
Development of a Unified Software Quality
Platform in the Szeged InfoPólus Cluster

Árpád Beszédes
Department of Software Engineering

University of Szeged
Szeged, Hungary

beszedes@inf.u-szeged.hu

Lajos Schrettner
InfoPólus 2009 Ltd.
Szeged, Hungary

schrettner@infopolus.hu

Tibor Gyimóthy
Department of Software Engineering

University of Szeged
Szeged, Hungary

gyimothy@inf.u-szeged.hu

Abstract—In Software Quality Assurance, system status re-
ports are key to the stakeholders for controlling software qual-
ity. Although we may rely on a large number of low level
measurements to this end, their interpretation and the way
of connecting them to high level quality attributes is always
a challenge. In this paper we report on a complex project
involving industrial partners whose aim is the development of
a unified software quality platform that deals with and bridges
these low and high level quality aspects, and provides a basis
for the industrial applications of the approach. The project is
implemented by a consortium of software industry members
of the Szeged Software Innovation Pole Cluster and associated
researchers with the support from the EU co-financed national
grant promoting innovation clusters of small and middle-sized en-
terprises. The approach to the unified quality platform is based on
the Goal-Question-Metric paradigm and a supporting software
infrastructure, and its novelty lies in a unified representation of
the low level metrics and the high level questions that evaluate
them to address software quality assurance goals. It allows the
definition of various complex questions involving different types
of metrics, while the supporting framework enables the automatic
collection of the metrics and the calculation of the answers to the
questions. We present details about the design and development
of the quality platform and its relation to the applications that
are being developed by the industrial members of the consortium.

Index Terms—Software quality assurance, Metrics, Goal Ques-
tion Metric, Quality model, Modeling.

I. INTRODUCTION

The Software Innovation Pole Cluster [1] was formed as
the result of collaboration of major software research centres,
companies and technology transfer organizations. Based upon
earlier cooperations the members of the cluster realized that
they can produce more competitive technologies, products and
services if their developments are harmonized. By extending
collaborations and by more efficient coordination of coop-
erations the cluster offers its members the consolidation of
high added value R&D activities with related training and
education, as well as the creation of the infrastructure for
knowledge intensive activities.

The SIKK (Hungarian abbreviation for Innovative Research
Center for Software Industry) initiative is organised around the
Software Engineering Department at the University of Szeged
and brings together a number of local companies that are
willing and able to benefit from sharing their experiences and

expertise in the field. The center has been growing dynamically
over the past years, and has produced a number of results that
are readily available to the partners for use in their products
and services.

Software quality is of prime importance to every software
company, and it lies at the center of interest for the Software
Innovation Pole Cluster and SIKK members as well, so they
formed a legal entity, InfoPólus 2009 Ltd., to create a formal
context for cooperation in a project. The motivation behind
the project is the realization that without constant quality
monitoring the number of errors in a software system tends to
rise over time. It is inevitable that systems are modified from
time to time due to scheduled releases, bugfixes, changes in
the requirements and other reasons. Unwanted side-effects of
modifications usually cause a sudden increase in the number
of errors, most of which are gradually eliminated, but studies
show that the total number of errors in a system exhibits a
steady increase [2].

Quality monitoring is traditionally based on measuring low
level characteristics (metrics) of the system, but to be really
useful it requires a number of well-constructed quality goals to
be formulated as well. It is still a challenge, however, to close
the conceptual gap, i.e. to establish a relationship between
the low level metrics and the higher level goals. A bottom-
up approach has several drawbacks because there are many
characteristics in software (e.g. lines of code, complexity,
number of bugs), but selecting the important ones is not
straightforward without well defined top-level goals. The Goal-
Question-Metric (GQM) paradigm [3][4] proposes to narrow
the gap by introducing an intermediate level, i.e. questions
that help in achieving quality goals in a top-down fashion by
combining a well defined set of metric values.

Our proposed solution to quality monitoring is based on
GQM in the sense that we suggest a method for combining
metrics and questions in a unified model (see Figure 1). The
process starts with analysis steps formulating quality goals,
which are translated into questions that in turn can refer
to metrics. The result of this analysis is a data model that
describes the set of metrics to be measured and the set of (pa-
rameterized) questions that can be asked to achieve the goals.
We found that the model is best organized by partitioning it in
a way that reflects the lifecycle phases observed. Also, it may



Figure 1. Unified Quality Model Platform design principles

be advantageous to include extra metrics on top of the ones
that are strictly required to answer the questions, because this
makes it easier to extend the set of questions at a later time.
The tools of each specialty feed data into the model instance
through adapters. Quality goals can be met by activating the
questions once enough metric data are accumulated.

In this paper we first overview the project in Section II, then
summarize the project goals in Section III. The current status
of the project is described in Section IV, while plans for the
future appear in Section V.

II. THE PROJECT

The project is carried out in cooperation between the parties
below:

• Büro-Three Ltd. was founded in 2008, it has been
working as a sub-contractor on the development of the
information system of the Hungarian Trade Bank (MKB).
The tasks of the company are the completion of certain
error corrections after the installation of MKB-Globus
system, fulfillment of commercial warranty and support
of help-desk service.

• Clarity Consulting Ltd. [5] has an extensive IT and
management consulting experience gained by working
with one of Hungary’s largest IT consulting companies.
The company is built on the belief that in order to quickly
find the most effective business solutions for its clients,
one must have practical experience and a solid grounding
in business models and IT solutions for their particular
line of business.

• FrontEndART Ltd. [6] explores, develops and markets
innovative solutions for software quality management.
The most popular product and service of the company is
the software quality assurance system based on Columbus
technology, instrument and quality measurement service.

• Griffsoft Informatics Plc. [7] is a business management
software developer and IT services provider company in
Hungary. It has been developing and selling the Forrás
management system for more than 20 years. Development
activities center around ForrásSQL, a high level database-
oriented programming language of the company.

• MultiRáció Ltd. [8] was founded in 1992 for the design,
development and operation of economical and financial
analysis systems. It won an innovation prize in 2003
for the development of the OpenOffice.org commercial
derivative called MagyarOffice and later EuroOffice. Be-
sides analytical systems, MultiRáció also offers solutions
for other problems that require special expertise in areas
of statistics, mathematics, informatics or finances.

• Polygon Informatics Ltd. [9] is the largest Hungarian
Premier Business Partner of IBM, its main profile is the
selling and popularizing IBM technologies. The com-
pany also deals with server operation, the integration of
systems, servers, networks and applications, and it has
significant sales revenue from selling hardware as well.

• Szeged Software Plc. [10] has been developing applica-
tions which satisfy special information claims of whole-
salers since its foundation. It developed PharmaLog for
the pharmaceutical wholesalers, and StoreIS, a general,
wholesale logistic system.

Details of the project are the following:
• The project is based on the Support for market-oriented

research and development tender in the Economic De-
velopment Operational Programme, New Hungary Devel-
opment Plan. The project is supported by the European
Union and by the European Regional Development Fund.

• The full title of the project is Development of a unified
software quality platform and business applications based
on the competence of the SIKK knowledge center and
the development and market expertise of the participating
members of the Szeged InfoPólus, its registration index is
GOP-1.2.1-08-2009-0005.

• The total budget of the project is 5 620 000 EUR. The
amount of funding is 2 810 000 EUR (50%).

• The project is carried out between 1 October, 2009 and
30 September, 2012.

The Software Engineering Department at the University of
Szeged plays a significant role in several aspects, it supplies
its expertise for designing the conceptual background for
the project and the supporting infrastucture for the quality
monitoring platform. The most important result of the SIKK
initiative is the RÉM (Hungarian abbreviation for Software
Development Life Cycle Methodology), which is a constantly
maturing, unique and comprehensive software quality assur-
ance model. It is applicable not only for determining software
quality, but for monitoring and controlling it in a unified
framework. The main element of the concept is the need
for continuous centralized tracking of quality attributes, i.e.
measurements. A particular application of the concept requires
the determination of a tailored set of quality attributes, so
that continuous control over them could put a halt to system
degradation.

III. GOALS OF THE PROJECT

Reflecting the fields of expertise of the individual members
of InfoPólus 2009, the applications developed in the project



and whose quality is to be monitored are quite diverse. The
main goal is to design and develop a common software quality
measurement platform to which the individual applications can
connect despite the diversity.

The applications developed by the partners have been as-
signed to so called specialties to place them in a wider context.
The use of specialties emphasizes that the results obtained can
be generalised to application areas similar to the ones found
in the project.

The following specialties have been established:

• OpenDesktop open source quality assurance. The goal
is to create a high quality, fully functional office platform
and services built from open source components using
IBM technology. Further, the platform is to be supple-
mented with software quality assurance methodologies,
tools and services that help in selecting desktop applica-
tions to be included in the distribution.
Key members: MultiRáció, FrontEndART.

• Magic test-automation. The goal is to develop a com-
plex product and services bundle to facilitate the more
effective and reliable testing of Magic systems by using
test automation.
Key member: Szeged Software.

• ForrásSQL test-automation. The goal is to develop
ForrásSQL-specific tools to automate the generation and
execution of tests using databases that contain millions
of records, thereby simulating real-life environments.
Key members: GriffSoft, FrontEndART.

• Data cleaning. The goal is to develop a set of data
manipulation tools that make the maintenance and cor-
rection of real and test data possible. One important area
is data masking where test data can be generated from
real data by a method that alters sensitive values but keeps
consistency and associations.
Key member: Clarity.

• Safety critical operation of large systems. The goal is
to develop an application and services for the monitoring
of large, safety-critical systems that exhibits functionality
beyond the capabilities of other monitoring tools. This
is achieved by handling behavior that is specific to the
observed system instead of registering general hardware-,
database-, and environment-related events only.
Key members: Büro-Three, Polygon.

The applications and tools above cover a wide spectrum of
the software development life cycle. The members can expect
a number of benefits from the project:

• The availability of a unified quality platform which they
can include in their products.

• Specialized quality assurance solutions by customizing
the platform.

• Added value to products, services offered.
• Potential of increased market share.
• Continuous measurement and evaluation.
• More efficient IT operation.

IV. STATUS OF THE PROJECT

The project has reached a phase when the concepts, archi-
tectural design documents and prototypes are available. The
tools belonging to the specialties cannot be dealt with here
due to space constraints, so we concentrate on the framework
itself in the rest of the paper. At present the details of the
user interface are under development, in which each partner
is involved.

The Unified Software Quality Platform that integrates the
quality data collection, high level query management and
reporting features has been implemented on top of our MBPS
framework. The components have been designed and imple-
mented to be as general as possible so that they can be reused
in other projects as well.

A. Model Based Persistence Server

The Model Based Persistence Server (MBPS) is capable of
supporting clients that benefit from viewing their persistent
data as a collection of nodes (and connections) instead of as
records of a relational database. Its main feature is that besides
serving as a vehicle for model-based data storage, it supports
the integration of queries into the models.

The structure of the data to be stored is defined via a UML
model description that is processed to create model instances.
The framework provides a model-independent interface that
can be used to retrieve, insert, delete, and modify model
elements, as well as executing queries. The UML description
of a model can also serve as a basis to generate a model-
specific API that can be used either on the client side or the
server side. The framework uses an internal cache to speed up
both data store and retrieval operations.

During building and manipulating the model instance, the
framework continuously checks that the instance is kept con-
sistent with the model, it only allows operations that do not
invalidate consistency. Model instance elements are versioned,
so modification histories are available, even queries can refer
to past versions of elements, which is very convenient as his-
torical diagrams are needed very often in quality monitoring.

It is possible to upload application-specific Java code to any
domain, so it can run on the server side, thereby improving
efficiency and supporting post-processing of query results.

Uploaded custom Java code has two main uses:
• It can improve efficiency by processing data at the server

side, because less data have to be communicated between
the client and the server. This feature comes very handy
in cases when efficiency is a top priority.

• It can be used to add post-processing steps to queries.
The query model does not allow for any possible type of
aggregation of data to be performed, so sometimes it is
necessary to run custom code on the query results.

B. Unified Software Quality Platform

The platform is still under development, but it already
provides limited functionality. Quality data accumulates in the
model instance by the use of special client components, called
adapters (Figure 2). Adapters are data transformation devices



Figure 2. USQP architecture

that collect data from various sources, restructure them as
dictated by the model, then forward the resulting elements
to the persistence server. There are a predefined set of adapter
types that are prepared to be able to collect data from sources
that have been encountered so far in different projects. Adapter
types and supporting classes are arranged in an inheritance
hierarchy, so new adapter types can be included into the system
relatively easily if the need arises. In a particular installation
of the Unified Software Quality Platform application, those
adapters that are determined to be necessary for the operation
of the system have to be instantiated. Most adapters require
that parameters be provided at instantiation time to connect to
their data source. Instantiated adapters can be set up to operate
under the supervision of a scheduler that activates them at
preconfigured moments, or they can be activated manually.

Data collected through adapters accumulates in the persis-
tent storage, where it can be queried from. Queries are stored
next to the model in the supporting database, and can have
parameters that should be filled in before execution. The pa-
rameters together with the constraints that are described inside
the queries determine a subset of the nodes and connections
of the model instance. This way they are similar to relational
queries, except that they produce a subgraph, not a series of
records. Queries can encode a limited number of aggregation
functions (e.g. count, sum, average), but these do not cover
every possible usage scenario, so it is possible to attach
custom post-processing Java code to queries, as mentioned
above. The results of a query are sent to the client, where
it can be decided how it is stored or presented to the user.
As mentioned earlier, queries are stored next to the model
instance, where they can be efficiently executed. The results
of an executed query can be viewed textually in the simplest
case, or they can appear on a diagram if the output type of
the query is one of those for which diagrams are predefined.
The current set of diagrams consists of several two and three-
dimensional bar charts, timelines and other reports. There
are three views in the unified user interface of the system,
two for administrative tasks (Adapter management, Question

manipulation) and another one for the end users, i.e. the
experts who would like to monitor the quality of the observed
system(s).

There are typical usage scenarios for the Unified Software
Quality Platform:

• Single source. In this case there is one observed system
on which one measurement is carried out only, questions
can only refer to the metric data of that same measure-
ment. This is the simplest and most straightforward use
of the platform.

• Multiple independent sources. In this case there are
several observed systems that are independent from each
other in the sense that each sends data to a separate
measurement part in the model. Questions refer to the
metric data that belong to a single measurement, i.e. to a
single observed system.

• Multiple sources. This scenario is the most interesting
from a software quality point of view, because here we
use multiple measurements along with questions that
require data from more than one measurement. The data
sources in this case are subsystems that are operated
together to serve a common goal.

V. FUTURE WORK

At present the platform is set up in an evaluation environ-
ment where partners can conduct tests on real data collected
from the applications. The user interface of the platform and
the underlying models are going to be developed further based
on feedback from the evaluation period. After incorporating
the requested features, the USQP platform and tool can be
included in the tool packages of the individual specialties.

ACKNOWLEDGEMENT

This research was supported by the Hungarian national grant
GOP-1.2.1-08-2009-0005.

REFERENCES

[1] “The InfoPólus cluster homepage.” [Online]. Available:
http://www.infopolus.hu/

[2] R. S. Pressman, Software Engineering: A Practitioner’s Approach,
5th ed. McGraw-Hill Higher Education, 2001.

[3] V. R. Basili, G. Caldiera, and H. D. Rombach, “The Goal Question
Metric Approach,” in Encyclopedia of Software Engineering. Wiley,
1994.

[4] V. R. Basili, “Software modeling and measurement: the
Goal/Question/Metric paradigm,” College Park, MD, USA, Tech.
Rep., 1992.

[5] “Clarity Consulting homepage.” [Online]. Available:
http://www.clarity.hu/site/en/index.php

[6] “FrontEndART homepage.” [Online]. Available:
http://www.frontendart.com

[7] “GriffSoft homepage.” [Online]. Available: http://www.griffsoft.hu
[8] “MultiRáció homepage.” [Online]. Available: http://www.multiracio.hu
[9] “Polygon homepage.” [Online]. Available: http://www.polygon.hu

[10] “Szeged Software homepage.” [Online]. Available:
http://www.szegedsw.hu


