SFLaaS: Software Fault Localization as a Service

Qusay Idrees Sarhan'-2, Hassan Bapeer Hassan®, and Arpid Beszédes'
! Department of Software Engineering, University of Szeged, Szeged, Hungary
2 Department of Computer Science, University of Duhok, Duhok, Iraq
3 Department of Medicine, University of Duhok, Duhok, Iraq
{sarhan, beszedes} @inf.u-szeged.hu, hassan.bapeer@uod.ac

Abstract—Many tools for enabling developers to locate bugs
in their programs have been proposed in the literature. The
majority of programs they target are based on C/C++ and Java.
In this paper, we offer a tool named “SFLaaS” for locating faults
in programs written in Python and is provided as a service rather
than as a plugin or a command-line tool to be installed. Thus,
our tool can be accessed anytime and from anywhere. The tool
employs Spectrum-based fault localization (SBFL) to help Python
developers automatically analyze their programs and generate
useful data at run-time to be used to produce a ranked list of
potentially faulty program elements (i.e., statements). Our tool
supports different important features in fault localization such
as supporting about 80 SBFL formulas, different tie-breaking
methods, showing code elements with different colors, ranging
from most suspicious (red) not suspicious (green) based on their
suspicious scores, allowing the user to define his/her own formula,
etc. Using our tool could help developers to efficiently find the
locations of different types of faults in their programs.

I. INTRODUCTION

Programs play an important role in our day-to-day activities.
Nonetheless, errors and faults still exist in most of them. Some
of them are critical that may have serious consequences. Thus,
several software fault localization approaches have been imple-
mented, such as Spectrum-based fault localization (SBFL) []1]].
In SBFL, the level of suspiciousness from being faulty for
each program entity is computed depending on the program
spectra acquired by performing a set of test cases. However,
it is not widespread in the industry sector as it has some
issues. One problem is that most of the SBFL tools focus on
C/C++ and Java programs [2]. Therefore, it lacks the support
for developers to debug their software using other languages
such as Python.

In this paper, we implement a tool named “SFLaaS” as
a service to enable the software fault localization process,
which can be used anywhere and anytime. This tool is useful
for Python developers to easily analyze their software by
generating data to produce a list of suspicious elements at
runtime. To mark an element as suspicious, the element should
be examined by the developer from the top of the list to
the bottom (from most suspicious element to least one). To
examine the applicability of this tool, a Python program can
be uploaded to see the results. The outcome shows that our
tool is easy to use and beneficial in finding faults in Python
programs.

II. BACKGROUND OF SBFL

To obtain the spectra of the targeted program, test case
executions on the program elements are stored at the beginning
of the SBFL process. This way, a two-dimensional spectrum is
generated that demonstrates the connection between program
elements and its test cases. Program elements and test cases
are presented by their rows and columns respectively. A matrix
cell demonstrates if the related program element (row) is
covered by the related test case (column). Also, the matrix
contains an extra row for the test results (passed or failed).

Then, for each element e, four statistical numbers could be
computed: (a) ep: number of passed test cases covering e; (b)
ef: number of failed test cases covering e; (c¢) np: number of
passed test cases not covering e; (d) nf: number of failed test
cases not covering e. Then, these four basic statistics can be
used by an SBFL formula [3] such as Tarantula, Ochiai, or
Barinel to compute the suspicion score of each element.

Eventually, the output will be generated as a ranking list
based on the scores. The highest element in the ranking list is
the most suspicious to contain a fault. Therefore, it is easier
for the developers to discover faults in a target program.

III. FAULT LOCALIZATION AS A SERVICE
A. SFLaaS’s Architecture

We run the test cases on the target program using “pytest’ﬂ
to fetch the results. To collect the program’s spectra on the
statement level, code coverage measurement is required. The
program must be instrumented in order to generate the code
coverage. Therefore, the popular Python coverage measuring
framework, called “coverage.py” E] has been used in our tool.

Next, the tool constructs coverage and test results from the
gathered data [4]], and finally, based on the specified SBFL
formulas, it scores the suspiciousness of each element.

B. SFLaaS’s User Interface

The user interface of SFLaa$S is shown in Figure [I] It can
be noted that many options are provided for the user to start
the software fault localization process.

The main features of SFLaaS are listed below:

1) Accessibility: not like plugin, command-line, or stan-
dalone tools; our tool can be accessed anytime and from
anywhere as it is provided as a service. Thus, the user only
needs a browser and an internet connection.

Uhttps://docs.pytest.org/en/7.1.x/
Zhttps://coverage.readthedocs.io/en/6.4.2/

 https://docs.pytest.org/en/7.1.x/
 https://coverage.readthedocs.io/en/6.4.2/

SFLaa$S: Software Fault Localization as a Service

Upload your python files and submit to show the testing results.

— —Upload files:
Upload your program here
| Choose Files | Mo file chosen

Upload your test cases here

| Choose Files ‘ No file chosen

— —Or write your program here

main.py test_main.py

Select Ranking Method:

—Select Formula

| Clearlist |

User defined formula
[(ef/ (ef + i) |

| Reset || Submit |

— —Results

YOUR PYTHON CODE RESULT

®@ G060 O

Fig. 1. Main user interface of SFLaaS

2) Easy upgrades: our tool does not require manual in-
stallation, configuration, or updates on the user’s side as the
service provider deals with hardware and software updates;
thus removing this workload and responsibility from the user.

3) Code uploading/editing: The user has two options to
submit their program and its tests to the tool: (a) the user
uploads a python program file and its related tests file using
buttons made for this purpose, as shown in part (1) of Figure[]
and (b) the user writes their program and its tests in a specific
editing area specified for this purpose, as shown in part
(2) of Figure [T} This is useful especially when the tool is
used for educational purposes such as teaching students fault
localization.

4) Tie-breaking methods: this option, part (3) of Figure
enables the user to select a tie-breaking method (e.g., Min,
Max, or Average) and apply it to the elements sharing the
same suspicion score in the list.

5) Formulas selection: this option, part (4) of Figure [I]
enables the user to select one or more SBFL formulas (e.g.,
Tarantula, Ochiai, Barinel, etc.). In our tool, we have im-
plemented about 80 formulas that have been proposed in
the literature. This is especially important for researchers
who would like to compare the efficiency of different SBFL
formulas with each other. Also, it enables the user to define
his/her own formula either by combining existing formulas or
by introducing new formulas via combining different statistical
numbers (i.e., ef, ep, nf, np). This is crucial when comparing
newly proposed formulas to the existing ones.

6) Highlighted code elements: when the SBFL is per-
formed, the results will be shown in part (5) of Figure[I} where
the corresponding code elements will be highlighted with
different colors, ranging from red (most suspicious) to green
(not suspicious), based on the scores as shown in Figure |Zl

tarantula achiai

Ranks Suspiciousness scores Program elements

def mid(x, y, z): 1 15 0833 mid_function py'6
oS 2 5 0.833 d_functi
z 1 c T
57 s mid_function py 7
if x<y: 3 30 0714 mid_function.py:4
m=y
_ L - m—
5 50 05 mid_function py'3
else:
i oy: B 50 05 mid_function py-13
m=y i
. 7 85 0.0 mid_function py's
elif x>z: ! - 2
m=x & B85 00 mid_function py'9
return m
3 85 0.0 mid_function py-10

mid_function.py: 11

Fig. 2. Highlighted statements based on suspiciousness scores

7) Navigation: the SBFL results in Figure 2] present the
program elements with their positions in the source code,
ranks, and scores. Clicking on an element in the SBFL results
table puts the cursor at the element’s location in the source
code in order to be easily examined by the user.

C. How to use SFLaaS

In this section, we will describe how our tool can be used
to locate faults in Python programs. The user starts the fault
localization process by clicking on the “Submit” button, in
Figure [} and then looks at the produced ranking list of
suspicious statements of the uploaded program. The user clicks
on the first statement in the list with the highest score, the tool
redirects the user to the statement location in the source code
file and tries to see if it is a bug or not. If it is a bug, then
the user has to fix it. Then, the user re-runs the test cases
and notices the pass of all the test cases. This indicates that
the bug is fixed. It is worth mentioning that each uploaded
program gets deleted after its execution on the server side; this
is very important to ensure data protection. Only the top ten
elements from the ranking list are explored by the developers
because after that, they begin to lose the desire to follow up the
fault localization tools [5]], [6]]. Thus, any fault localization tool
could be considered successful, if the most faulty elements are
listed in the top-10 ranks. In this situation, excessive amounts
of energy and time could be conserved by using our tool.

IV. CONCLUSIONS

This paper describes “SFLaaS’EI, a fault localization tool
for Python programs that is provided in form of software as
a service. It is implemented with many helpful and practical
characteristics to aid developers in debugging their programs.
Various use cases have been shown to assess the relevance
of this tool. It locates the existing faults in various programs
easily and in a straightforward way. For future work, we plan
to add interactivity for developers to comment on the results,
thus enhancing them via re-ranking. Also, supporting various
techniques to visualize the results. Finally, a user study to
evaluate tool usability and acceptance will be conducted.

3https://sflaas.daxazi.com/

 https://sflaas.daxazi.com/

(1]

(2]

(3]

[4]

(3]

(6]

REFERENCES

C. Gouveia, J. Campos, and R. Abreu, “Using htmlS visualizations
in software fault localization,” in First IEEE Working Conference on
Software Visualization (VISSOFT), 2013, pp. 1-10.

Q. I. Sarhan and A. Beszedes, “A survey of challenges in spectrum-based
software fault localization,” IEEE Access, vol. 10, pp. 10618-10639,
2022.

Neelofar, “Spectrum-based Fault Localization Us-
ing Machine Learning,” 2017. [Online]. Avail-
able: https://findanexpert.unimelb.edu.au/scholarlywork/

1475533-spectrum-based-fault-localization- using-machine-learning

J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of test information
to assist fault localization,” in Proceedings of the 24th International
Conference on Software Engineering (ICSE), 2002, pp. 467-477.

P. S. Kochhar, X. Xia, D. Lo, and S. Li, “Practitioners’ expectations on
automated fault localization,” in Proceedings of the 25th International
Symposium on Software Testing and Analysis, ser. ISSTA 2016. New
York, NY, USA: Association for Computing Machinery, 2016, p.
165-176. [Online]. Available: https://doi.org/10.1145/2931037.2931051
X. Xia, L. Bao, D. Lo, and S. Li, “Automated debugging considered
harmful: A user study revisiting the usefulness of spectra-based fault
localization techniques with professionals using real bugs from large sys-
tems,” in 2016 IEEE International Conference on Software Maintenance
and Evolution (ICSME), 2016, pp. 267-278.

https://findanexpert.unimelb.edu.au/scholarlywork/1475533-spectrum-based-fault-localization-using-machine-learning
https://findanexpert.unimelb.edu.au/scholarlywork/1475533-spectrum-based-fault-localization-using-machine-learning
https://doi.org/10.1145/2931037.2931051

	Introduction
	Background of SBFL
	Fault Localization as a Service
	SFLaaS's Architecture
	SFLaaS's User Interface
	Accessibility
	Easy upgrades
	Code uploading/editing
	Tie-breaking methods
	Formulas selection
	Highlighted code elements
	Navigation

	How to use SFLaaS

	Conclusions
	References

