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Abstract—The basic element in Spectrum-Based Fault Local-
ization (SBFL) are the risk evaluation formulas, which calculate
a suspiciousness score for each program element based on
test coverage and test case outcome information. This score
can be used in debugging to identify the faulty element more
efficiently. A large number of manually crafted formulas have
been proposed, but a line of research tries to generate formu-
las (semi-)automatically. Some of these approaches are based
on heuristic search (e.g., genetic algorithms), and researchers
started only recently examining systematic ways to generate all
possible formulas corresponding to a particular class of formula
structures. In a recent work, we explored a very simple formula
template as a proof of concept but this research failed to find
a new formula that outperformed already published ones. In
this paper, we take a next step and investigate a class of formula
templates that are more elaborate but still feasible to explore fully
for generating new formulas. Many of the generated formulas
cover some well-known existing ones, but we were also able to find
two new ones that are superior to the majority of the previously
published formulas (evaluated on the Defects4J dataset) and are
not present in literature.

Index Terms—Spectrum-Based Fault Localization, debugging,
suspiciousness score formulas, systematic search.

I. INTRODUCTION

Software fault localization helps developers to find the
locations of bugs in their programs and it is performed
using different techniques. However, Spectrum-Based Fault
Localization (SBFL) is the most used technique as it only
uses code coverage and test results for locating faults [1]–[3].
In SBFL, formulas are the base to compute the probability of
each program element (e.g., statement, method, or class) of
being faulty based on statistical numbers calculated from the
program spectra (tests and their results). In particular, how
often each element is executed or not executed by passing
versus failing test cases.

One of the main challenges in SBFL is how to introduce
new formulas to enhance the performance by putting faulty
elements at the beginning of the ranking list produced by
SBFL as much as possible [4]. Thus, they can be examined
and found efficiently.

The majority of the published formulas have been manually
crafted, and some of the well-known examples include Taran-
tula [5], Ochiai [6] and DStar [7]. All these are based on
some intuition and/or previous results from other domains. Re-
searchers also experimented with combining existing formulas,

adding external information, or generating new formulas by
meta-heuristic search or artificial intelligence.

Recently, we proposed an approach based on systematic
search – in contrast to ad-hoc, intuitive, search-based or ma-
chine learning (ML) methods – for introducing new formulas
for SBFL [8]. But, we were able to check only a limited
number of generated formulas, and were not able to find new
better formulas compared to other top existing ones. This is
not surprising since the template we used was very simple.

In this paper, we extend our previous work by using more
formula templates, and we apply them on the Defects4J
dataset [9] to determine their effectiveness. The systematic
search for formulas means that we generate the formulas that
conform to a predefined formula template, and we enumerate
all possible ones. Then, the formula candidates are evaluated
on a benchmark suite for fault localization effectiveness.

Our experimental results show that the systematic approach
for finding new SBFL formulas is successful. We were able to
find two new formulas that are better than all of the generated
formulas presented in [8], and most of the formulas from re-
lated literature as well. The two new formulas achieved better
performance in terms of average ranking (see Section VI-B)
compared to others. Also, they gained positive improvements
in the Top-N categories (see Section VI-C).

The main contributions of this paper are the following:
1) A large number of SBFL formulas were systematically

generated and evaluated using two formula templates.
2) Two new SBFL formulas that are generated using a

systematic approach based on formula templates are
proposed.

3) The analysis of the impact of the new SBFL formulas
on the overall SBFL effectiveness is discussed.

Note, that our approach significantly differs from heuristic
approaches including search-based and ML-based methods.
We are checking all possibilities systematically, and that way
we can ensure that no option is left out in the search space.

The Research Questions of the paper are the following:
• RQ1: Can systematic search lead to new formulas that

could outperform the existing ones?
• RQ2: What level of average rank improvements can we

achieve using the systematically generated formulas?
• RQ3: What is the overall effect of the systematically

generated formulas on SBFL effectiveness in terms of
Top-N?



II. BACKGROUND ON SBFL

SBFL is a well-known software fault localization technique
that only uses test coverage and test results to compute
suspiciousness scores for program elements. In this section,
we will present SBFL and how it can be used to find faults
in software code.

The execution of test cases on program elements is recorded
to extract the spectra (i.e., test coverage and test results) for the
program under test. Program spectra information is represented
as a matrix. The tests are represented by the columns, while
the program elements are represented by the rows (often,
a transposed version is used). If a test case covers a code
element, the matrix element becomes 1; otherwise, it becomes
0. The test results are also stored in the matrix (i.e., the last
row), where 0 denotes a passing test case and 1 denotes a
failing test case.

Using program spectra, for each program element e, the
following four basic statistical numbers, called the spectrum
metrics, are then computed:

• ep: represents the number of passed test cases covering
the program element e.

• ef: represents the number of failed test cases covering the
program element e.

• np: represents the number of passed test cases not cov-
ering the program element e.

• nf: represents the number of failed test cases not covering
the program element e.

Then, these four spectrum metrics can be used by an SBFL
formula to suggest a ranked list of suspicious elements as an
output for the tester. The element with the highest ranking on
the list is the most likely to have a fault. As a result, SBFL
can make it easier for developers to locate the faults in the
target program’s code.

To illustrate the work of SBFL, consider a Java program
that performs some specific mathematical operations, and
comprises four methods Mi (1 ≤ i ≤ 4) and six test cases
Tj (1 ≤ j ≤ 6), as shown in Figure 1. The program has a
fault in the method M1 (the first statement should be z = x
+ y). The test cases are executed on the program and then
the execution information (the spectrum) of the four methods
in passed and failed test cases are recorded as presented in
Table I. This table also includes the four spectrum metrics.
The program spectra is then used by an SBFL formula such
as Tarantula (see Table III) to compute the suspiciousness of
each method of being faulty. Table II presents the scores and
ranks of the methods of our code example. It can be noted that
the method M1 is ranked 1 while the others share the rank 3;
thus, the method M1 should be examined before the others.

Table III includes some of the most widely used SBFL
formulas, which are also the baselines used in this work for
evaluating the candidate new formulas. We note that literature
includes about 80 formulas altogether, which can be found in
various survey works [1]–[3].

Fig. 1. SBFL example – Java code and test cases

TABLE I
SBFL EXAMPLE – SPECTRA AND BASIC STATISTICS

T1 T2 T3 T4 T5 T6 ef ep nf np
M1 1 1 0 0 0 0 1 1 0 4
M2 0 0 1 0 0 0 0 1 1 4
M3 0 0 0 1 0 0 0 1 1 4
M4 0 0 0 0 1 1 0 2 1 3

Results 1 0 0 0 0 0

TABLE II
SBFL EXAMPLE – SCORES AND RANKS

Tarantula score Tarantula rank
M1 0.83 1
M2 0.0 3
M3 0.0 3
M4 0.0 3

TABLE III
SBFL FORMULAS

Barinel [10] = ef
ef+ep

Cohen [11] = 2·(ef ·np)−2·(nf ·ep)
(ef+ep)·(ep+np)+(nf+np)·(ef+nf )

Dice [11] = 2·ef
ef+nf+ep

DStar [7] = ef 2

ep+nf

Jaccard [12] = ef
ef+nf+ep

Kulczynski1 [11] = ef
nf+ep

Ochiai [6] = ef√
(ef+nf )·(ef+ep)

SorensenDice [13] = 2·ef
2·ef+nf+ep

Tarantula [5] =
ef

ef+nf
ef

ef+nf
+ ep

ep+np



III. SBFL FORMULA IMPROVEMENT

This section summarizes the most important efforts to
improve SBFL by focusing on its formulas.

A. Introducing new SBFL formulas

The first approach is to design new SBFL formulas based on
intuition, past experience or by reusing results from other dis-
ciplines. For example, Ochiai [14] and Binary [15] came from
the fields of biological research. Authors in [7] and in [10]
proposed new SBFL formulas called “DStar” and “Barinel”,
respectively, based on intuition. Each proposed formula has
been compared with several widely used formulas and it
showed good performance compared to others. The authors
in [16] proposed a new formula called Metrics Combination
(MECO) which effectively finds errors without the need for
prior knowledge of program structure or semantics. Their idea
is that several metrics (e.g., Failed Execution Flag, Assumption
Proportion) can be extracted from the target program spectra
and combined to propose a new formula.

Many studies such as [10] and [17] claimed (on a theoretical
level) that an optimal SBFL formula exists. However, this is
not necessarily true in practice. The fact that faulty programs in
practice might not adhere to the same theoretical assumptions
is one potential explanation for the discrepancy between
the theoretical and empirical results of SBFL formulas, as
discussed in [18], [19]. As shown in [20], there is no optimal
formula for all types of faults.

B. Modifying existing SBFL formulas

The second approach is formula modification. The authors
in [21] improved the performance of the Tarantula formula by
modifying some part of it to amplify its scores. However, the
improved Tarantula does not always make improvements in
the ranking. Also, the authors did not evaluate the improved
Tarantula using well-known evaluation metrics. The authors
in [22] modified three well-known SBFL formulas based on
the idea that some failed test cases may provide more testing
information than other failed test cases. Therefore, for the
three used formulas, different weights for failed test cases were
assigned and then applied with multi-coverage spectra.

C. Combining existing SBFL formulas

Another way is to combine existing formulas. The authors
in [23] proposed a new SBFL formula by combining 40
different formulas using different voting systems. The pro-
posed method extracts information from the program using
mutation testing and then combines multiple formulas based
on the gathered information using different voting systems
to generate a new formula. The results of experiments have
shown that the formula generated by their method is better than
several existing ones. Multiple formulas also can be combined
into a single new one. The resulting formula is a hybrid
formula; which combines the advantages of the formulas that
have been used in the combination as in [24].

D. Adding new information to existing SBFL formulas

Involving new information to existing SBFL formulas can
also lead to improvements. For example, the authors in [25]
utilized the method calls frequency during the execution of
failed tests to add new contextual information to existing
formulas. Thus, the ef of each formula was changed to the
frequency ef . The experiments improved SBFL effectiveness.
However, this approach can only be applied to the formulas
that have the ef numerator. Also, it is considered heavy as it
requires tracing the execution of each method call, as caller
or callee, in the failed test cases.

E. Generating new SBFL formulas by meta-heuristic search

The authors in [26] used genetic programming (GP) to
evolve new formulas from a hybrid dataset (i.e., from different
benchmark datasets). They were able to produce several new
formulas that outperformed many existing ones. However, this
approach poses several issues: (a) it is not systematic, thus it
does not guarantee that even a simple formula is examined.
(b) the results of applying GP may vary greatly from one run
to another as it depends on the initial selection of population.
(c) a couple of parameters (e.g., population size, number of
generations, mutation rate, etc.) must be set by human, thus the
probability of finding the optimal solution is not too much. (d)
generating formulas based on this approach has a disadvantage
that existing datasets do not cover all possible types of bugs.
Thus, a generated formula may fail to locate a bug that is not
included in the used datasets.

A final critique with this approach is that the generated
formulas are often difficult to comprehend and non-intuitive,
including complex computations and magic constants such as
the following formulas:

HDGPCR02 = ( 5
√

4
√
np+ 3ef + np)− ( efep − 2ef )(ef + np + np

ep )

HDGPCR20 = 5

√√
ep(npep )−

3
√
nf − np

ef + (nf − ef −√
ep(np))

HDGPCR23 =
√
ep+ np

ef

ep+ef+nf − (nf )( efep ) + (
3
√
nf

np )(nf )

F. Machine Learning

Machine learning has also been used for fault localization
to learn scores from spectra [27], [28], or to use likely
invariant diffs and suspiciousness scores as features to learn
the ranks [29]. But, such approaches do not produce a resulting
formula that can be reused and are typically specific to a
particular subject system. Also, the search space cannot be
meaningfully controlled, and the decisions made by ML and
parts of the search space explored will remain blackbox.

G. This work: Systematic formula generation

To overcome the problems, mentioned in sections III-E and
III-F, assigned with meta-heuristic search or machine learning
to find new formulas, in this paper, we follow a completely
different direction to automatically generate formulas, and
explore the formulas in a systematic manner. Of course,
there are infinite number of formulas that can be generated
based on the spectrum metrics, which makes it impossible to



exhaustively examine all of them. The idea we proposed in
our previous study [8] was to limit the search space using
formula templates, and explore a particular class of formulas
exhaustively.

We follow this line of research, and differently from heuris-
tic search attempts, we perform the search systematically
using different formula templates that individually cover a
set of formulas sharing similar structure. In the mentioned
preliminary study, we found formulas that outperformed some
existing ones but failed to achieve significant improvement
over the most successful existing techniques.

In this paper, we introduce our experimental results with
extended formula templates compared to [8]. Our goal is to
systematically examine a broader set of formulas and to find
out how different the generated formulas will be in terms of
their ranking ability. We also outline the possible extensions
for future work, primarily in terms of more advanced formula
templates. The goal is to be able to cover some already
published formulas (as a sanity check that the method is
meaningful), and potentially discover new, better ones as we
managed to do in this study.

Comparing to heuristic search and machine learning ap-
proaches, our approach is complementary and it cannot replace
them because they can cover much larger search space but not
completely; while our approach can cover smaller search space
with each formula template but completely.

IV. FORMULA TEMPLATES

The basic idea of systematic formula generation is that we
combine the four spectrum metrics ef , ep, nf and np using
mathematical operations in all possible combinations. While
at first this seems straightforward, systematic enumeration of
all possible SBFL formulas is not simple. Since, in general,
the number of possible formulas is infinite we must limit
the types of formulas to a meaningful subclass. For example,
all four values can have a fixed exponent at most. But even
using the basic mathematical operations only, like addition,
multiplication, fraction, and only linear combinations of the
elements we will face combinatorial explosion.

Further issues are that many generated formulas will contain
elements that can be mathematically simplified or rewritten,
and that they will still sometimes produce syntactically differ-
ent, but semantically equivalent formulas to each other.

Furthermore, even if two formulas are not mathematically
equivalent, they can be rank-equivalent. This means that they
will produce the same ranking lists; despite the score values
being different, in this case there is a monotonic transformation
between the values [30].

At the same time, many of the previously published, man-
ually crafted formulas can fit to a relatively simple structure
(as opposed to GP-generated ones). Hence, our goal in this
research is an exhaustive exploration of all possible formulas
that conform to a specific formula template. Our goal is to
define templates that have the following properties:

• They cover as many existing formulas as possible (this
means these are probably useful structures).

• Are combinatorically feasible.
• Can be competitive with manually crafted formulas.

We build on our previous work, where we proposed a
systematic search to evaluate SBFL formulas and possibly
find new ones [8]. We reported the evaluation of 24 formulas
generated by a simple template (see Table IV):

∑
t∈{ef ,ep} ntt∑
t∈{ef ,ep} dtt

=
nef ef + nepep

def ef + depep
, (1)

where nef , nep , def , dep ∈ {−1, 0, 1}. The template in Equa-
tion 1 covers previously reported formulas Barinel (= Braun
= Coef = SBI = F10) and Wong I (= F2) and Wong II
(= F16) [11].

TABLE IV
THE FORMULAS EXAMINED IN [8].

F1 = ep F13 = −ep

F2 (Wong I) = ef F14 = −ef

F3 = ep + ef F15 = −ep − ef

F4 = ep − ef F16 (Wong II) = −ep + ef

F5 = 1
−ep

F17 = 1
ep

F6 = ef
ep

F18 = −ef
ep

F7 = 1
−ef

F19 = 1
ef

F8 = −ep
ef

F20 = ep
ef

F9 = 1
−ep−ef

F21 = 1
ep+ef

F10 (Barinel) = ef
ep+ef

F22 = −ef
ep+ef

F11 = 1
−ep+ef

F23 = 1
ep−ef

F12 = ef
ep−ef

F24 = −ef
ep−ef

In this paper, we define more elaborate formula templates.
The template in Equation 2 extends template in Equation 1
with a single spectrum metric (ef , ep, nf , np) by applying a
simple arithmetic operation (+, −, ·, /) between them.

∑
t∈{ef ,ep} ntt∑
t∈{ef ,ep} dtt

⊗ {ef , ep,nf ,np} =

nef ef + nepep

def ef + depep
⊗ {ef , ep,nf ,np} ,

(2)

where n{ef ,ep}, d{ef ,ep} ∈ {−1, 0, 1} and ⊗ ∈ {+,−, ·, /}.
Equation 1 resulted in 81 literal templates, 24 of which

remained after sorting out constant and equivalent ones. Equa-
tion 2 results in 4 ·4 ·81 = 1, 296 formulas literally. However,
based on the 24 different non-trivial formula instances of
paper [8], there remain only 4 · 4 · 24 = 384 candidates.
Plus 4 · 2 = 8, the four basic mathematical operations for the
two additional spectrum metrics nf and np, which are added
because the 24 formula instances from [8] do not include
constant-equivalent ones. For example, ef

ef was not examined
in [8], but ef

ef · nf = nf is a valid formula instance. At least
80 formula instances generated from this new template have



already been covered in [8], and there are at least two pairs of
new generated formulas that are equivalent with each other.

The next formula template we examined is shown in Equa-
tion 3:

∑
t∈{ef ,ep} n1,tt∑
t∈{ef ,ep} d1,tt

⊗
∑

t∈{ef ,ep} n2,tt∑
t∈{ef ,ep} d2,tt

=

n1,ef ef + n1,epep

d1,ef ef + d1,epep
⊗ n2,ef ef + n2,epep

d2,ef ef + d2,epep
,

(3)

where n{1,2},{ef ,ep}, d{1,2},{ef ,ep} ∈ {−1, 0, 1} and ⊗ ∈
{+,−, ·, /}.

In this template, we have put together two instances of the
formulas generated by the template in Equation 1 using a basic
arithmetic operation. This would result in 81 · 81 · 4 = 26, 244
formula instances literally. However, counting on the non-
equivalent formulas defined in [8], we can restrict our mea-
surements to 24 · 24 · 4 = 2, 304 literally generated formulas.
Furthermore, addition and multiplication are commutative op-
erations, technically halving the resulting formula instances,
while addition-subtraction and multiplication-division are in-
verses that can also yield in the same formula when applied on
different operands (e.g. F1+F2 = F2−F13). Subtraction and
division can result in identical (constant) formulas, and some
combinations can also yield in formulas already reported in
our previous work [8]. Thus, by rough calculation, at most
400 different formulas exist, but these formulas may contain
equivalent ones too.

The two presented formula templates also overlap, generat-
ing literally equivalent formulas. However, we did not make
a thorough equivalence or ranking equivalence analysis on
the resulting formulas for either of the formula templates
(the equivalence proofs of different SBFL formulas has been
investigated in [30] via a theoretical comparison approach).
Instead, we utilized previous equivalence calculations and ran
the measurements for all the resulting formulas (including the
equivalent ones) and sanity-checked the results based on the
discovered equivalences (i.e., checked manually by random
sampling if two formulas that should be equivalent really
produce the same results).

The above templates cover Hamming (= Lee = NFD) and
equivalents of Euclid and Ochiai3 formulas. These formu-
las [31] are presented in Table V.

TABLE V
SBFL FORMULAS COVERED BY NEW TEMPLATES

(∗ : ONLY RANK-EQUIVALENTS ARE COVERED)

Formulas

Hamming ef + np

Euclid∗
√
ef + np

Ochiai3∗ ef 2

(ef+ep+nf+np)·(ef+ep)

Figure 2 shows the systematic steps followed in this section
in order to search for new SBFL formulas.

Fig. 2. Systematic search for new SBFL formulas

V. MEASUREMENTS

A. Evaluation

In this study, we performed two types of measurements.
In the first, lightweight measurement, we generated all the
formulas from our templates, and checked their fault local-
ization performance on the six programs (i.e., Chart, Closure,
Lang, Math, Mockito and Time) of Defects4J 1.5. We used
this measurement to check the potential of all the generated
formulas. Note, that we did not filter out equivalent formulas,
all generated ones were measured. We used the results as a
sanity check of our implementation: after the measurement,
we checked if some theoretically equivalent formulas produce
the same numbers. The results are presented in Section VI-A.

Then, based on the results of this first measurement, we
re-measured the most promising well-performing formulas
(together with the chosen existing baseline formulas) on De-
fects4J 2.0 as it has more programs and bugs. Sections VI-B
to VI-C present the results of this second measurement.

To evaluate the effectiveness of SBFL formulas, we use
average rank (see Section VI-B) and Top-N categories (see
Section VI-C) metrics that other researchers in the literature
have previously used [32], [33].

As mentioned above, the SBFL method ranks program ele-
ments by their probability of being faulty, which is computed
using the formulas. Thus, for a given program version and
its corresponding tests, we can compute the ranked list of
program elements and check where the faulty program element
is placed on this ranked list. The closer the element is to the
beginning of the list, the better.



The average rank metric tells us that on a dataset (set of
faulty program versions and their tests) what is the average
rank of the faulty program elements computed using the
formula being evaluated. The smaller value means that (on
average) the given formula ranks the faulty elements in a way
that it can be found earlier using the ranked list. The Top-N
categories metric is based on the observation that developers
tend to use only the beginning of the list, and if the faulty
element is not in the first N (usually 5 to 10) places, they
go for alternative methods to find the bug. Thus, a formula is
better if it ranks more faulty elements in the first N places.

B. Subject programs
In this study, we used the faulty programs of version v2.0

of Defects4J [34]; where 17 open-source Java programs have
835 real single and multiple faults1. We excluded some faults
in this study due to instrumentation errors or unreliable test
results. Thus, a total of 782 faults were included in our final
dataset. Table VI presents our subject programs.

TABLE VI
SUBJECT PROGRAMS (ITALICS INDICATE PROGRAMS USED IN THE

LIGHTWEIGHT MEASUREMENT)

Project Number
of bugs

Size
(KLOC)

Number
of tests

Number
of methods

Chart 25 96 2.2k 5.2k
Cli 39 4 0.1k 0.3k

Closure 171 91 7.9k 8.4k
Codec 17 10 0.4k 0.5k

Collections 1 46 15.3k 4.3k
Compress 36 11 0.4k 1.5k

Csv 16 1 0.2k 0.1k
Gson 15 12 0.9k 1.0k

JacksonCore 25 31 0.4k 1.8k
JacksonDatabind 101 4 1.6k 6.9k

JacksonXml 5 6 0.1k 0.5k
Jsoup 90 14 0.5k 1.4k
JxPath 21 21 0.3k 1.7k
Lang 60 22 2.3k 2.4k
Math 104 84 4.4k 6.4k

Mockito 30 11 1.3k 1.4k
Time 26 28 4.0k 3.6k

It is worth mentioning that the systematic search process
used in this study has two types of measurements: lightweight
and complete. For the first, lightweight measurement, we
used bugs from Defects4J 1.5. For the second, complete
measurement, we used bugs from all the programs of the
dataset Defects4J 2.0, as presented in Table VI.

C. Granularity of data collection
In this study, we used granularity at the method-level. This

level of granularity scales nicely to large-scale programs and
gives users an abstraction at a more reasonable level [35], [36].
However, our approach could be used at the statement-level
too, and this is a future work.

VI. RESULTS

Our experimental results are based on evaluation metrics
that have been used widely in literature [32], [35], [37].

1https://github.com/rjust/defects4j

A. Generated formulas

Our template in Equation 2 generates 1,296 formula in-
stances, while Equation 3 yields 26,244 formula instances.
Based on the equivalence calculations of the previous work [8],
we generated 392 and 2,304 candidate formulas, respectively.
All formulas left out are equivalent with one or more of the
candidate ones, and there were several equivalent formulas
within these candidate sets too. However, we did not further
filter the set, but measured all of the formulas in it, performing
a lightweight analysis as described in Section V.

As we started to generate formula instances from the ones
reported in [8], we could check if the resulting combined
formula instance improved fault localization performance.
Based on the average ranks, 25.97% of the newly generated
formulas improved the ones used in the combination. However,
we found 8 formulas that made absolute improvement, i.e.
better average ranks than any of the formulas in [8]. By
examining these 8 formulas, they were equivalent versions of
two formulas. The two new formulas are the following:

SGF-1 =
ef 2

ef + ep
(4)

SGF-2 = ef · np (5)

After finding these formulas, we performed a further anal-
ysis on our full set of subject programs using these two new
formulas. We compared them to our baselines, that is, to
some of the state-of-the-art SBFL formulas listed in Table III.
This second analysis has shown that these two formulas can
outperform many already published state-of-the-art formulas
too (details are presented in the next sections).

One of the advantages of our new formulas is that they
produce less ties (i.e., less number of program elements
that share the same suspicion score [38]) compared to the
existing ones used in this study. Take this example: we have
two program elements with the following spectrum metrics:
Element A (ef = 1, ep = 0, nf = 3, np = 6 ) and Element
B (ef = 2, ep = 0, nf = 2, np = 6). Applying Tarantula will
result the same suspicion score (i.e., 1.0) for both elements;
this is considered an issue for the developer as which element
s/he will examine first. However, SGF-1 will result in different
score for each element; score 1.0 for Element A and score 2.0
for Element B, while SGF-2 gives score 6.0 to Element A
and score 12.0 to Element B. As a result, this reduces the ties
between program elements and the new formulas give greater
suspicion scores to program elements that are executed by
more failed test cases compared to others.

Also, notice the similarity of SGF-1 with Barinel. The dif-
ference is the square of ef in the numerator, which essentially
means that our new formula puts a bigger emphasis on the
failed tests executing the code element, which is the most
important constituent of SBFL.

The success of SGF-2 also seems logical, as it combines the
previously mentioned important element ef with the counter
of passing tests that are not executing the element in question.
This measure, np is in essence the opposite of the former,

https://github.com/rjust/defects4j


and intuition dictates that the bigger this number the more
suspicious the current element should be.
Answer to RQ1: Analysis shows that systematic search
can lead to new SBFL formulas not present in literature,
whose performance is comparable to or can even outperform
existing ones.

B. Achieved improvements in the average ranks

Here, we use the average rank approach, which assigns to
all of the tied elements (those having the same suspicion score)
their average rank. Thus, if there are E pieces of tied elements
having consecutive ranks (in random order) starting from rank
S in the ranked list, we assign the same rank, using Equation 6,
to all of these elements.

Average Rank = S +

(
E - 1

2

)
(6)

For handling the exceptional case when the denominator of
the formula is 0 for a program element (the div/0 problem),
we assign the 0 suspicion score to the given element.

Table VII presents the average ranks of SGF-1 and SGF-2
in equations 4 and 5 compared to our baseline formulas, for
each subject system separately.

We can observe that some of the new formulas SGF-1
and SGF-2 can outperform almost all the selected formulas
in terms of reducing the average rank, or produce the same
results. Interestingly, the two formulas are better performing
in mutually exclusive cases. For 3 projects almost all of the
formulas produced the same ranks, in 3 cases SGF-1 (together
with Ochiai) produced the best average ranks while in 3 cases
SGF-2 was the best ranking formula in average. Regarding the
median values, in 12 projects SGF-1 could produce the best
value of the other formulas, while SGF-2 did the same for
7 projects and produced even better medians in 5 additional
cases. In two cases SGF-2 produced better maximum ranks
than any other examined formula. Overall, DStar is still the
best average performing formula, but as we can observe, the
margin is very small, and as we can observe later on the
detailed data it is not necessarily a clear winner.

Another interesting phenomenon is that SGF-1 produced
the same average ranks as Ochiai for all but one case; for
the Closure program it was 0.02 ranks better. A possible
explanation for this is the following. By squaring the Ochiai
formula, – this transformation being monotonic – it will result
in the same ranking in many cases because we get SGF-1
divided by ef + nf . But, in most of the cases, we have only
a single failing test case, which means this factor will be 1,
not modifying the score and the rank of the two formulas.
Answer to RQ2: We noticed that the two new formulas
can improve the performance of SBFL by reducing the
ranks compared to most of baseline formulas, while the
results are very similar to some of the existing ones. The
two formulas produce better results in mutually exclusive
cases. The average improvement of rank positions in the
used benchmark was about 2 positions overall.

C. Achieved improvements in the Top-N categories

Several studies including [37], [39] report that developers
think that inspecting the first five program elements in the
ranking list produced by an SBFL technique is acceptable and
that the first ten elements are the upper bound for inspection
before ignoring the ranking list. Therefore, the performance
of SBFL can also be evaluated by focusing on these rank
positions, collectively called Top-N, as follows: (a) Top-N:
When the rank of a faulty program element is less or equal to
N . (b) Other: When the rank of a faulty program element is
more than the highest N value used in the categorizations.

In our experiments, we will use 1, 3, 5 and 10 in place of
N , and call the cases when a rank is moved to an upper rank
interval enabling improvement.

Table VIII presents the number of bugs in the Top-N
categories and their percentages for the used dataset. It can be
noted that the new generated formulas achieve improvements
in all categories by moving many bugs to higher ranked
categories compared to almost all the other formulas. For
example, both new formulas move more bugs to the Top-1
category compared to almost all the other formulas and move
more bugs also from the “Other” category to the higher ranks
categories compared to almost all the others. In particular,
SGF-2 managed to put the most bugs to the first place,
compared to any of the baselines and to SGF-1 too.

TABLE VIII
TOP-N CATEGORIES

Top-1 Top-3 Top-5 Top-10 Other
# % # % # % # % # %

Barinel 98 12.53% 265 33.89% 344 43.99% 437 55.88% 345 44.12%
Cohen 104 13.30% 271 34.65% 344 43.99% 438 56.01% 344 43.99%
Dice 104 13.30% 271 34.65% 344 43.99% 438 56.01% 344 43.99%
DStar 103 13.17% 274 35.04% 352 45.01% 450 57.54% 332 42.46%

Jaccard 104 13.30% 271 34.65% 344 43.99% 438 56.01% 344 43.99%
Kulczynski1 103 13.17% 251 32.10% 319 40.79% 407 52.05% 375 47.95%

Ochiai 106 13.55% 276 35.29% 353 45.14% 450 57.54% 332 42.46%
SorensenDice 104 13.30% 271 34.65% 344 43.99% 438 56.01% 344 43.99%

Tarantula 98 12.53% 265 33.89% 344 43.99% 437 55.88% 345 44.12%
SGF-1 106 13.55% 276 35.29% 353 45.14% 450 57.54% 332 42.46%
SGF-2 119 15.22% 275 35.17% 348 44.50% 449 57.42% 333 42.58%

Answer to RQ3: The two new formulas showed improve-
ments in the Top-N categories. Using SGF-1, we were able
to increase the number of cases where the faulty method
became the top-ranked element by 2–8%, and by using
SGF-2 this rate was 13–21%. SGF-2 produced the most Top-
1 elements overall. In some cases we were able to achieve
13% enabling improvement by moving 12–43 bugs from the
“Other” category into one of higher-ranked categories by
using the formula SGF-1, while by using SGF-2 this rate
was 12% (enabling improvements for 11–42 bugs).

VII. THREATS TO VALIDITY

In this study, we considered the following actions to avoid
or minimize different threats of validity:

• Selection of evaluation metrics: we used a number
of well-known evaluation metrics to ensure multiple-
dimension comparisons and to assure the validity of our
results and the conclusions that follow. Additionally, each
evaluation metric used was thoroughly described.



TABLE VII
AVERAGE RANKS (THE BEST VALUES FOR A PARTICULAR ROW ARE SHOWN IN BOLD)

Project Barinel Cohen Dice DStar Jaccard Kulczynski1 Ochiai SorensenDice Tarantula SGF-1 SGF-2

Chart 15.94 9.42 9.46 9.18 9.46 609.54 8.82 9.46 15.94 8.82 34.34
Cli 16.68 16.63 16.58 15.29 16.58 19.64 15.4 16.58 16.68 15.4 14.01

Closure 97.27 98.67 98.58 87.61 98.58 98.55 88.48 98.58 97.27 88.46 84.23
Codec 28.29 26.44 28.06 28.03 28.06 28 28.06 28.06 28.29 28.06 26.85

Collections 1 1 1 1 1 2155 1 1 1 1 1
Compress 17.62 17.62 17.54 16.01 17.54 43.43 16.12 17.54 17.62 16.12 15.54

Csv 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5
Gson 19.27 19.17 19.17 19.23 19.17 18.9 19.23 19.17 19.27 19.23 19.23

JacksonCore 6.84 6.36 6.36 6.64 6.36 136.64 6.92 6.36 6.78 6.92 7.36
JacksonDatabind 59.53 59.56 59.57 59.11 59.57 234.04 59.12 59.57 59.53 59.12 61.39

JacksonXml 18.6 18.6 18.6 18.6 18.6 72.3 18.6 18.6 18.6 18.6 18.6
Jsoup 34.77 35.88 34.71 34.01 34.71 45.15 33.97 34.71 34.77 33.97 34.29
JxPath 44.24 44.81 45 54.36 45 97.02 54.07 45 44.24 54.07 74.38
Lang 5.37 4.74 4.72 4.62 4.72 147.77 4.67 4.72 5.37 4.67 4.72
Math 9.94 9.81 9.82 9.94 9.82 190.04 10 9.82 9.94 10 10.56

Mockito 32.15 31.07 30.77 28.57 30.77 30.77 28.73 30.77 32.15 28.73 32.17
Time 19.71 19.67 19.63 18.69 19.63 106.5 18.4 19.63 19.71 18.4 21.79

Total Average Rank 41.38 41.46 41.33 38.80 41.33 132.07 38.99 41.33 41.38 38.99 39.97

• Correctness of implementation: we reviewed the code
to make sure that our experiment’s implementation is
accurate and correct. Furthermore, we have tested our ap-
proach multiple times to make sure it works as intended.

• Selection of subject programs: we evaluated the effective-
ness of the new generated formulas on fault localization
using 17 Java subject programs. Thus, we cannot general-
ize our findings to other programs. However, we believe
that the selected subject programs are representative as
they have real faults, varying in size and complexity,
and the benchmark containing them, Defects4J, is used
commonly in other studies on software fault localization.

• Exclusion of faults: in our experiment, 53 faults (about
6% of the total faults) of the Defects4J dataset were
excluded due to technical limitations. The issue here is
whether other researchers using the same dataset will
be able to replicate our findings. This exclusion was in
no way influenced by the results of the used metrics
and the excluded faults are distributed in the dataset
approximately evenly, so we believe that this risk can
be considered minimal.

• Selection of SBFL formulas: to evaluate the effectiveness
of the new generated formulas on fault localization, we
selected a set of nine formulas in our experiment, which
is just a fraction of the proposed formulas in literature.
However, we cannot guarantee that the same results can
be obtained by using other formulas. To mitigate the
effect of this issue, we selected these formulas that are
commonly used in other studies on fault localization.

• Granularity level: we verified the concept on the granu-
larity of functions, however in certain applications, such
as automated program repair, statement granularity is
required. It is unclear at present if the findings in this
paper are generalizable to statements as well.

VIII. CONCLUSIONS

This paper extended the effort to systematically search for
SBFL formulas in [8]. We defined new formula templates,

which are more elaborate and can cover more existing for-
mulas. The results of our extended formula templates show
that the proposed approach led to new formulas that are not
reported in the literature and also outperform many well-
known existing ones. In particular, formula SGF-2 performed
very well in all measurements, and being surprisingly simple,
we think that it is very competitive to many previously advised
and widely used manually crafted formulas.

This proves that the concept is valid and research on system-
atic SBFL formula generation is a promising direction. Com-
pared to the GP-generated approaches or ML (Section III), our
approach generates readable and explainable formulas.

For future work, we will perform the following studies:

• Extending the template to e.g. polynomial, exponential,
and/or logarithmic to generate more elaborate formulas
and maybe get even better results.

• Comparing the effectiveness of the formulas generated
for all the identified templates with each other.

• Combining the best formulas from different templates
into a single formula that has the advantages of others.

• Expanding the four spectrum metrics ef , ep, nf and np
of program spectra with other contextual information or
possibly involving count-based spectra too.

• Involving other benchmark datasets to measure how much
impact do they have on finding good formulas.

• Assessing how the newly generated formulas perform at
granularity levels other than method-level.

• Assessing the performance trade-offs between our ap-
proach and other heuristic search and ML approaches.

Our measurement data is available at
https://doi.org/10.5281/zenodo.7239692.
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