Experiences in Adapting a Source Code-Based Quality Assessment Technology

Janos Pantos*, Arpad Beszédes*, Pl Gyenizse' and Tibor Gyiméthy*

* University of Szeged, Department of Software Engineering
Arpéd tér 2., H-6720 Szeged, Hungary, +36 62 544145
{pantos,beszedes,gyimi}@inf.u-szeged.hu

T GriffSoft Informatics Plc.
Thokoly ut 101., H-6726 Szeged, Hungary, +36 62 549100
pal.gyenizse@griffsoft.hu

Abstract

Testing-based software quality assurance often does not
provide an appropriate level of efficiency and reliability. To
aid this problem, different kinds of static verification tech-
niques can be applied, like code metrics and code inspec-
tion. Many quality assessment methods that are based on
static source code analysis has already been proposed, yet
these can be used is particular industrial environment — in
which often proprietary programming languages are used —
only after appropriate adaptation. This paper presents ex-
periences in adapting an existing technology and tools suit-
able for quality assessment based on source code analysis.
The technology has demonstrated its success and usability
in industrial environment; being capable of comprehensive
and continuous quality monitoring of large and complex
software systems involving proprietary technologies.

1. Introduction

The quality assessment of industry-applied software is
based in most cases merely on continuous testing, which is
quite expensive and does not provide adequate information
on quality in many situations. Through quality indicators
obtainable from the source code (using different code met-
rics and checking compliance with design and coding rules
for instance), an appropriate approximation of the quality
and maintainability of the software can be drawn [2, 8].
These quality assessments can in many cases valuably com-
plement the testing-based verification.

The tools and results presented were obtained through
the cooperation of the Department of Software Engineer-
ing of the University of Szeged, FrontEndART Software
Ltd. [5], the GriffSoft Informatics Plc. [7], developer of

the Forras-SQL technology, and a financial service provider
company using the technology. The subject of the analy-
sis was a large and complex mission-critical subsystem of
the IT infrastructure of the company. The financial com-
pany has recognized that their testing methodology is too
expensive and relatively low in efficiency; however, they
found no complete quality assessment solution designed for
Forras-SQL available on the market.

For this reason we applied methods for assessing quality
features already available in the literature, but appropriate
modifications and additions were necessary. During the co-
operation among the partners, first a comprehensive quality
assessment report has been prepared, and then continuous
monitoring of the quality indicators has been established.

Section 2 elaborates on the main steps of our methodol-
ogy and the adaptations performed. Section 3 presents the
results and the recommendations based on them to improve
software quality. Finally, Section 4 introduces our conclu-
sions and plans for the future.

2. Quality assessment

We utilize the results of source code-based analysis on
two levels. First, we give a comprehensive list of the actual
problems that are based on certain basic source code mea-
surements. Second, with the help of the basic measurements
we make estimations on the higher-level quality features of
the system, such as maintainability, modifiability, reusabil-
ity, reliability and testability.

In addition, we provide the comparison of the measure-
ments with so-called baseline values, through which the
values measured gain a relative meaning. The baseline val-
ues are determined through comprehensive analysis of a
large number of other systems.



The basic measurements are made up of various directly
calculable code-metrics describing, e.g., the size, complex-
ity, or coupling aspects of the system. The other type of
basic measurements include design or coding problems rec-
ognizable from the source code, some of which might cause
serious (runtime) errors, while others disturb availability,
cause slower system operation or hinder the understandabil-
ity of the system. A special type of coding problems is code
duplication, that is, when a new code is made by copying
from existing source code (also called code clones).

The Columbus technology [4] and related quality assess-
ment methods have been used in the project, which is part
of our solution successfully applied in previous projects as
well (see [5] for an overview of the technology).

2.1 Adaptation

The Forrds-SQL system is an integrated administrative
and management system made up of modules (subsys-
tems) using Windows-based user interfaces and MS-SQL
database management software. The modules contain pro-
grams, and the programs are an aggregate of procedures.
The language is procedural, and its syntax is quite similar
to that of the C programming language. SQL statements are
embedded as strings sent to specific library functions.

For analyzing of the source codes and using the various
tools a common model had to be established, so based on
the Columbus Schema [3] we implemented the Forrds-SQL
Schema. It can be used to represent various elements of the
language, such as statements, expressions and variables.

Bugs and coding problems Searching for coding
problems of the source is done by a tool comprising more
than 15 rules. Some of the problems hinder only the read-
ability of the code, while others may predict serious pro-
gram failures. The rules are quite similar to those used by
other rule checkers and extensive collections of software de-
sign rules applied to different languages [6, 9, 10].

Clone detection The location of code duplicates is car-
ried out by the enhanced, Forras-SQL-enabled version of
the clone detector module of Columbus [1] that can be used
in various programming languages (C++, C#, Java). With
this tool not only the fully identical code-segments can be
found but also those with almost identical structures, such
as those that differ only in variable names used.

Metrics The metrics-calculating tool computes tradi-
tional metrics with necessary modifications. In addition to
well-known size based metrics (LOC, NOS and NPAR) we
defined some language-specific ones, such as the number of
variables, parameters and objects defined. Our complexity-
metrics are obtained by the adaptation of McCC and WMC

metrics. CBO and COF coupling metrics are used after
adaptation; in case of CBO we determine the number of
couplings between the programs, and the value of COF is a
measure relating to the system as a whole, derived from the
CBO-values of the programs. In addition to locating code
duplicates we also define clone metrics. These metrics are:
CC, CCL, and CI [1].

Monitoring The results of the measurements are
loaded into a database for future evaluation. The results are
visualized by the Monitor subsystem [5] that is capable of,
among others, making different diagrams from the results,
and also of indicating the location of rule violations in the
code. A timeline diagram can also be produced based on
the changes in the system monitored, on which the evolu-
tion of the software can be tracked. An automatic e-mail
notification can also be set on negative changes, i.e. relative
increase and increase over baseline.

3. Experiences

Our quality assessment report included the full list of
programs and procedures in which some kinds of problems
were identified based on our code-quality measures. Dur-
ing the evaluation we also used Rigi [11] for visualization
of the results. In the following we give a short summary of
the results obtained.

Code checks By checking the rules we found about
a thousand rule-violations in the system, the majority of
which belong to the milder category mentioned in the pre-
vious section. We highlight the rules indicating value-
assignments of different types to variables, and procedures
returning different types of values. We found 10 code-
segments in the former, and 5 in the latter category which,
although do not cause runtime errors in the present system,
might do so due to inconsiderate future modification.

Metrics results From among the metric values we
present the more important results related to complexity.
The baseline values used for comparison of these values
were determined through analyzing a number of other un-
related Forrds-SQL programs comprising 1.48 million real
program lines (3797 programs and 28815 procedures). Ta-
ble 1 shows these baselines associated to different entities.

54.02% of the programs and 32.32% of the procedures
had a higher complexity than the baseline value. 57 proce-
dures exist in this system whose McCabe value is greater
than 50, and 16 procedures have a metric value higher than
100. By reviewing these complex procedures different rea-
sons can be identified. For instance, there are a lot of nested
IF statements with the depth of 4-5, which often contain



Programs | Procedures

LOC 507.135 66.8
ILOC 388.827 51.216
NPAR — 0.683
NOS — 28.286
McCC — 7.057
WMC 53.574 —

NII 4.605 1.099
NOI 7.163 1.496
CBO 2.68 —

Table 1. Metric baselines

large and complex SQL queries. There are also big DO
CASE statements with large number of branches, which can
be also complicated because of the number of IF and DO
WHILE statements. It is also common that there is a big
DO CASE statement but the branches are not so complex
(they contain sometimes just one procedure call).

The above is an illustration of the necessity to interpret
the metric values with caution. By simply comparing to
baselines can often be misleading, since a high cyclomatic
complexity can be due to different reasons, from which only
some mean a real problem, which needs to be refactored.

Clones in the system During the measurement phase
the clone coverage of the system decreased from 16% to
15%. Apart from minor variances, we observed a slow but
clearly decreasing tendency. The number of clone classes
and clone instances were increasing in a similar rate; the
former grew from 527 to 548, the latter from 1805 to 1884.
By reviewing the clones we found some typical and fre-
quently occurring cloning solutions. Some of the strings
for SQL queries are constructed in the same or very sim-
ilar way by using variable contents and string constants.
Another typical clone is when the SQL command and its
management logic is identical (e.g., same condition verifi-
cation). Next, some blocks in the branches of the DO CASE
statement are almost identical. Finally, there are procedures
which, apart from minor differences, are the same.

Naturally, eliminating all clone copies cannot be a realis-
tic expectation and it is neither practical, nor recommended
in case of smaller analogies. It is advisable, though, to re-
structure matching segments of long statements and proce-
dures as new procedures. The reason for the occurrence
of new clones and the disappearance of old ones has to be
investigated as well, since these increase the maintenance
costs of the software.

4. Conclusions and future work

Based on experiences working on this project, we are
convinced that the different kinds of metrics and code

checking rules available today may not have an universal
interpretation in arbitrary industrial environment. These
techniques need to be appropriately adapted to be able to
properly assess the quality of a software in a specific envi-
ronment, which may involve proprietary languages, special
collaborating technologies, domain- and company-specific
peculiarities and so forth.

While this paper reports on our experiences in the adap-
tation process, it would be as interesting to see how the end
user of the technology is satisfied with the quality monitor-
ing established. By further improving the techniques, and
documenting in more detail the required quality assurance
activities using the technology, a comprehensive methodol-
ogy will be obtained. In particular, in the future we intend to
extend the techniques to involve more testing-related mea-
surements and to improve the accuracy of measurements us-
ing dynamic analysis information.

References

[1] T. Bakota, R. Ferenc, and T. Gyiméthy. Clone smells in
software evolution. In Proceedings of the 23nd International
Conference on Software Maintenance (ICSM 2007), pages
24-33. IEEE Computer Society, Oct. 2-5, 2007.

[2] V. R. Basili, L. C. Briand, and W. L. Melo. A Validation
of Object-Oriented Design Metrics as Quality Indicators.
IEEE Transactions on Software Engineering, 22(10):751—
761, Oct. 1996.

[3] R. Ferenc and A. Beszédes. Data exchange with the Colum-
bus schema for C++. In Proceedings of the Sixth Euro-
pean Conference on Software Maintenance and Reengineer-
ing (CSMR 2002), pages 59-66. IEEE Computer Society,
Mar. 2002.

[4] R. Ferenc, A. Beszédes, M. Tarkiainen, and T. Gyiméthy.
Columbus — reverse engineering tool and schema for C++.
In Proceedings of the IEEE International Conference on
Software Maintenance (ICSM 2002), pages 172—181, Oct.

2002.

[5] Homepage of FrontEndART Ltd.
http://www.frontendart.com.

[6] Homepage of Gimpel Software.

http://www.gimpel.com/.

[7]1 Homepage of GriffSoft Informatics Plc.
http://www.griffsoft.hu/en/.

[8] T. Gyiméthy, R. Ferenc, and 1. Siket. Empirical validation
of object-oriented metrics on open source software for fault
prediction. [EEE Transactions on Software Engineering,
31(10):897-910, 2005.

[9] S. Meyers. Effective C++: 55 Specific Ways to Improve
Your Programs and Designs, 3rd Edition. Addison-Wesley
Pub Co, May 2005.

[10] Homepage of PMD. http://pmd.sourceforge.net/.
[11] The Rigi website. http://www.rigi.csc.uvic.ca.



