metrics (1997) 99–107

25. Valente, M.T., Borges, V., Passos, L.: A Semi-Automatic Approach for Extracting
Software Product Lines. IEEE Transactions on Software Engineering 38(4) (jul
2012) 737–754



26. Assunção, W.K.G., Lopez-Herrejon, R.E., Linsbauer, L., Vergilio, S.R., Egyed, A.:
Multi-objective reverse engineering of variability-safe feature models based on code
dependencies of system variants. Empirical Software Engineering 22(4) (aug 2017)
1763–1794

27. Haslinger, E.N., Lopez-Herrejon, R.E., Egyed, A.: Reverse Engineering Feature
Models from Programs’ Feature Sets. In: 18th Working Conference on Reverse
Engineering, IEEE (oct 2011) 308–312

28. Lima, C., Chavez, C., de Almeida, E.S.: Investigating the Recovery of Product
Line Architectures: An Approach Proposal. Springer, Cham (may 2017) 201–207

29. Krüger, J., Fenske, W., Meinicke, J., Leich, T., Saake, G.: Extracting software
product lines: a cost estimation perspective. In: Proceedings of the 20th Interna-
tional Systems and Software Product Line Conference on - SPLC ’16, New York,
New York, USA, ACM Press (2016) 354–361

30. She, S., Lotufo, R., Berger, T., Wa̧sowski, A., Czarnecki, K.: Reverse engineering
feature models. In: Proceeding of the 33rd international conference on Software
engineering - ICSE ’11, New York, New York, USA, ACM Press (2011) 461

31. Lee, K., Kang, K.C., Lee, J.: Concepts and Guidelines of Feature Modeling for
Product Line Software Engineering. In: Software Reuse Methods Techniques and
Tools. Volume 2319. Springer, Berlin, Heidelberg (2002) 62–77

32. Baresi, L., Quinton, C.: Dynamically Evolving the Structural Variability of Dy-
namic Software Product Lines. 10th International Symposium on Software Engi-
neering for Adaptive and Self-Managing Systems (2015)

33. Bashari, M., Bagheri, E., Du, W.: Dynamic Software Product Line Engineering: A
Reference Framework. International Journal of Software Engineering and Knowl-
edge Engineering 27(02) (2017) 191–234

34. Capilla, R., Bosch, J., Trinidad, P., Ruiz-Cortés, A., Hinchey, M.: An overview of
Dynamic Software Product Line architectures and techniques: Observations from
research and industry. Journal of Systems and Software 91(1) (may 2014) 3–23

35. Uchôa, A.G., Bezerra, C.I.M., Machado, I.C., Monteiro, J.M., Andrade, R.M.C.:
ReMINDER: An Approach to Modeling Non-Functional Properties in Dynamic
Software Product Lines. Springer, Cham (may 2017) 65–73


