Differences in the Definition and Calculation
of the LOC Metric in Free Tools*

Istvan Siket Arpad Beszédes
Department of Software Engineering Department of Software Engineering
University of Szeged, Hungary University of Szeged, Hungary
siket@inf.u-szeged.hu beszedes@inf.u-szeged.hu

John Taylor

FrontEndART Software Ltd.
Szeged, Hungary

john.taylor@frontendart.com

Abstract

The software metric LOC (Lines of Code) is probably one of the most controversial metrics in
software engineering practice. It is relatively easy to calculate, understand and use by the different
stakeholders for a variety of purposes; LOC is the most frequently applied measure in software
estimation, quality assurance and many other fields. Yet, there is a high level of variability in the
definition and calculation methods of the metric which makes it difficult to use it as a base for
important decisions. Furthermore, there are cases when its usage is highly questionable — such as
programmer productivity assessment. In this paper, we investigate how LOC is usually defined
and calculated by today’s free LOC calculator tools. We used a set of tools to compute LOC
metrics on a variety of open source systems in order to measure the actual differences between
results and investigate the possible causes of the deviation.

1 Introduction

Lines of Code (LOC) is supposed to be the easiest software metric to understand, compute and in-
terpret. The issue with counting code is determining which rules to use for the comparisons to be
valid [5]. LOC is generally seen as a measure of system size expressed using the number of lines of
its source code as it would appear in a text editor, but the situation is not that simple as we will see
shortly. On the other hand, the importance of this metric is clear: it can be used for different purposes
including size estimation, productivity assessment and providing a base for other relative measure-
ments such as number of bugs per code lines. Multiple different areas of software engineering benefit
from calculating LOC, perhaps most importantly software estimation and quality assurrance [4].

In many cases, this metric is virtually the only one which can be easily explained to non-technical
stakeholders such as managers. Consequently, important project decisions are often made based
on it, so the reliable measurement and expression of LOC is of utmost importance in any software
measurement activity. However, there are several issues with this metric. Some of them are inherent
such as problems related to language-dependence, therefore alternative measures such as function

*Technical Report TR-2014-001, ©2014, University of Szeged, Department of Software Engineering. You may freely
distribute and make extracts of this document, provided the source is acknowledged.

Definitions of the LOC Metric TR-2014-001 2

point analysis are used in certain areas [5]. As Bill Gates puts it, “Measuring software productivity
by lines of code is like measuring progress on an airplane by how much it weighs.”

Apart from these drawbacks, we are also interested in other related issues that arise from the
diverse definitions, calculation methods and actual interpretations. From the technical point of view,
computing LOC is simple, so there are a huge number of tools implementing a plethora of variations
of this metric through different programming languages. This results in a fairly confusing situation
for any software professional getting in contact with this metric. Consequently, anyone wanting to
count program code lines should first establish some kind of a measurement methodology, preferably
one standardized within a project or organization [6].

In this study, we investigate how this metric is usually defined and compare existing tools for its
calculation. For comparison, we used a set of criteria which includes both general and specific tool
properties in relation to the LOC metric. To assess the differences in the actual results provided by
the tools, we calculated the LOC metrics for a set of open source programs. Our aim is not to pinpoint
the "best" LOC definition or tool but to draw attention to the differences in existing solutions, hence
provide guidelines for professionals considering the use of this metric.

2 Definitions of the LOC Metric

There is a controversy among professionals what LOC should actually mean and how it should be
defined or measured. Consider, for example, any of the summarization websites cited below such as
the Wikipedia page.

The Software Engineering Institute (SEI) of Carnegie-Mellon University has established a frame-
work for the measurement and interpretation of Lines of Code [6]. One of the most important mes-
sages of this report is that it is essential for the measurement methodology to be well-established and
properly documented — such as using the provided check-list. Capers Jones already discussed how
the interpretation of software metrics (including LOC) suffers from precise definitions and calculation
methods back in 1994 [3]. Unfortunately, the situation did not change significantly ever since [1, 5, 8].

In this section we collect the most important definitions from various sources including research
articles, community entries and tool vendors without the attempt to be comprehensive.

Academic publications

In the research community, the lines of code metric is used for various purposes including quality
assessment, defect prediction, productivity measurement, relative process metrics, and so forth. In
these applications, the definition based on the physical lines of source code excluding blank lines and
comments is most often used (see, for instance, [2, 7, 9]).

Wikipedia
http://en.wikipedia.org/wiki/Source_lines_of_code

* LOC: “The most common definition of physical SLOC is a count of lines in the text of the
program’s source code including comment lines. Blank lines are also included unless the lines
of code in a section consists of more than 25% blank lines. In this case blank lines in excess of
25% are not counted toward lines of code”

* LLOC: “Logical SLOC attempts to measure the number of executable ‘statements,” but their
specific definitions are tied to specific computer languages (one simple logical SLOC measure
for C-like programming languages is the number of statement-terminating semicolons). [t
is much easier to create tools that measure physical SLOC, and physical SLOC definitions

University of Szeged, Department of Software Engineering

Definitions of the LOC Metric TR-2014-001 3

are easier to explain. However, physical SLOC measures are sensitive to logically irrelevant
formatting and style conventions, while logical SLOC is less sensitive to formatting and style
conventions. However, SLOC measures are often stated without giving their definition, and
logical SLOC can often be significantly different from physical SLOC.]”

Cunningham & Cunningham, Inc.
http://c2.com/cgi/wiki?LinesOfCode

* LOC: “Lines of Code, usually referring to non-commentary lines, meaning pure whitespace
and lines containing only comments are not included in the metric.” (The number of lines of
program code is wonderful metric. It’s so easy to measure and almost impossible to interpret.
It can be used as a measure of complexity or productivity.)

SonarQube tool
http://docs.codehaus.org/display/SONAR/Metric+definitions

* Lines: “Number of physical lines (number of carriage returns).”

* Lines of code: “Number of physical lines that contain at least one character which is neither a
whitespace or a tabulation or part of a comment.”

NDepend tool

http://www.ndepend.com/Metrics.aspx

* “NbLinesOfCode: (defined for application, assemblies, namespaces, types, methods) This met-
ric (known as LOC) can be computed only if PDB files are present. NDepend computes this
metric directly from the info provided in PDB files. The LOC for a method is equals to the
number of sequence point found for this method in the PDB file. A sequence point is used to
mark a spot in the IL code that corresponds to a specific location in the original source. More
info about sequence points here. Notice that sequence points which correspond to C# braces
‘{’and ‘}’ are not taken account. Computing the number of lines of code from PDB’s sequence
points allows to obtain a logical LOC of code instead of a physical LOC (i.e directly computed
from source files).”

PC Magazine
http://www.pcmag.com/encyclopedia/term/46137/1lines—-of—-code

* Lines of Code: “The statements and instructions that a programmer writes when creating a pro-
gram. One line of this ‘source code’ may generate one machine instruction or several depending
on the programming language. A line of code in assembly language is typically turned into one
machine instruction. In a high-level language such as C++ or Java, one line of code may gener-
ate a series of assembly language instructions, resulting in multiple machine instructions.
Lines of Code Are Not the Same: One line of code in any language may call for the inclusion
of a subroutine that can be of any size, so while used to measure the overall complexity of a
program, the line of code metric is not absolute. Comparisons can also be misleading if the
programs are not written in the same language. For example, 20 lines of code in Visual Basic
might require 200 lines of code in assembly language. In addition, a measurement in lines
of code says nothing about the quality of the code. A thousand lines of code written by one
programmer can be equal to three thousand lines by another.”

University of Szeged, Department of Software Engineering

Definitions of the LOC Metric TR-2014-001 4

Eclipse Metrics plugin tool

http://sourceforge.net/projects/metrics/
http://metrics.sourceforge.net/

* TLOC: “Total lines of code that will counts non-blank and non-comment lines in a compilation
unit. usefull for thoses interested in computed KLOC.”

SLOC tool

http://microguru.com/products/sloc/

* “SLOC Metrics measures the size of your source code based on the Physical Source Lines of
Code metric recommended by the Software Engineering Institute at Carnegie Mellon University
(CMU/SEI-92-TR-019). Specifically, the source lines that are included in the count are the
lines that contain executable statements, declarations, and/or compiler directives. Comments,
and blank lines are excluded from the count. When a line or statement contains more than one
type, it is classified as the type with the highest precedence. The order of precedence for the
types is: executable, declaration, compiler directive, comment and lastly, white space.”

Understand tool

http://scitools.com/documents/metricsList.php

* Lines of Code (Include Inactive): “Number of lines containing source code, including inactive
regions.”

* Physical Lines: “Number of physical lines.”

* Source Lines of Code: “Number of lines containing source code. [aka LOC]: The number of
lines that contain source code. Note that a line can contain source and a comment and thus count
towards multiple metrics. For Classes this is the sum of the CountLineCode for the member
functions of the class.”

CMT++ Complexity Measures tool

http://www.verifysoft.com/en_linesofcode_metrics.html
* LOCphy: “number of physical lines”
* LOCpro: “number of program lines (declarations, definitions, directives, and code)”

e LOCDbI: “number of blank lines (a blank line inside a comment block is considered to be a
comment line)”

e LOCcom: “number of comment lines”

Conclusion

It appears that there is no common interpretation of the LOC metric. There are even surprising
definitions such as Wikipedia’s LLOC which refers to actual syntactic program elements rather than
code lines. Similarly, non-empty lines, declarations and comments are interpreted differently, for
example in the case of “invisible” characters such as block delimiting brackets or compiler directives.

University of Szeged, Department of Software Engineering

Assessment Criteria TR-2014-001 5

Another issue is the lack of standardized notation for the different variants of the LOC metric as
seen above. This concerns comment lines, logical lines, physical lines, etc. For this study, we use two
common types of the LOC metric in our measurements: physical lines of code and logical lines of
code (details given below).

3 Assessment Criteria

3.1 Tool Properties

First we compare LOC calculation tools based on a set of general criteria — secondly according to
various properties related to the metric itself. These criteria are listed in Table 1.

General properties Note

Version information Actual version assessed

Language(s) Supported languages

License End user license type

Operating system(s) Supported platforms

User interface Type of the Ul and subjective assessment

Extra features E.g., is it part of a more complete metric suite?
LOC-related properties | Note

Other metrics Does the tool compute additional metrics as well?
LOC types What types of LOC are calculated?

PLOC name How does the tool refer to the PLOC-type metric?
LLOC name How does the tool refer to the LLOC-type metric?

Table 1: Comparison criteria

3.2 Metrics compared

We chose to use the two basic LOC types in the measurements: physical and logical lines of code. As
there are many variations to the names and precise interpretation of these metrics, we will use these
two general definitions, which will be applicable to most of the concrete situations:

1. Physical lines of code — hereinafter referred to as PLOC — means the actual lines as appearing
in a text editor. This means that all lines are counted included empty ones and whitespaces. For
a project, this practically means the total lines for all source files included in the measurement.

2. Logical lines of code — hereinafter referred to as LLOC — means the typical definition for logical
lines, i.e. commented and whitespace lines are excluded.

Note, that the tools may use different denominations for these metrics and may implement differ-
ent variations of the metrics as we will present in the next section.

3.3 Language

In the present study, we concentrated on calculating the lines of Java programs. In case of other
languages — such as C/C++ — other complications may occur such as inclusion of preprocessor related
code and common includes.

University of Szeged, Department of Software Engineering

LOC Calculation Tools TR-2014-001 6

4 LOC Calculation Tools

There are numerous tools capable of calculating LOC metrics, both free and commercial. Many of
them provide the feature as part of a more complex functionality (e.g. general metric calculation
tools), while there are specialized ones as well. A (not necessarily complete) list can be found at
http://www.locmetrics.com/alternatives.html. For this study, we selected a set
of popular, freely available LOC calculator tools for measuring Java code; some of these tools are
actually open source. The following list is a summarization of the examined tools (the descriptions
are cited from the respective project’s websites):

cloc

CodeAnalyzer

Analytix

LOCCounter

LocMetrics

Metrix++

SLOCCount

SonarQube

SourceMeter

Counts blank lines, comment lines, and physical lines of source code in many programming
languages. (http://cloc.sourceforge.net)

A tool for basic software source metrics. It can calculate these metrics across multiple source
trees as one coherent “Code Set.” (http://www.codeanalyzer.teel.ws)

CodePro Analytix is the premier Java software testing tool for Eclipse developers who are con-
cerned about improving software quality and reducing developments costs and schedules. The
Java software audit features of the tool make it an indispensable assistant to the developer in
reducing errors as the code is being developed and keeping coding practices in line with or-
ganizational guidelines. (https://developers.google.com/java-dev-tools/
codepro/doc)

Counts lines of code, including comment and blank lines. Interactive GUI, or command line.
End user may add new file types by editing config file. Supports any source language that
uses characters to delimit comments, such as // or /* */. (http://sourceforge.net/
projects/loccounter/)

This tool counts total lines of code (LOC), blank lines of code (BLOC), comment lines of code
(CLOC), lines with both code and comments (C&SLOC), logical source lines of code (SLOC-
L), McCabe VG complexity (MVG), and number of comment words (CWORDS). Physical
executable source lines of code (SLOC-P) is calculated as the total lines of source code minus
blank lines and comment lines. Counts are calculated on a per file basis and accumulated for
the entire project. (http://www.locmetrics.com/)

Metrix++ is a tool to collect and analyse code metrics. Any metric is useless if it is not
used. Metrix++ offers ease of introduction and integration with a variety of application use
cases: monitoring trends, enforcing trends and automated assistance to review against stan-
dards. (http://metrixplusplus.sourceforge.net)

A set of tools for counting physical Source Lines of Code (SLOC) in a large number of lan-
guages of a potentially large set of programs. SLOCCount runs on GNU/Linux, FreeBSD,
Apple Mac OS X, Windows, and hopefully on other systems too. To run on Windows, you
have to install Cygwin first to create a Unix-like environment for SLOCCount.
(http://www.dwheeler.com/sloccount/)

An open platform to manage code quality. As such, it covers the 7 axes of code quality: archi-
tecture and design, comments, complexity, coding rules, duplications, potential bugs, unit tests.
(http://www.sonarqube.org/)

An innovative tool built for the precise static source code analysis of Java projects. This tool
makes it possible to find the weak spots of a system under development from the source code
itself without the need of simulating live conditions. Calculates more than 60 types of source

University of Szeged, Department of Software Engineering

Measurements TR-2014-001 7

code metrics at component, file, package, class, and method levels.
(http://sourcemeter.com/)

SourceMonitor The freeware program SourceMonitor lets you see inside your software source code to find out
how much code you have and to identify the relative complexity of your modules. For example,
you can use SourceMonitor to identify the code that is most likely to contain defects and thus
warrants formal review. (http://www.campwoodsw.com/sourcemonitor.html)

UCC The Unified Code Counter (UCC) is a comprehensive software lines of code counter produced
by the USC Center for Systems and Software Engineering. It is available to the general public
as open source code and can be compiled with any ANSI standard C++ compiler.
(http://sunset.usc.edu/research/CODECOUNT/)

In Table 2, we list some general properties of the examined tools based on the criteria from Table 1.

Tool Version Language License Op. system | Interface Extra features

cloc 1.62 145 GPL v2 Win/Linux cmd Comment
CodeAnalyzer 0.7.0 5 GPL v2 Win/Linux GUI Comment

CodePro Analytix 7.1.0.r37 1 Google TOS ‘Win/Linux GUI Metrics, clones, code coverage, etc.
LOCCounter 2011-8-27 | General! BSD 3-cl Win GUI

LocMetrics 2007 oct. 4 n.a. Win GUI/ecmd Metrics, comment
Metrix++ 1.3.168 3 GPL Win/Linux cmd Metrics

SLOCCount 2.26 27 GPL Win/Linux cmd

SonarQube 4.4 20 LGPL v3 Win/Linux GUI/cmd Metrics, clones, coding rules, etc.
SourceMeter 6.0 1 EUAL Win/Linux | GUI/cmd Metrics, clones, coding rules
SourceMonitor 3.5.0.306 6 EULA Win GUI Metrics

ucc 2013.04B 30 USC-CSSE Win/Linux cmd Metrics

Table 2: General LOC tool features

The other aspect of the investigated tools is how they interpret the various LOC metrics, so we list
LOC-related properties separately in Table 3 (see criteria in Table 1). An important detail is the actual
metric we used in the measurements for PLOC and LLOC, which are given in the last two columns
of the table. Note, that there are cases where the actual names used by the tool do not reflect the type
of metric being computed.

Tool Other metrics LOC types PLOC name LLOC name
cloc No Comment, Blank files+blank+comment+code code
CodeAnalyzer No Comment, Blank Total Lines Code Lines
CodePro Analytix Yes Comment Number of Lines Lines of Code
LOCCounter No Comment, Blank Lines Source LOC
LocMetrics Yes Blank, Comment, etc. Lines of Code Executable Physical
Metrix++ Yes Comment - std.code.lines:total
SLOCCount Yes - - Total Physical Source Lines of Code
SonarQube Yes Comment Lines Lines of code
SourceMeter Yes Comment LOC LLOC
SourceMonitor Yes Comments Lines -

ucc Yes Blank, Comment Total Physical Lines Physical SLOC

Table 3: LOC-related properties of the tools

5 Measurements

5.1 Subject Programs

We selected a set of open source Java programs for analysis. The programs vary in size from medium
(several tens of thousand lines) to large (over million lines) systems and are from various domains.
The main characteristics of the systems are given in Table 4.

'Supports languages that use characters to delimit comments, such as // or /* */.

University of Szeged, Department of Software Engineering

Results TR-2014-001 8

Name Version | Homepage Java files
Ant 1.94 http://ant.apache.org 1,233
ArgoUML 0.34 http://argouml.tigris.org 1,922
Cewolf 1.24 http://cewolf.sourceforge.net/new/ 134
Hibernate 4.3.6 http://hibernate.org 7,273
Liferay 6.2 http://www.liferay.com/ 10,118
PMD 5.1.2 http://pmd.sourceforge.net 1,115
Tomcat 8.0.9 http://tomcat.apache.org 2,037
Xerces 1.4.4 http://xerces.apache.org/xerces—j 546

Table 4: Analyzed Systems

5.2 Results
5.2.1 LOC counts

Tables 5 and 6 list the primary measurement results: the actual PLOC and LLOC metrics computed
by the tools, respectively.

PLOC Ant ArgoUML | Cewolf | Hibernate Liferay PMD Tomcat Xerces
cloc 267,063 391,874 16,563 842,410 3,624,085 | 104,023 | 495,190 | 178,923
CodeAnalyzer 265,830 389,952 16,429 835,137 3,613,967 | 102,909 | 493,153 | 178,377
CodePro An. 265,788 389,952 16,429 832,072 3,612,853 | 102,909 | 492,610 | 178,377
LOCCounter 265,830 389,952 16,429 835,137 3,613,967 | 102,909 | 493,153 | 178,337
LocMetrics 267,061 391,837 16,563 841,867 3,613,969 | 103,974 | 495,054 | 178,922
Metrix++ - - - - - - - -

SLOCCount - - - - - - - -

SonarQube 266,815% 391,837 16,563 - 3,613,969 | 103,969 | 494,823 | 175,412
SourceMeter 267,061 391,837 16,563 841,968 3,613,969 | 103,975 | 495,054 | 178,922
SourceMonitor | 264,190 387,173 16,429 832,263 3,606,843 | 102,908 | 487,341 | 178,377
UCC 265,613 389,993 16,431 833,831 3,611,915 | 102,896 | 492,642 | 178,377

Table 5: PLOC comparison

LLOC Ant ArgoUML | Cewolf | Hibernate Liferay PMD Tomcat | Xerces
cloc 135,225 195,363 8,476 506,597 1,985,827 | 68,374 | 275,379 | 85,543
CodeAnalyzer | 135,066 195,496 8,476 506,577 1,985,127 | 68,079 | 274,672 | 83,776
CodePro An. 135,830 195,670 8,476 504,858 1,986,168 | 68,420 | 275,822 | 85,698
LOCCounter 135,778 195,672 8,475 506,582 1,986,004 | 68,418 | 276,211 | 85,600

LocMetrics 135,837 195,670 8,476 506,599 1,986,904 | 68,420 | 276,209 | 85,698
Metrix++ 135,888 195,764 8,476 507,748 1,990,364 | 68,534 | 276,552 | 85,724
SLOCCount 135,715 195,670 8,476 506,481 1,986,904 | 68,420 | 276,081 | 85,698
SonarQube 135,733 195,670 8,476 - 1,986,904 | 68,415 | 276,033 | 83,699
SourceMeter 135,836 195,670 8,476 506,487 1,986,901 | 68,407 | 276,209 | 85,697
SourceMonitor - - - - - - - -

ucc 135,699 195,711 8,478 505,479 1,984,852 | 68,408 | 275,752 | 85,698

Table 6: LLOC comparison

From this data, several things can be observed. First, it is apparent that some of the tools are
only capable of calculating one of the two metric types (Metrix++, SLOCCount, SoureMonitor).
Secondly, we were unable to calculate either LOC metrics of Hibernate with SonarQube. This was
because Hibernate contains a lot of Java source files which SonarQube could not analyze because
they hold incomplete or incorrect example code for users to easily understand the usage (e.g. the code
contains ‘... between the important parts or the file contains some Java source code without a class
or method).

There were notable differences between the collected results. One of the typical reasons for devia-
tion was that some of the tools define LOC differently than others. For example, some tools calculate
PLOC by counting ‘carriage return’ characters while others count the actual number of lines as would

2Since SonarQube analyzes all Java source files in the Ant directory but some of them were incorrect or incomplete
Java files we had to make some minor modifications to the code in order for it to be analyzable by this tool.

University of Szeged, Department of Software Engineering

Results TR-2014-001 9

appear in a text editor. This divergence can be observed in the case of Cewolf where the difference
between the two typical PLOC values (16,563 and 16,429) is 134 — which is exactly the number of
source files present (see Table 7). In the case of Cewolf almost all LLOC values were correct with
the exception of two results which were slightly off. After examining these cases we found what was
responsible for the gap. It was either empty lines containing only semicolons which were not counted
or lines ending in double semicolon which were counted twice.

Another possible reason behind the fluctuation can be that most of the tools applied structural
source code analysis (instead of lexical) because they calculate other metrics as well. However, some
files contained invalid Java code which the tool could not understand, so these files were skipped.
In general, the tools provided information about analysis problems and reported the files that were
ignored.

The actual line counts are relatively similar, however there are very few cases where the data pro-
duced by different tools coincide. In case of physical lines, CodeAnalyzer and LOCCounter produce
the same results, while SonarQube and SourceMeter give similar values as well. The situation is a
bit different in the case of logical lines: only LocMetrics, SLOCCount, SonarQube and SourceMeter
conincide in a few cases, the other results are diverse.

5.2.2 Relative differences for programs

The average difference can be observed better in relative terms, as listed in tables 7 and 8 for the two
metrics.

PLOC Ant ArgoUML Cewolf | Hibernate Liferay PMD Tomcat Xerces
Files 1,233 1,922 134 7,273 10,118 1,115 2,037 546
Avg 266,139.0 | 390,489.7 | 16,488.8 | 836,835.6 | 3,613,948.6 | 103,385.8 | 493,224.4 | 178,224.9
Min 264,190 387,173 16,429 832,072 3,606,843 102,896 487,341 175,412
Max 267,063 391,874 16,563 842,410 3,624,085 104,023 495,190 178,923
Diff 2,873 4,701 134 10,338 17,242 1,127 7,849 3,511
% 1.1% 1.2% 0.8% 1.2% 0.5% 1.1% 1.6% 2.0%
Table 7: PLOC system statistics
LLOC Ant ArgoUML | Cewolf | Hibernate Liferay PMD Tomcat Xerces
Files 1,233 1,922 134 7,273 10,118 1,115 2,037 546
Avg 135,660.7 | 195,635.6 | 8,476.1 | 506,378.7 | 1,986,685.5 | 68,389.5 | 275,892.0 | 85,283.1
Min 135,066 195,363 8,475 504,858 1,984,852 68,079 274,672 83,699
Max 135,888 195,764 8,478 507,748 1,990,364 68,534 276,552 85,724
Diff 822 401 3 2,890 5,512 455 15,963 2,025
% 0.6% 1.9% 0.0% 0.6% 0.3% 0.7% 0.7% 2.4%

Table 8: LLOC system statistics

Here, the minimum and maximum values, as well as the maximum differences are provided over
the examined tools. The differences are given in absolute values as well as in percentages relative to
the minimal metric values. The average differences were around 0.5-2% for both metrics, which we
think is an acceptable level of deviation.

The other interesting thing is that one would expect the differences in PLOC to be smaller than
LLOC because calculating physical lines is much more exact. Surprisingly, this was generally not the
case. As extremes, Cewolf, Hibernate and Tomcat showed at least twice as big difference in PLOC
than LLOC, and only ArgoUML was better in the case of PLOC.

5.2.3 Differences among the tools

Finally, we calculated the average deviation of the specific tools from the average LOC counts com-
puted from all of the results. As we were unable to declare a “ground truth” for the correct metric

University of Szeged, Department of Software Engineering

Discussion TR-2014-001 10

values — given it does not exist — we could not determine the absolute precision of the tools. Nev-
ertheless, we were able to compare the examined tools in terms of their relative deviation from the
average. Tables 9 and 10 show the related results. Here, in each cell the difference is shown in per-
centage relative to the average for the respective subject system (the averages are shown in the second
rows of tables 7 and 8).

The last column of these tables shows the average of the deviation values per each program. Over-
all, the deviations range from 0.1% to about 0.5% for both PLOC and LLOC. In the case of physical
lines the most precise tools were ‘CodeAnalyzer’ and ‘LOCCounter’, however for calculating logical
lines ‘LOCCounter’ and ’SLOCCount’ proved to be closest to the average. Regarding the furthest
cases, we could not clearly identify tools that performed worst in this respect.

PLOC Ant Argo. | CeWolf | Hibern. | Liferay PMD | Tomcat | Xerces Min Max Avg
cloc 0.35% | 0.35% 0.45% 0.67% 0.28% | 0.62% 0.40% | 0.39% | 0.28% | 0.67% | 0.44%
CodeAnalyzer | 0.12% | 0.14% 0.36% 0.20% 0.00% | 0.46% 0.01% | 0.09% | 0.00% | 0.46% | 0.17%
CodePro An. 0.13% | 0.14% 0.36% 0.57% 0.03% | 0.46% 0.12% | 0.09% | 0.03% | 0.57% | 0.24%
LOCCounter 0.12% | 0.14% 0.36% 0.20% 0.00% | 0.46% 0.01% | 0.06% | 0.00% | 0.46% | 0.17%

LocMetrics 0.35% | 0.35% 0.45% 0.60% 0.00% | 0.57% 0.37% | 0.39% | 0.00% | 0.60% | 0.39%
Metrix++ - - - - - - - - - - -
SLOCCount - - - - - - - - - - -
SonarQube 0.25% | 0.35% 0.45% 0.00% | 0.56% 0.32% 1.58% | 0.00% | 1.58% | 0.50%

SourceMeter 0.35% | 0.35% 0.45% 0.61% 0.00% | 0.57% 037% | 0.39% | 0.00% | 0.61% | 0.39%
SourceMonitor | 0.73% | 0.83% 0.36% 0.55% 0.20% | 0.46% 1.19% | 0.09% | 0.09% | 1.19% | 0.55%
uccC 0.20% | 0.13% 0.35% 0.36% 0.06% | 0.47% 0.12% | 0.09% | 0.06% | 0.47% | 0.22%

Table 9: PLOC tool statistics

LLOC Ant Argo. | CeWolf | Hibern. | Liferay PMD | Tomcat | Xerces Min Max Avg
cloc 0.32% | 0.14% 0.00% 0.04% 0.04% | 0.02% 0.19% | 0.30% | 0.00% | 0.32% | 0.13%
CodeAnalyzer | 0.44% | 0.07% 0.00% 0.04% 0.08% | 0.45% 044% | 1.77% | 0.00% | 1.77% | 0.41%
CodePro An. 0.12% | 0.02% 0.00% 0.30% 0.03% | 0.04% 0.03% | 0.49% | 0.00% | 0.49% | 0.13%
LOCCounter 0.09% | 0.02% 0.01% 0.04% 0.01% | 0.04% 0.12% | 0.37% | 0.01% | 0.37% | 0.09%

LocMetrics 0.13% | 0.02% 0.00% 0.04% 0.01% | 0.04% 0.11% | 0.49% | 0.00% | 0.49% | 0.11%
Metrix++ 0.17% | 0.07% 0.00% 0.27% 0.19% | 0.21% 0.24% | 0.52% | 0.00% | 0.52% | 0.21%
SLOCCount 0.04% | 0.02% 0.00% 0.02% 0.01% | 0.04% 0.07% | 0.49% | 0.00% | 0.49% | 0.09%
SonarQube 0.05% | 0.02% 0.00% - 0.01% | 0.04% 0.05% 1.86% | 0.00% | 1.86% | 0.29%
SourceMeter 0.13% | 0.02% 0.00% 0.02% 0.01% | 0.03% 0.11% | 0.49% | 0.00% | 0.49% | 0.10%
SourceMonitor - - - - - - - - - - -
ucc 0.03% | 0.04% 0.02% 0.18% 0.09% | 0.03% 0.05% | 0.49% | 0.02% | 0.49% | 0.12%

Table 10: LLOC tool statistics

5.3 Discussion

We wanted to find the causes of the major differences between the results so we manually investigated
several notable data points, and came to the following typical reasons:

* Some tools could not deal with lines of syntactically incorrect code. This usually affected both
types of metrics calculated.

* The calculation of the metric was different than we expected based on the tool documenta-
tion, which could be generally attributed to unexpected, undocumented or perhaps defective
behaviour of the tool. This affected one or both of the metrics.

* There were differences in the definitions and interpretation of the metrics such as the case of
‘carriage return’ characters vs. number of lines (affects PLOC), or the ignorance of empty
semicolons (affects LLOC).

* Handling of non-Java files or file parts of the project. If a tool analyzes a non-Java file, the
errors encountered are handled differently (e.g skipping some parts of the code or ignoring the
whole Java file). This issue regards also various special code such as tests, which were analyzed
by some tools and skipped by others.

University of Szeged, Department of Software Engineering

Conclusions TR-2014-001 11

6 Conclusions

The results are overall not surprising. We were certain that there will be differences among the
calculated values, yet the amount was unknown. In general, we think that the relative differences of
1-2% are not over-the-top. However, in absolute terms there were significant differences of several
thousand lines occasionally, which could cause confusion in certain uses.

A surprising find was that even counting physical lines is not a straightforward task, so one may
not expect exactly the same results from different tools.

LOC will continue to be one of the most frequently used metrics in various fields of software
engineering, so we encourage practitioners to carefully plan their measurement and the usage of
tools. The most important steps are to make sure that the actual definition of the LOC concepts are
clear from the beginning and they are consistent within the organization or project.

If solely LOC calculation is required, it is probably not that important which tool to use for the
calculation as long as the users are aware of how the metrics are defined and calculated by the tool.
However, if the tool should be used for other purposes as well — such as calculating different metrics
or integrating it to more complex measurement process —, other aspects of the available solutions must
be taken into account as well.

References

[1] Norman E. Fenton and Martin Neil. Software metrics: Roadmap. In Proceedings of the Confer-
ence on The Future of Software Engineering (ICSE’00), pages 357-370. ACM, 2000.

[2] Tibor Gyiméthy, Rudolf Ferenc, and Istvan Siket. Empirical Validation of Object-Oriented Met-
rics on Open Source Software for Fault Prediction. In IEEE Transactions on Software Engineer-
ing, volume 31, pages 897-910. IEEE Computer Society, October 2005.

[3] Capers Jones. Software metrics: Good, bad and missing. Computer, 27(9):98-100, September
1994.

[4] Stephen H. Kan. Metrics and Models in Software Quality Engineering, 2nd Edition. Addison-
Wesley Professional, 2002.

[5] Linda M. Laird and M. Carol Brennan. Software Measurement and Estimation. John Wiley &
Sons, Inc, 2006.

[6] Robert E. Park. Software size measurement: a framework for counting source statements. Tech-
nical Report CMU/SEI-92-TR-020, Software Engineering Institute, Carnegie Mellon University,
September 1992.

[7] Jarett Rosenberg. Some misconceptions about lines of code. In Software Metrics Symposium,
1997. Proceedings., Fourth International, pages 137-142. IEEE Computer Society, November
1997.

[8] Linda G. Wallace and Steven D. Sheetz. The adoption of software measures: A technology
acceptance model (TAM) perspective. Information & Management, 51(2):249-259, 2014.

[9] Hongyu Zhang. An investigation of the relationships between lines of code and defects. In IEEE
International Conference on Software Maintenance (ICSM’09), pages 274-283. IEEE Computer
Society, September 2009.

University of Szeged, Department of Software Engineering

