
Supporting Product Line Adoption by Combining

Syntactic and Textual Feature Extraction

András Kicsi1, László Vidács1,2, Viktor Csuvik1, Ferenc Horváth1, Árpád
Beszédes1 and Ferenc Kocsis3

1 Department of Software Engineering
2 MTA-SZTE Research Group on Arti�cial Intelligence

University of Szeged, Szeged, Hungary
{akicsi,lac,csuvikv,hferenc,beszedes}@inf.u-szeged.hu

3 SZEGED Software Ltd., Szeged, Hungary
kocsis.ferenc@szegedsw.hu

Abstract. Software product line (SPL) architecture facilitates system-
atic reuse to serve speci�c feature requests of new customers. Our work
deals with the adoption of SPL architecture in an existing legacy system.
In this case, the extractive approach of SPL adoption turned out to be
the most viable method, where the system is redesigned keeping variants
within the same code base. The analysis of the feature structure is a
crucial point in this process as it involves both domain experts working
at a higher level of abstraction and developers working directly on the
program code. In this work, we propose an automatic method to ex-
tract feature-to-program connections starting from a very high level set
of features provided by domain experts and existing program code. The
extraction is performed by combining and further processing call graph
information on the code with textual similarity between code and high
level features. The context of our work is an industrial SPL adoption
project of a large scale logistical information system written in an 4G
language, Magic. We demonstrate the bene�ts of the combined method
and its use by di�erent stakeholders in this project.

Keywords: Product lines, SPL, feature extraction, variability mining, Magic,
4GL, information retrieval, call graphs.

1 Introduction

Maintaining parallel versions of a software satisfying various customer needs
is challenging. Many times the clone-and-own solution [1] is chosen because of
short term time and e�ort constraints. As the number of product variants in-
creases, a more viable solution is needed through systematic code level reuse. A
natural step towards more e�ective development is the adoption of product line
architecture [2]. The extractive approach analyzes existing products to obtain
feature models and build the product line architecture [3]. An advantage of the



2

extractive approach in general is that several reverse engineering methods exist
to support feature extraction and analysis [4�6].

Product line adoption is usually approached from three directions: the proac-
tive approach starts with domain analysis and applies variability management
from scratch. The reactive approach incrementally replies to the new customer
needs when they arise. When there are already a number of systems in pro-
duction, the extractive approach seems to be the most feasible choice. During
the extractive approach the adoption process bene�ts from systematic reuse of
existing design and architectural knowledge.

In this paper, we report on an ongoing product line adoption project in
which the extractive approach is being used. Our subject is a legacy high mar-
ket value, wholesaler logistics system, which was adapted to various domains in
the past using clone-and-own method. It is developed using a fourth generation
language (4GL) technology, Magic [7], and in this project the product line ar-
chitecture is to be built based on an existing set of products developed in the
Magic XPA language. Although there is reverse engineering support for usual
maintenance activities [8, 9], the special structure of Magic programs makes it
necessary to experiment with targeted solutions for coping with features. Fur-
thermore, approaches used in mainstream languages like Java or C++ need to
be re-considered in the case of systems developed in 4GLs. For instance, in the
traditional sense there is no source code, rather the developer sets up user in-
terface and data processing units in a development environment and the �ow of
the program follows a well-de�ned structure.

In this work, we concentrate on the feature identi�cation and analysis phase
of the project and describe an e�cient method for this purpose. This is a well
studied topic in the literature for mainstream languages [5], but the same for
4GL is less explored. The method starts from a very high level set of features
provided by domain experts, and uses information extracted from the existing
program code. The extraction is performed by combining and further processing
call graph information on the code with textual similarity between code and high
level features, essentially working simultaneously with structural (syntactic) and
conceptual (text based) information. Similar approaches have been previously
proposed for traditional object oriented systems, e.g. by Al-msie'deen et al. [10].

In previous work [11], we presented our information retrieval approach to
feature extraction similar to our textual analysis, but that information alone
proved to be very noisy and incomplete. We not only combine conceptual infor-
mation with structural one, but present an e�cient method for �ltering the data
as well. This results in a set of information that is more suitable for performing
the SPL adoption by various stakeholders of the project including domain ex-
perts, architects and programmers. In summary, the contributions of this paper
are the following:

1. A method for feature extraction by combining sytactic and textual informa-
tion.

2. Details for applying the approach in an 4GL technology, and the associated
experimental results.



3

3. Details on the use of the approach in an ongoing SPL adoption industrial
project from various stakeholder perspectives.

The paper is organized as follows. We present the background of our project
with the peculiarities of the underlying technology and the overview of our
method in Section 2. The details of our method for combining structural and
conceptual feature extraction for Magic systems and the associated experimental
results are presented in Section 3. Section 4 deals with the bene�ts of the ap-
proach and how it is used in other phases of the SPL adoption project. Related
work is brie�y introduced in Section 5, before concluding the paper Section 6.

2 Feature extraction and abstraction of Magic

applications

2.1 Product line adoption in a clone-and-own environment

The decision of migrating to a new product line architecture is hard to make.
Usually there is a high number of derived speci�c products and the adoption
process poses several risks and may take months [12�14]. The subject system
of our analysis is a leading pharmaceutical wholesaler logistics system started
more than 30 years ago. Meanwhile more than 20 derived variants of the system
were introduced at various complexity and maturity levels with independent
life cycles and isolated maintenance. Our industrial partner is the developer of
market leading solutions in the region, which are implemented in the Magic XPA
4GL language.

This work is part of an industrial project aiming to create a well-designed
product line architecture over the isolated variants. The existing set of prod-
ucts provide appropriate environment for an extractive SPL adoption approach.
Characterizing features is usually a manual or semi-automated task, where do-
main experts, product owners and developers co-operate. Our aim is to help this
process by automatic analysis of the relation of higher level features and map
program level entities to features.

The 4GL environment used to implement the systems requires di�erent ap-
proaches and analysis tools than today`s mainstream languages like Java [8, 15].
For example there is no source code in its traditional sense. The developers work
in a fully �edged development environment by customizing several properties
of programs. Magic program analysis tool support is not comparable to main-
stream languages, hence this is a research-intensive project. In our current work
we used our previously available tools for static analysis of Magic applications
and IR-based feature extraction [11].

The feature extraction process is challenged, since product variants them-
selves are written in 4 di�erent language versions as shown in Figure 1. In case
of the oldest Magic V5 systems, there is a high demand on the migration to a
newer version. UniPaaS 1.9 introduced huge changes in the language by using
the .NET engine for applications. Most systems are implemented in that version.
The newest Magic XPA 3.x line of the language lies close to the uniPaaS v1.9



4

M
ag

ic V
5

M
ag

ic V
9

un
iP

aa
S

1.
9

M
ag

ic
X

PA
 3

.x

N
um

be
r 

of
 s

ys
te

m
s

0

2

4

6

8

10

Fig. 1. The Magic language versions of the
19 currently active product variants

Largest application size
Variants Programs Models Tables

19 4 251 822 1 065

Table 1. Overview of the common
program base of application variants

systems. The overall size of the common codebase of product variants is shown
in Table 1. The �rst column states that there are 19 currently active variants of
the application, while the remaining columns contain the main speci�cations of
the largest variant. Magic is a data-intensive language, which clearly re�ects on
these values as well, containing a large amount of data tables.

2.2 Feature extraction approach

During product line adoption's feature extraction phase various artifacts are
obtained to identify features in an application [16]. This phase is also related
to feature location. The analysis phase targets common and variable properties
of features and prepares the reengineering phase. This last phase migrates the
subject system to the product line architecture.

Developer

Domain
Expert

Variants

Set of Programs

High Level
Feature List

Set of Features

New Product Line
Architecture

Structural and Conceptual
Feature Extraction

Fig. 2. An illustration of feature extraction as a part of product line adoption



5

In this phase of the research project we address the feature extraction phase.
Our inputs are the high level features of the system and the program code. We
apply a semi-automated process as in [4]. High level features are collected by
domain experts from the developer company. The actual task is to establish a
link between features and main components of the Magic applications. Although
there exists a common analysis infrastructure for reverse engineering 4GL lan-
guages [17, 8, 9], the actual program models di�er.

Figure 2 illustrates our current approach to feature extraction. We assign a
number of elements for each high level feature, this information helping the work
of developers and domain experts working on the new product line architecture.
During the assignment we mainly rely on structural information attained on call
dependency by constructing a call graph of the variant in question. This results
in high number of located elements, crucial for the development of product line
architecture, but the large amount of data can be hard to grasp in its entirety.

We combine this method with information retrieval, which can also make
it easier to cope with a 4GL language by utilizing conceptual connections, and
is successfully applied in software development tasks, such as in traceability
scenarios for object oriented languages [18]. A comprehensive overview of Natural
Language Processing (NLP) techniques � including Latent Semantic Indexing,
the technique we chose � is provided by Falessi et al. [19]. In our previous
work [11] we already presented our LSI-based approach to feature extraction.
LSI is already known to be capable of producing quality results combined with
structural information [10].

2.3 The Structure of a Magic Application

Application Project
Program
or Task

Logic Unit

Has Logic Lines

Table

Has Columns

Menu Menu Entry
Program Menu
Can Have a Single
Program Reference

*1 1..*

1 *

1

1

1..*

* 1

1 *

1

1..*

calls

hasSubTask

hasTable

Uses

calls

Fig. 3. Illustration on the elements of a Magic application

Being a fourth generation language, Magic does not completely follow the
structure of a traditional programming language. Figure 3 represents the most
important components of the Magic language from our current point of view.



6

Each software written in Magic is called an application. These can be built
up from one or more projects. In turn, each project can have any number of
programs which contain the actual logic of the software. The tasks branching
directly from a project are called programs. These can have their own subtasks
and be called anywhere in the project like methods in a traditional program-
ming environment, however their subtasks can only be called by the (sub)task
containing them. Any task or subtask can access data through tables.

It is also possible for a program to be called through menus, which are con-
trols designed to provide user intervention and usually start a process by calling
programs. Having su�cient information on menus, we used these as a base for
the call graph in structural feature extraction, deriving calls from menus.

3 Feature extraction experiments

Call Dependency
Based Feature
Extraction

Information
Retrieval

Based Feature
Extraction

Filtering

Combined
Extraction of
Most Essential
Connections

Well Separated
High Level
Extraction

Static
Analysis

Static
Call
Graph

Feature
List and
Menus

IR-based
Method

CG-based
Method

LSI

Fig. 4. A more detailed view on the feature extraction process

In this section we present the feature extraction methods used based on
call dependency and textual similarity, as well as the combination and possible
�ltering options. Figure 4 illustrates the processes described in this section. Our
static analysis is speci�c to the Magic language. One of the variants of our
subject system was selected by domain experts to be used as a starting point for
the product line adoption. It is a speci�c variant involving 4251 programs, 822
models and 1065 data tables. Our experiments presented in this paper were done
on this speci�c variant. We have been provided with a feature list structured in a
tree format consisting of three levels which have 10, 42 and 118 unique elements
respectively. From these we chose the upper level to display our results, the
features of this level are listed in Figure 5. The numbers shown here are in
accordance with the numbers we present on our later graph examples.

3.1 Feature extraction using (task) call dependency

This approach relies mostly on the program structure, but especially on the
call dependencies between programs and task. To construct a call graph from
these dependencies we use the process that can be seen in Figure 6. For the
sake of simplicity, this �gure represents only a minimalistic example of a Magic



7

1 − Manufacturing
2 − Interface
3 − Access management
4 − Quality control
5 − Stock control

6 − Administrator interventions
7 − Supplier order management
8 − Invoicing
9 − Master file maintenance
10 − Customer order reception

Fig. 5. The higher level features of the system

application. We emphasis tasks and programs with squares, while other program
elements like projects, logic units, logic lines, etc. are shown as circles.

We have the abstract semantic graph (ASG) as the base, which is provided by
our static source code analyzer tool. As the next step we add the call edges to the
graph by examining Magic components that operate as calls between tasks and
programs. Finally, in the last two step of the process we eliminate some nodes
and edges from the graph, keeping only the necessary ones i.e., call edges, tasks
and programs. From the CG we obtain the features by running a customized
breadth-�rst search algorithm from speci�c staring points determined by menu
entries. In Figure 7 a graph representation of the CG based results can be seen.

Fig. 6. The process of calculating the call graph

3.2 Textual similarity

Information retrieval (IR) techniques focus on the information content of data,
dealing with natural language at a semantic level. This results in a more versatile
approach concerning the form of the data, like the language used. In our speci�c
case this can be a huge boon, since the systems processed use di�erent versions
of the Magic language, and this would cause serious problems for a technique
dealing with the speci�c syntax of the language. With IR techniques on the other
hand, we can process the natural language parts of code, freeing us from the
burden of having to solve di�erences of language versions and syntax of Magic.
Latent Semantic Indexing (LSI) [20] is an IR technique capable of measuring
semantic similarity between textual data. It is widely used throughout software
engineering, mainly in cases involving natural language.



8

1

2

3

4

5

6

7

8

9
10

Fig. 7. Graph visualization of the set of results obtained by the call graph technique

A more complete summary of our feature extraction work with LSI is pre-
sented in our previous work. Our current experiments di�er from these in some
respects, the main di�erences being that these experiments work on a completely
di�erent base variant of the system, and consider the top level of features of an
updated, more precise feature list obtained from domain experts.

In Figure 8 we can see a graph representation of the results of the top fea-
tures paired with the programs of a system. Though the structural information
obtained from call graph is more thorough, it is more suitable for the developers
rather than domain experts. With purely structural information it is hard to
separate along the features, having many programs laying the groundwork for
any single feature it is hard to grasp the overall aim. Conceptual analysis sep-
arates more agreeably along the semantics of the feature, hence it can be more
valuable for domain experts.

3.3 Combined technique

As already introduced, the two methods we used for program assignment to
features use fundamentally di�erent methods for achieving their results. Con-
sequently, the results themselves also show a signi�cant di�erence, overlapping
only partially. The set of programs for the techniques presented are shown on
the left side of Figure 9. Each slice of the diagram represents a top level feature
and its colors indicate the number of programs detected by each technique. IR
represents the result set of the information retrieval technique, CG represents



9

1

2

3

4

5

6

7

8

9

10

Fig. 8. Graph visualization of the set of results obtained by the information retrieval
technique

A
cc

es
s

m
an

ag
em

en
t

A
dm

in
is

tra
to

r
in

te
rv

en
tio

ns

Cus
tom

er
 or

de
r

re
ce

pti
on

Interface

Invoicing

ManufacturingM
aster file

m
aintenance

Q
uality

control

S
to

ck
 c

on
tro

l

Supplie
r o

rder

management

10% 
20% 

40% 

80% Programs
assigned

CG

ESS

IR

A
cc

es
s

m
an

ag
em

en
t

A
dm

in
is

tra
to

r
in

te
rv

en
tio

ns

Cus
tom

er
 or

de
r

re
ce

pti
on

Interface

Invoicing

ManufacturingM
aster file

m
aintenance

Q
uality

control

S
to

ck
 c

on
tro

l

Supplie
r o

rder

management

10% 
20% 

40% 

80% 
Programs
assigned

CG(n = 1,2)

ESS

IR

Fig. 9. The size of our result sets for each feature. Results shown on the left, results
with �ltering on the right

the pairs attained by call graph, while ESS represents the set of programs con-
sidered most essential, detected by both techniques. The left side of Figure 11
shows the number of programs assigned in each set, the abbreviations match the
ones explained for the previous �gure.

The call graph dependency technique produces vast amounts of matches for
each feature. These matches build on the real calls inside the code, hence they
are considered a reliable source of information. It is important to note that this is
only static and not dynamic call information, thus at runtime it is not necessary



10

0

200

400

600

800

Acc
es

s

m
an

ag
em

en
t

Adm
ini

str
at

or

int
er

ve
nt

ion
s

Cus
to

m
er

 o
rd

er

re
ce

pt
ion

In
te

rfa
ce

Inv
oic

ing

M
an

ufa
ctu

rin
g

M
as

te
r f

ile

m
ain

te
na

nc
e
Qua

lity

co
nt

ro
l

Sto
ck

 co
nt

ro
l

Sup
pli

er
 o

rd
er

m
an

ag
em

en
t

N
um

be
r 

of
 p

ro
gr

am
s

Programs
assigned

CG
IR
ESS

Fig. 10. Number of programs found most essential for each feature

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●
●

● ●●
●

●
●

●

●

●

●

●●

●

● ● ●●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

● ●

●

●

●

●●

●●

●

●●

●

●

●
●

●

●
●

●●

●

●
●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

● ●

●
●

●

●●

●

●
●

●

● ●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

● ●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●●

●
●●

●

●

●● ●
●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●● ●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●
●●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

● ●●

●

●
●

●
●

●
●●

●
● ●

1

2

3

4
5

6

7

8
9

10

●●

●

●

●
● ●

●●
●

●

●●
● ●

●
●

●

●

●

●

●

●

●
●●

●
●

●
●

●
●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

● ●

●
●

●

●

●●
●

●
●

●

●

●

●
●

●
●

●

●●
● ●●

●
●●

●

●

●
●

● ●●

●
●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●●

● ●

●

●

●

●●

●
●

●

●●

●

●

●
●

●
●●

●
●

●

●
●

●

●

●

●

●
●

●

● ●

●

●
●

●●

● ●

●

●●
●

●

● ●● ●

● ●●
● ●

●

●
●

●
●

●
●

●

●
●

●
● ●

●

● ●

●

●
●
●

●

●
●

●
●

12

3

45

6

7

8

9 10

1 − Manufacturing
2 − Interface
3 − Access management
4 − Quality control
5 − Stock control
6 − Administrator interventions
7 − Supplier order management
8 − Invoicing
9 − Master file maintenance
10 − Customer order reception

Fig. 11. Graph visualization of the set of programs deemed most essential. Results
shown on the left, results with �ltering on the right

for every call to occur. The abundance of programs found by this technique can
undoubtedly be useful for developers, but it also presents a problem of coping
with the large amount of data not distinguishable in any manner.

The conceptual method produces fewer programs for each feature, but further
examination of random cases revealed that even considering this, a signi�cant
amount of noise presents itself. Textual similarity works with very little informa-
tion in these cases, hence it is likely for similar wording or more general words
like "list" to produce misleading matches, occurring in the text of many features.

Looking at only the intersection of the connections found by these two tech-
niques we �nd that this set of connections takes into account both the struc-
tural and conceptual information, producing only connections which are indeed
present on both levels. This results in a clearer, more straightforward set of
connections, which contains the most essential �ndings of the two techniques.

As we could see before, the structural information produces a rather large
amount of matches for each feature, and we observed that there is a considerable
overlap between features. We decided to attempt to clear these matches too
with a �ltering technique applied on the structural information output, which
�lters out less speci�c programs. The �ltering technique works with a number



11

n, which denotes the maximal number of features a program can connect before
it is considered less speci�c and is �ltered out from the program set of features.
This removes the programs with less information value and results in even more
straightforward groups of programs for each feature. On the right side of Figure 9
and Figure 11 we can see the results of the common structural and conceptual
connections of this �ltered approach, featuring only programs with maximum
two connections. It is apparent from the graph that features are much better
separated, providing a suitable high level glance at the background of features
without much technical details, ideal for top level understanding.

Examining the graphs we can come to many interesting conclusions. For ex-
ample feature number 7 is behaving like any other feature considering the purely
conceptual or purely structural viewpoint, its common graph provides a clearer
picture, apparently connecting through a group of more general features to large
number of other features. In the �ltered case however, it is nicely separated with
a group of unique programs speci�c to the feature itself.

4 Discussion

Domain
ExpertDeveloper New Product Line

Architecture

Structural and Conceptual
Assignment

Conceptual
Assignment

Structural
Assignment

1 2
3

1

2

3

Information on All
Called Programs

Information on All
Conceptually Connected
Programs

High Level Information
on the Most Essential
Programs

Fig. 12. The possible ways of usage of the results of various feature extraction tech-
niques in helping product line adoption

Figure 12 highlights how various feature extraction techniques can be used
to help in building the new product line architecture.

� Structural Extraction - Provides a detailed, widespread analysis. It is good
for developers, since they are required to have knowledge of all of the pro-
grams called by a feature, too much for domain experts.



12

� Conceptual Extraction - For domain experts on the other hand, all called
programs can be too much. This approach however introduces conceptual
dependencies, although with too much noise for smooth work.

� Combination (ESS) - Grasps the essence of features, more �t for domain
experts. While constructing the new architecture, the domain experts need to
judge properly which parts of the variants should be adopted. In this decision
making process the results of this extraction highly decreases complexity,
additionally in the future it can facilitate test planning.

Besides these, we would like to mention some other possible ways to use the
results. Firstly, connections are not necessarily observable through the calls of
the system, programs can for instance connect by accessing to the same data
objects. This means that not every connection will present itself on the call
graph. These however can be found via conceptual feature extraction, since it
is likely that programs using the same data are conceptually connected to the
same feature. This is why the programs detected by the conceptual extraction
and not discovered via structural information can still be valuable. This data is
rather noisy, but still represents a ready source of the semantically connected
programs to each feature, hence it can be a reliable starting point with manual
evaluation for domain experts looking for connected programs.

Additionally, the structural information produced can be tailored according
to our intent, �ltering out the more general programs, which provides the possi-
bility to form even better separated sets of programs, making it easier to attain
a high level knowledge about the procedures and the basic structure of a system.

We provided our results to our industrial partner, who has already com-
menced on constructing the new SPL architecture. The work is proceeding well,
product line adoption seems to go according the plans and the results of our
experiments are utilized in the process.

5 Related Work

The literature of reverse engineering 4GL languages is not extensive. By the time
the 4GL paradigm arisen, most papers coped with the role of those languages in
software development, including discussions demonstrating their viability. The
paradigm is still successful, although only a few works are published about the
automatic analysis and modeling 4GL or speci�cally Magic applications. The
maintenance of Magic applications is supported by cost estimation and quality
analysis methods [21, 22, 17]. Architectural analysis, reverse engineering and op-
timization are visible topics in the Magic community [15, 23, 9, 8], and after some
years of Magic development migration to object-oriented languages [24] as well.

SPL has a widespread literature, and over the last 8-10 years it has gained
even more popularity. All three phases of feature analysis (identi�cation, anal-
ysis, and transformation) are tackled by researchers. A recommended mapping
study on recent works on feature location can be read in [5].

Software product line extraction is a time-consuming task. To speed up this
activity, many semi-automatic approaches has been proposed [25�27]. Reverse



13

engineering is a popular approach which has recently received an increased at-
tention from the research community. With this technique missing parts can be
recovered, feature models can be extracted a set of features, etc. [25, 28]. Apply-
ing these approaches companies can migrate their system into a software product
line. However, changing to a new development process is risky and may have un-
necessary costs. The work of J. Krüger et al. [29] supports cost estimations for
the extractive approaches and provides a basis for further research.

Feature models are considered �rst class artifacts in variability modeling.
Haslinger et al. [27] present an algorithm that reverse engineers a FM for a
given SPL from feature sets which describe the characteristics each product
variant provides. She et al. [30] analyze Linux kernel (which is a standard sub-
ject in variability analysis) con�gurations to obtain feature models. LSI is ap-
plied for recovering traceability links between various software artifacts. The
work of Marcus and Maletic [18] is an early paper on applying LSI for this
purpose. Eyal-Salman et al. [6] use LSI for recovering traceability link between
features and source code with about 80% success rate, but experiments are done
only for a small set of features of a simple java program. IR-based solution
for feature extraction is combined with structural information in the work of Al-
msie'deen et al. [10]. Further research deals with constraints in a semi-automatic
way [31] both for functional and even nonfunctional [32] feature requirements.

A possible future goal could be to make the system dynamically con�gurable,
which is a problem known as Dynamic SPL [33�39]. Today, many application
domains demand runtime recon�guration, for which the two main limitations
are handling structural changes dynamically and checking the consistency of the
evolved structural variability model during runtime [36]. However, as reported
in [40], the current research on runtime variability is still heavily based on the
decisions made during design time. Coping with uncertainty of dynamic changes
also needs to be addressed [41].

Several existing approaches can be adapted to 4GL environment, although
none of the above cited papers cope with 4GL product lines directly.

6 Conclusions

An ongoing industrial project was presented, which undergoes a software product
line adoption process. In this work, we concentrated on the feature extraction and
analysis aspects of the project, which are fundamental parts of the e�ort because
further architecture redesign and implementation are and will be based on this
information. For feature extraction we used two fundamental approaches: one
based on computing structural information form the code in for of call-graphs,
and the other in which conceptual information was automatically extracted from
the textual representation of high level feature models and the code. However, the
combination of the two pieces of information had to be performed and processed
in such a way that the resulting models are most useful for project participants.

Experimental results show that the �nal models are signi�cantly more com-
prehensible, and hence directly usable (though in various forms) by domain ex-



14

perts, architects, developers and other stakeholders of the project. The extracted
information and the associated toolset is currently in use by our industrial part-
ner in this ongoing e�ort, however in later phases further re�nements of the
approach are to be expected. For instance, (semi-)automatic classi�cation of the
feature sets will probably be needed.

Although the approach was implemented in Magic, a 4GL technology, we
believe that the fundamental method could be suitable for other more traditional
paradigms as well after the necessary adaptations.

Acknowledgment

Ferenc Kocsis was supported in part by the Hungarian national grant GINOP-
2.1.1-15-2015-00370. András Kicsi, László Vidács, Viktor Csuvik, Ferenc Horváth
and Árpád Beszédes were supported in part by the European Union, co-�nanced
by the European Social Fund (EFOP-3.6.3-VEKOP-16-2017-00002).

References

1. Fischer, S., Linsbauer, L., Lopez-Herrejon, R.E., Egyed, A.: Enhancing Clone-
and-Own with Systematic Reuse for Developing Software Variants. In: 2014 IEEE
International Conference on Software Maintenance and Evolution, IEEE (sep 2014)
391�400

2. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns.
Addison-Wesley Professional (2001)

3. Krueger, C. In: Easing the Transition to Software Mass Customization. Springer
Berlin Heidelberg, Berlin, Heidelberg (2002) 282�293

4. Kästner, C., Dreiling, A., Ostermann, K.: Variability Mining: Consistent Semi-
automatic Detection of Product-Line Features. IEEE Transactions on Software
Engineering 40(1) (2014) 67�82

5. Assunção, W.K.G., Vergilio, S.R.: Feature location for software product line migra-
tion. In: Proceedings of the 18th International Software Product Line Conference
on Companion Volume for Workshops, Demonstrations and Tools - SPLC '14, New
York, New York, USA, ACM Press (2014) 52�59

6. Eyal-Salman, H., Seriai, A.D., Dony, C., Al-msie'deen, R.: Recovering traceability
links between feature models and source code of product variants. In: Proceedings
of the VARiability for You Workshop on Variability Modeling Made Useful for
Everyone - VARY '12, New York, New York, USA, ACM Press (2012) 21�25

7. Magic Software Enterprises Ltd.: Magic Software Enterprises.
http://www.magicsoftware.com (last visited May 2017)

8. Nagy, C., Vidács, L., Ferenc, R., Gyimóthy, T., Kocsis, F., Kovács, I.: MAGISTER:
Quality Assurance of Magic Applications for Software Developers and End Users.
In: 26th IEEE International Conference on Software Maintenance, IEEE Computer
Society (September 2010) 1�6

9. Nagy, C., Vidács, L., Ferenc, R., Gyimóthy, T., Kocsis, F., Kovács, I.: Solutions for
reverse engineering 4gl applications, recovering the design of a logistical wholesale
system. In: Proceedings of CSMR 2011 (15th European Conference on Software
Maintenance and Reengineering), IEEE Computer Society (March 2011) 343�346



15

10. Al-msie'deen, R., Seriai, A.D., Huchard, M., Urtado, C., Vauttier, S.: Mining
features from the object-oriented source code of software variants by combining
lexical and structural similarity. In: 2013 IEEE 14th International Conference on
Information Reuse & Integration (IRI), IEEE (aug 2013) 586�593

11. Kicsi, A., Vidács, L., Beszédes, A., Kocsis, F., Kovács, I.: Information retrieval
based feature analysis for product line adoption in 4gl systems. In: Proceedins of
the 17th International Conference on Computational Science and Its Applications
� ICCSA 2017, IEEE (2017) 1�6

12. Clements, P.C., Jones, L.G., McGregor, J.D., Northrop, L.M.: Getting there from
here: a roadmap for software product line adoption. Communications of the ACM
49(12) (dec 2006) 33

13. Clements, P., Krueger, C.: Eliminating the adoption barrier. IEEE Software 19(4)
(jul 2002) 29�31

14. Catal, C., Cagatay: Barriers to the adoption of software product line engineering.
ACM SIGSOFT Software Engineering Notes 34(6) (dec 2009) 1

15. Harrison, J.V., Lim, W.M.: Automated Reverse Engineering of Legacy 4GL Infor-
mation System Applications Using the ITOC Workbench. In: 10th International
Conference on Advanced Information Systems Engineering, Springer-Verlag (1998)
41�57

16. Ballarin, M., Lapeña, R., Cetina, C.: Leveraging Feature Location to Extract the
Clone-and-Own Relationships of a Family of Software Products. In: Proceedings
of the 15th International Conference on Software Reuse: Bridging with Social-
Awareness - Volume 9679. Springer-Verlag New York, Inc. (2016) 215�230

17. Nagy, C., Vidács, L., Ferenc, R., Gyimóthy, T., Kocsis, F., Kovács, I.: Complexity
measures in 4gl environment. In: Computational Science and Its Applications -
ICCSA 2011, Lecture Notes in Computer Science. Volume 6786 of Lecture Notes
in Computer Science., Springer Berlin / Heidelberg (2011) 293�309

18. Marcus, A., Maletic, J.: Recovering documentation-to-source-code traceability
links using latent semantic indexing. In: 25th International Conference on Software
Engineering, 2003. Proceedings., IEEE (2003) 125�135

19. Falessi, D., Cantone, G., Canfora, G.: A comprehensive characterization of NLP
techniques for identifying equivalent requirements. In: Proceedings of the 2010
ACM-IEEE International Symposium on Empirical Software Engineering and Mea-
surement - ESEM '10, New York, New York, USA, ACM Press (2010) 1

20. Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.:
Indexing by Latent Semantic Analysis. Journal of the American Society of Infor-
mation Science 41(6) (1990) 391�407

21. Verner, J., Tate, G.: Estimating Size and E�ort in Fourth-Generation Develop-
ment. IEEE Software 5 (1988) 15�22

22. Witting, G., Finnie, G.: Using Arti�cial Neural Networks and Function Points to
Estimate 4GL Software Development E�ort. Australasian Journal of Information
Systems 1(2) (1994) 87�94

23. Ocean Software Solutions: Homepage of Magic Optimizer. http://www.magic-
optimizer.com (last visited May 2017)

24. M2J Software LLC: Homepage of M2J. http://www.magic2java.com (last visited
May 2017)

25. Valente, M.T., Borges, V., Passos, L.: A Semi-Automatic Approach for Extracting
Software Product Lines. IEEE Transactions on Software Engineering 38(4) (jul
2012) 737�754



16

26. Assunção, W.K.G., Lopez-Herrejon, R.E., Linsbauer, L., Vergilio, S.R., Egyed, A.:
Multi-objective reverse engineering of variability-safe feature models based on code
dependencies of system variants. Empirical Software Engineering 22(4) (aug 2017)
1763�1794

27. Haslinger, E.N., Lopez-Herrejon, R.E., Egyed, A.: Reverse Engineering Feature
Models from Programs' Feature Sets. In: 18th Working Conference on Reverse
Engineering, IEEE (oct 2011) 308�312

28. Lima, C., Chavez, C., de Almeida, E.S.: Investigating the Recovery of Product
Line Architectures: An Approach Proposal. Springer, Cham (may 2017) 201�207

29. Krüger, J., Fenske, W., Meinicke, J., Leich, T., Saake, G.: Extracting software
product lines: a cost estimation perspective. In: Proceedings of the 20th Interna-
tional Systems and Software Product Line Conference on - SPLC '16, New York,
New York, USA, ACM Press (2016) 354�361

30. She, S., Lotufo, R., Berger, T., W�asowski, A., Czarnecki, K.: Reverse engineering
feature models. In: Proceeding of the 33rd international conference on Software
engineering - ICSE '11, New York, New York, USA, ACM Press (2011) 461

31. Bagheri, E., Ensan, F., Gasevic, D.: Decision support for the software product
line domain engineering lifecycle. Automated Software Engineering 19(3) (2012)
335�377

32. Siegmund, N., Rosenmüller, M., Kuhlemann, M., Kästner, C., Apel, S., Saake,
G.: SPL Conqueror: Toward optimization of non-functional properties in software
product lines. Software Quality Journal 20(3-4) (2012) 487�517

33. Lee, K., Kang, K.C., Lee, J.: Concepts and Guidelines of Feature Modeling for
Product Line Software Engineering. In: Software Reuse Methods Techniques and
Tools. Volume 2319. Springer, Berlin, Heidelberg (2002) 62�77

34. Baresi, L., Quinton, C.: Dynamically Evolving the Structural Variability of Dy-
namic Software Product Lines. 10th International Symposium on Software Engi-
neering for Adaptive and Self-Managing Systems (2015)

35. Bashari, M., Bagheri, E., Du, W.: Dynamic Software Product Line Engineering: A
Reference Framework. International Journal of Software Engineering and Knowl-
edge Engineering 27(02) (2017) 191�234

36. Capilla, R., Bosch, J., Trinidad, P., Ruiz-Cortés, A., Hinchey, M.: An overview of
Dynamic Software Product Line architectures and techniques: Observations from
research and industry. Journal of Systems and Software 91(1) (may 2014) 3�23

37. Uchôa, A.G., Bezerra, C.I.M., Machado, I.C., Monteiro, J.M., Andrade, R.M.C.:
ReMINDER: An Approach to Modeling Non-Functional Properties in Dynamic
Software Product Lines. Springer, Cham (may 2017) 65�73

38. Hinchey, M., Park, S., Schmid, K.: Building Dynamic Software Product Lines.
IEEE Computer Society 45(10) (2012) 22�26

39. Lee, J.: A Feature-Oriented Approach to Developing Dynamically Recon�gurable
Products in Product Line Engineering. 10th International Software Product Line
Conference (2006) 131�140

40. Bencomo, N., Lee, J., Hallsteinsen, S.: How dynamic is your Dynamic Software
Product Line? DiVA project (EU FP7 STREP) (2010) 61�67

41. Classen, a., Hubaux, A., Sanen, F., Truyen, E., Vallejos, J., Costanza, P., De
Meuter, W., Heymans, P., Joosen, W.: Modelling Variability in Self-Adaptive
Systems: Towards a Research Agenda. Proceedings of International Workshop on
Modularization, Composition and Generative Techniques for Product-Line Engi-
neering 1(2) (2008) 19�26


