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Abstract

Design patterns present good solutions to frequently oc-
curring problems in object-oriented software design. Thus
their correct application in a system’s design may sig-
nificantly improve its internal quality attributes such as
reusability and maintainability. In software maintenance
the existence of up-to-date documentation is crucial, so the
discovery of as yet unknown design pattern instances can
help improve the documentation. Hence a reliable design
pattern recognition system is very desirable. However, sim-
pler methods (based on pattern matching) may give impre-
cise results due to the vague nature of the patterns’ struc-
tural description. In previous work we presented a pattern
matching-based system using the Columbus framework with
which we were able to find pattern instances from the source
code by considering the patterns’ structural descriptions
only, and therefore we could not identify false hits and dis-
tinguish similar design patterns such as State and Strategy.
In the present work we use machine learning to enhance
pattern mining by filtering out as many false hits as possi-
ble. To do so we distinguish true and false pattern instances
with the help of a learning database created by manually
tagging a large C++ system.
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1 Introduction

The correct use of Design Patterns in software develop-
ment is commonly treated as a premise for the high quality
of the design in terms of, among other aspects, reusabil-
ity and maintainability. Well-established and documented
design patterns exist in various fields of software develop-
ment. One of the most commonly recognized pattern cata-
logs was compiled by Gamma et al. [11], which describes

patterns used in object-oriented analysis and design. We
will deal with these patterns in this work. Any system with a
high-quality design contains occurrences of design patterns,
irrespective of whether they are introduced by the designer
intentionally or unwittingly. Whatever the case, knowing
about the instances of patterns in a software system may be
of great help during software maintenance (for instance, to
better understand the system’s structure and workings). Un-
fortunately, in many cases the pattern usage is poorly docu-
mented, so automatic or semi-automatic procedures for dis-
covering design patterns in undocumented software can be
very helpful to maintainers.

Design pattern recognition from existing systems is used
for various purposes, the main areas being maintenance
(e. g. Wendorff determines maintenance problems by iden-
tifying incorrect and extreme usage of patterns [24]) and
program comprehension (e. g. Campo et al. use design pat-
tern recognition for framework comprehension [7]). It is
important to concentrate on pattern instances during these
activities since, as Biemann et al. found, participant classes
in patterns change more rapidly than other classes in a sys-
tem [5].

The methods for discovering design pattern instances
from existing source code are also varied. One of the first
methods was an inductive one published by Shull ez al. [18]
that relies heavily on manual checking. Other authors use
rules to discover design patterns from source code. In this
case recognition rules are built from the design patterns’
structural features (Niere efal. [15]). Pattern matching on
graph representations of the source code using the struc-
tural features of design patterns represents another signifi-
cant class of methods. We also approached the problem this
way in [4]. The precision of pattern discovery is improved
by some researchers using dynamic analysis which, apart
from the structural information, also considers runtime in-
formation about the system under investigation [22, 23].
However, all these methods use a fixed pattern library con-
taining the descriptions of the patterns. In contrast to this,
Tonella and Antoniol proposed a different approach for rec-
ognizing design patterns in [21]. They search the recur-



rent patterns in the source code automatically, after which
they compare the patterns found with the known design pat-
terns. This way they were able to find even those patterns
that were not part of any standard pattern catalog.

The problem with the more common approaches to pat-
tern recognition (based on pattern matching) is that they are
inherently too permissive in a sense that they produce many
false results in which some code fragments are identified as
pattern instances that share only the structure of the pattern
description. This is due to the fact that the patterns them-
selves are given using conventional object-oriented con-
cepts, such class diagrams containing abstract classes and
methods, generalization, polymorphism, decoupling con-
crete responsibilities through references to abstract classes,
and so on. This leads to structures that are in many ways
quite similar to each other (consider the structures of, say,
Bridge vs. Adapter Object,! Composite vs. Decorator or
State vs. Strategy). Furthermore, such common structures
may appear even for code fragments that were not designed
with the intent of representing any specific design pattern,
but make use of the above mentioned techniques simply as
good object-oriented solutions to some other problems. The
distinction between such true and false pattern instances and
between different patterns with the same structures can be
made only by applying more sophisticated methods that in-
volve a deeper investigation of the implementation details
and its environment, i. e. to guess its real purpose. This nat-
urally leads us to apply machine learning methods to re-
fine the recognition capabilities of a conventional pattern
matching-based method.

In previous work [4] we presented a method for min-
ing design pattern instances using the Columbus reverse en-
gineering system [9]. Columbus represents a C++ source
code in the form of an Abstract Semantic Graph (ASG) [8],
and our approach to locating patterns was to try to find the
patterns’ structures in the graph using a custom-made pat-
tern matching method. In this system the structure of a
design pattern is stored using our special format based on
XML. This format, the Design Pattern Markup Language
(DPML), is appropriate for storing the structure of a design
pattern by capturing the prescribed design elements found
in the conceptual description. This includes classes, their
required attributes and operations, and the relations between
the participants. Finding a design pattern via this approach
means, then, applying our graph matching algorithm with
the DPML description to the ASG. Clearly, since other in-
formation besides the mere structure of a graph fragment is
not used, many false pattern instances could be found using
this approach.

IThe Adapter design pattern has two variants: a class version and an
object version that differ in the way the adaptation is achieved: using mul-
tiple inheritance or object composition. We investigated the latter one and
in the following we refer to it as the Adapter Object pattern.

In the present article we will overview the enhancement
to our pattern matching-based approach. We used ma-
chine learning methods to further refine the pattern mining
by marking the pattern instance candidates returned by the
matching algorithm either as true or false instances, and this
way produced better results. Note that with this approach
we are not able to find new instances designed as pattern in-
stances but their structure differed to some extent from the
“textbook” structures. This kind of enhancement is a com-
pletely different research topic. In other words, we further
filter the pattern instances returned by the basic algorithm
by eliminating false hits.

Our approach in a nutshell is to analyze the candidates
returned by the matching algorithm, taking into account var-
ious aspects of the candidate code fragment and its neigh-
borhood, such as whether a participant class has a base
or not, or how many new methods a participant class de-
fines besides a participating method. The information corre-
sponding to these aspects is referred to as predictors, whose
values can be used in a machine learning system for deci-
sion making. We employ a conventional learning approach,
that is we first manually tag the candidates as true or false
instances and calculate the values of the predictors on the
candidates. Then we provide these to some learning system
(we conducted our experiments using two methods, a deci-
sion tree-based one and a neural network approach). This in
turn provides a model that incorporates the acquired knowl-
edge, which can later be used for pattern mining in unknown
systems.

We performed our experiments on StarWriter [20] as the
subject system for pattern mining and we searched for the
Adapter Object and the Strategy design patterns. The choice
for these two patterns was made because there were enough
candidate instances of them found by the matching algo-
rithm in the source code and because these candidates were
sufficiently variegated.

Our results are promising, and they suggest that ma-
chine learning can be successfully applied to the design pat-
tern mining problem. We achieved learning precisions of
67-95% and with the model obtained 51 of the 59 false hits
could be filtered out of a total of 84 hits of the Adapter Ob-
ject pattern, say.

The paper is organized as follows. In the next section we
will overview some other works having similar objectives
to ours. In Section 3 we will look at the design patterns in-
vestigated, namely Adapter Object and Strategy. Section 4
describes our approach, while Section 5 is devoted to the
two machine learning approaches we employed. In Sec-
tion 6 we will present the main results of our work, then in
Section 7 we offer conclusions and suggestions for future
study.



2 Related Work

Many researchers have sought to develop methods for
recognizing design pattern instances from a high-level de-
sign (e.g. UML diagrams) or the already existing source
code. In this section we will briefly review some papers
that have similar goals to ours.

Guéhéneuc et al. [12] introduced a method for reducing
the search space for design patterns. First, they analyzed
several programs manually and searched for source classes
that act together as design patterns and set up a repository
from them. Afterwards they parsed these programs with
tools to obtain models of their source code, and computed
metrics from these models (like size, cohesion and cou-
pling). In the next step they ran their rule learner algorithm
that returned a set of rules characterizing the design pattern
participants with the metric values. This way they obtained
rule sets (called a fingerprint) for the participant classes of
the design patterns. Based on these fingerprints unknown
classes could be characterized. They then integrated this
fingerprint technique with their constraint-based tool suite
to reduce the search space. Their work is in some sense
similar to ours, but we made use of machine learning after
the structural matching phase (taking into consideration the
whole design pattern and not just individual classes) to filter
out false instances.

In [10], design pattern detection was accomplished via
the integration of two existing tools — Columbus [9] and
Maisa [16]. The method combined the extraction capabil-
ities of the Columbus reverse engineering system with the
pattern mining ability of Maisa. First, the C++ code was
analyzed by Columbus. Then the facts collected were ex-
ported to a clause-based design notation understandable to
Maisa. Afterwards, this file was analyzed by Maisa, and in-
stances were searched for that matched the previously given
design pattern descriptions. Maisa approached the recogni-
tion problem as a constraint satisfaction problem.

Tonella and Antoniol [21] presented an interesting ap-
proach for recognizing design patterns. They did not use
a library of design patterns as others did but, instead, dis-
covered recurrent patterns directly from the source code.
They employed concept analysis [19] to recognize groups
of classes sharing common relations. The reason for adapt-
ing this approach was that a design pattern could be con-
sidered as a formal concept. They used inductive context
construction which then helped them find the best concept.

Antoniol efal. introduced pattern recognition by using
metrics [2]. They analyzed source code and class diagrams
and created AOL (Abstract Object Language) specifications
containing information about classes, their members and re-
lations. The design pattern descriptions were also stored in
AOL format. Next, they created an AST (Abstract Syntax
Tree) from the AOL specification. Afterwards, they com-
puted metrics for each candidate class from the AST and

created a set for each participant class in the searched de-
sign pattern containing only those candidate classes which
met the participant classes’ metric conditions (these con-
ditions were set up manually). They significantly reduced
the search space this way. Finally, they checked the re-
quired structural relations among the candidate classes in
these sets. They could also verify the consistency between
the code and the design. They tested their system on public
and industrial systems with good results.

Albin-Amiot efal. [1] introduced a Pattern Description
Language (PDL) that was suitable for detecting design pat-
terns from source code and also for generating source code.
Their system was also able to detect some distorted versions
of design patterns and could repair them automatically with
the aid of a source-to-source transformation engine.

Keller et al. [14] argued that design patterns are the bases
of many of the key elements of large-scale software sys-
tems, so to comprehend these systems they needed to re-
cover and understand design patterns. They emphasized not
only the design’s structure but its rationale too. They uti-
lized the SPOOL environment which provided tools for an-
alyzing existing source code and recovering design compo-
nents like design patterns. They implemented query mech-
anisms that could recognize the structural descriptions of
patterns in the source code models. The SPOOL envi-
ronment gave some visual information about the query’s
results (the found design patterns) and information about
the design pattern’s class diagram to discover the pattern’s
structure and documentation about its intent and motivation.
They used this environment with three industrial systems
and searched for three design patterns (Template Method,
Factory Method and Bridge). They checked the intent of
the design patterns found and noticed that the discovered
design patterns’ intents did not necessarily correspond to
the original design patterns’ intents.

Asencio etal. [3] used the Imagix [13] tool to parse the
source code. The tool built a database of program entities
and relationships. They introduced a recognizer specifica-
tion language where they made declarative specifications —
logical conditions — to describe design pattern structures.
Afterwards, their tool called Osprey automatically gener-
ated Python source code from these declarative specifica-
tions, which searched patterns in the database generated by
Imagix. They tested their system on several software sys-
tems and obtained promising results but also found false
instances. They classified the causes of these false hits. The
first class of problems were the front end analyzer errors.
The second class was the pattern ambiguity. The cause for
these false hits were the structural similarities among design
patterns, like those of the Decorator and Proxy patterns. The
third and last class were the partial patterns. There were
many situations where the full pattern was not present in
the code under analysis.



Wendehals [22] improved design pattern recognition
with dynamic analysis. First, the author performed static
analysis and labelled each pattern candidate with a fuzzy
value that represented the correctness of the candidate. Af-
terwards, false candidates were ruled out by dynamic anal-
ysis and by using these fuzzy values. Wendehals also em-
ployed this technique in [23] where it was demonstrated
how to distinguish between patterns having the same struc-
ture (like the State and Strategy patterns) by dynamic anal-
ysis.

Campo etal. [7] utilized design pattern recognition for
framework comprehension. They concluded that some de-
sign patterns could be distinguished only by their dynamic
behavior, because their structures were the same (e. g. Com-
posite vs. Decorator and State vs. Strategy).

3 Studied Design Patterns

We performed our experiments on StarWriter (con-
taining more than 6,000 classes), the text editor of the
StarOffice suite [20]. We applied our design pattern min-
ing approach presented in [4], but each experiment was re-
peated since both the C++ front end and the pattern min-
ing algorithms have improved a lot since then. Using the
pattern-matching algorithm of Columbus we first found
several hundred pattern instances — which we treat in the
present work as candidates because they will be further fil-
tered with machine learning methods to provide more accu-
rate results.

We chose two design patterns out of 16 patterns han-
dled by the matching algorithm for the experiments. The
final decision fell on the structural pattern Adapter Object
and the behavioral Strategy pattern since these two occurred
most frequently in the results. This choice was appropri-
ate too because, after the manual investigation of the candi-
dates, we found that there were enough positive and nega-
tive examples. Moreover, the candidates and their contexts
were sufficiently different to train the machine learning sys-
tems successfully. These two patterns are good examples
of how general the structural descriptions of patterns can be
in terms of general object-oriented features, and how much
useful the deeper information can be for their recognition.

3.1 Adapter Object

The aim of the Adapter pattern is to “convert the in-
terface of a class into another interface that clients expect.
Adapter lets classes work together that could not otherwise
because of incompatible interfaces” [11].

The Adapter pattern has four participants (see Figure 1).
First, the Target class defines the domain-specific interface
that the Client uses. Client in turn represents the class col-
laborating with objects that conform to the Target interface.
Next, the Adaptee class describes an existing interface that

Request() SpecificRequest{)
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Figure 1. The Adapter Object design pattern

needs adapting, and finally Adapter is the class that adapts
the interface of Adaptee to the Target interface.

There are two forms of the Adapter pattern, namely Class
and Object. The former uses multiple inheritance to adapt
one interface to another, while the latter uses composition
for the same purpose. We employ Adapter Object in our
experiments.

It may be seen that this structure, the delegation of a re-
quest through object composition, is a quite common ar-
rangement used by object-oriented systems and so only a
more detailed analysis may spot the real instances of this
pattern.

3.2 Strategy

Context shrategy
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Contextinterfacer) Algorithminterface()

?
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Figure 2. The Strategy design pattern

The intent of the Strategy pattern is to “define a family
of algorithms, encapsulate each one, and make them inter-
changeable. Strategy lets the algorithm vary independently
from clients that use it” [11].

The Strategy pattern has three participants (see Figure 2).
The Strategy class declares an interface common to all
supported algorithms. Context uses this interface to call
the algorithm defined by a ConcreteStrategy, which imple-
ments the algorithm using the Strategy interface. The Con-
text class is configured with a ConcreteStrategy object and
maintains a reference to a Strategy object.

The fact that the implementation of the algorithm inter-
face is done simply by realizing the Strategy interface with
inheritance and method overriding suggests that this pattern
also requires a more detailed analysis to distinguish its true
instances from the false ones.



4 Our Approach

In this section we will describe how we employed two
machine learning methods to refine our results given in [4].
First, we will briefly present the Columbus framework.
Next, we will describe the predictors we formulated for the
machine learning, then we will overview the learning pro-
cess used.

4.1 Columbus

Columbus [9] is a reverse engineering framework that,
among other things, is able to recognize design patterns
from C++ source code. The design patterns to be searched
for are described in DPML (Design Pattern Markup Lan-
guage) files which store information about the structures of
the design patterns.

Columbus recognizes design patterns in the following
way. First, it analyzes the source code and builds an Ab-
stract Semantic Graph (ASG) that contains all the informa-
tion about the source code. Then Columbus loads a DPML
file which also basically describes a graph. Afterwards it
tries to match this graph to the ASG using our special algo-
rithm described in [4].

Columbus finds every design pattern instance that has
the structure corresponding to the DPML file but it does not
consider the found design pattern’s intents. Actually, when
Columbus finds a Strategy pattern it also finds a State pat-
tern because the structures of these two patterns are iden-
tical, hence their DPML descriptions are also identical. It
may also happen that Columbus identifies classes which are
accidentally related in the same way as in a design pattern.

Now we will introduce a method that is able to refine the
basic algorithm by removing false hits from the discovered
design pattern instances by also considering their intended
purpose.

4.2 The Predictors

Every design pattern has features that do not belong to its
structural description. We retrieve this kind of information
from the source code and give them to a learning system.
We call these collected values predictors. In the following
we will present the predictors that we formulated for the
two design patterns we studied. We also experimented with
other predictors, but these proved to be the most effective.

Adapter Object Design Pattern Predictors

e Al — PubAdapteeCalls predictor shows how many
public methods of the Adapter candidate class contain
a method call to an Adaptee candidate class. Since
the main purpose of the Adapter pattern is to adapt
the Adaptee class to the Adapter class, we reach the
Adaptee objects through the Adapter ones. So most
public methods of an Adapter candidate should con-
tain a method call to an Adaptee candidate.

A2 — PubAdapteeNotCalls predictor shows how many
public methods of the Adapter candidate class do not
contain a method call to an Adaptee candidate class.
We assume that the Al value is greater than A2, be-
cause the Adapter’s intent is to adapt the functionality
of Adaptee so the Adapter must have more public func-
tions that call Adaptee than those that do not.

o A3 — NotPubAdapteeNotCalls predictor shows how
many non-public methods of the Adapter candidate
class do not contain calls to an Adaptee candidate. We
assume that if A2 is greater than A1l then the private
or protected methods are responsible for calling the
Adaptee.

o A4 — MissingAdapteeParameter predictor shows how
many constructors of the Adapter candidate class do
not get an Adaptee candidate as a parameter. The
Adapter is likely to get the Adaptee object that it will
manage via its constructors, so it should be zero or a
low value.

e A5 — AdapteeParameterRatio predictor shows the ratio
of the constructors of the Adapter candidate class that
get an Adaptee candidate object as a parameter. We
assume it should be one, or close to one.

e A6 — NewMethods predictor shows how many new
methods the Adapter candidate class defines. The
Client uses the Adaptee through the interface of the
Target class, so since the purpose of the Adapter class
is to define the methods of Target, it needs not adding
its own new methods.

Strategy Design Pattern Predictors

e SI — InheritanceContext predictor shows the number
of children of the Context candidate class. It should be
a low value, because otherwise the pattern would be
more similar to the Bridge pattern than to Strategy.

o S2 — IsThereABase predictor shows the number of the
Strategy candidate’s parents. We assume that Strategy
does not have parents because it provides the interface
to change the strategy.

e S3 — Algorithm predictor this predictor investigates
the ConcreteStrategy candidate classes. It represents
a value based on the ConcreteStrategy candidates’ al-
gorithmical features like the number of loops and re-
cursions. We suppose the more algorithmical features
it has, the higher the probability of it being a true Con-
creteStrategy.

e S4 — ConcreteStrategy predictor shows the number of
ConcreteStrategy candidates discovered. If this value
is low the main advantage of the Strategy pattern is
lost.



e S5 — ContextParam predictor shows the number of
methods of the Context candidate which have a Strat-
egy parameter. Usually the Context class forwards the
client’s requests to Strategy so that the client can select
the Strategy object at runtime. Thus Context should
have at least one method with a Strategy parameter.

e S6 — InheritanceStrategy predictor: shows the number
of direct descendants? of the Strategy candidate class.
This value should be close to S4, but in any case it must
be smaller.

4.3 The Learning Process

Using the predictors defined we can produce the decision
models with the machine learning systems on a manually
tagged training set. These decision models can then be in-
tegrated into the current pattern mining system, to provide
more precise outputs.

In the following we will overview the concrete steps in
this learning process. It consists of four consecutive steps,
which are the following:

1. Predictor value calculation. Columbus creates an
ASG from the source code, and finds the design pattern
instance candidates that conform to the actual DPML
file which describes the structure of the searched pat-
tern. In this first step we calculate our predictor values
from the ASG and save them to a predictor table file.
This file is basically a table containing the predictor
values in a row for each candidate design pattern in-
stance.

2. Manual inspection. Here we examine the source code
manually to decide whether the design pattern instance
candidates are true or false hits. Then we extend the
predictor table file with a new column containing the
results of the manual inspection.

3. Machine learning. First we process the predictor table
file and classify the predictor values according to their
magnitude to achieve better learning results.’ Next, we
perform the training of the machine learning systems
(which will be described in the next section). The out-
puts of these systems are model files which contain the
acquired knowledge.

4. Integration. Finally, we integrate the results of ma-
chine learning (the model files) into Columbus to be
able to make smarter decisions by filtering the design
pattern candidates. This way Columbus should report
much fewer false design pattern hits to the user.

2Note that this value is not the same as that of S4, because the
ConcreteStrategy-s may be located deeper in the class hiearchy, and not
all children of Strategy are necessarily ConcreteStrategy-s.

3We divide the values into equal intervals and use the classes corre-
sponding to these intervals as the input for the learning algorithms.

We applied the above-described steps to StarWriter with
the two design patterns chosen, and performed some exper-
iments and calculations regarding the efficiency of learning.
These will be discussed in Section 6.

S Used Machine Learning Approaches

We employed two machine learning systems for acquir-
ing knowledge from the predictor sets discussed in the pre-
vious section. Both systems produce a model that will be
used for decision making. Besides the same predictor sets
these two algorithms are also used in the same way so we
were able to test both in the same environment.

They represent some of the most popular approaches in
the field of machine learning, one being a decision tree and
the other a neural network. The system we used for the for-
mer was C4.5 (which uses an enhanced version of the ID3
algorithm), while for the latter it was the Backpropagation
algorithm.

5.1 Decision Tree

C4.5 is an enhanced implementation of the ID3 algo-
rithm that was proposed by Quinlan in 1993 [17]. The C4.5
algorithm makes use of a variant of the rule post-pruning
method to find high precision hypotheses to the target con-
cept of the learning problem. It generates a classification-
decision tree for the given data set by recursively partition-
ing the data. Training examples are described by attributes
(predictor values) whose choice for a given tree node de-
pends on their information gain at each step during the
growth of the tree.

Some of the features of the algorithm are that it results
in smaller decision trees, it uses a depth-first strategy, and
that over-fitting is allowed — meaning that the growth of the
tree continues until it best fits the training data. After the
tree has been built up it will be converted into an equivalent
set of rules, all of which incorporate tests of the predictor
values and that will provide the output decision.

Lastly, pruning is applied to the rules to reduce the size
of the tree by rearranging and removing similar branches.
C4.5 can handle both discrete valued predictors and contin-
uous ones as well, and also training examples with missing
predictor values.

5.2 Neural Network

The Backpropagation algorithm [6] works with neural
networks that are the means for machine learning, whose
reasoning concept was borrowed from the workings of the
human brain.

This algorithm uses more layers of neurons; it gets the
input patterns and gives them to the input layers. Then it



computes the output layer (the output decision) from the
input layer and the hidden (inner) layers. In addition, an
error value is also calculated from the difference between
the output layer and the target output pattern (the learning
data).

The error value is propagated backwards through the net-
work, and the values of the connections between the layers
are adjusted in such a way that the next time the output layer
is computed the result will be closer to the target output pat-
tern. This method is repeated until the output layer and tar-
get output pattern are almost equal or up to some iteration
limit.

6 Results

In this section we will present the results of our experi-
ments concerning the precision of the learning methods and
their effect on the accuracy of design pattern recognition.

The basic pattern matching-based algorithm with
Columbus found 84 instances of Adapter Object and 42 of
the Strategy pattern in StarWriter. Next, we performed a
manual inspection of the source code corresponding to the
found instances and provided a two-fold classification for
each candidate instance; either as a true or false hit. Table 1
lists the statistics about this classification.

Pattern Total hits | False hits | True hits
Adapter Object 84 59 25
Strategy 42 35 7

Table 1. Pattern instance candidates

This manually tagged list of instances was then used as
the training set to the learning systems together with the
calculated predictor values for each instance candidate, as
described in Section 4.

In the following we will first overview our experiences
with the investigation of the candidates and the relation to
the actual predictor values, and then we will present our
results about the learning efficiency.

6.1 Adapter Object Candidates Investigation

During the investigation of the Adapter Object candi-
dates we found that they can be divided into groups that
share some common features. We will show two examples
of these groups.

Candidates belonging to the first group all have an
Adapter class that references another class through a data
member of a pointer type. The referenced class is, however,
too simple to be considered as an Adaptee as it has very few
members or too few methods of it are used by the Adapter.
For example, the Adapter contains a String that holds the

name of the current object, and one of the Adapter’s meth-
ods needs the length of the String so it calls the correspond-
ing method of String. Clearly, these candidates are not real
Adapter Object patterns.

Candidates of the second group have an Adapter class
that implements some kind of a collection data structure like
a set, list or an iterator. These code fragments also have
the structure of an Adapter Object design pattern but their
purpose is obviously different, so they are not real patterns
either.

After we had classified the candidates as true or false
instances and the predictor values had been calculated, we
investigated whether the actual predictor values support our
assumptions about the predictors set forth in Section 4.2.
Table 2 shows the predictor values for some typical candi-
dates along with their manual classification results.

Al | A2 | A3 | Ad | A5 A6 | Classification ‘
5 4 0 0 1 7 True
1 0 2 0 1 1 True
0 35 11 4 1033 | 26 False
2 14 | 52 2 0 9 False

Table 2. Some predictor values for Adapter
Object

Let us look at, say, the candidate in the first row of the
table, which is a true pattern instance. We can see that
more public methods in Adapter call the Adaptee (A1>A2),
while there are no non-public methods that do not call
it (A3=0). The values of A4, A5 and A6 also support our
assumptions (all Adapter constructors take an Adaptee). Let
us take the third row, which contains a false candidate, as
another example. It can be seen that the relations between
the values of Al, A2 and A3 are exactly the opposite of
the true example, i. e. there are no many calls from Adapter
to Adaptee. A5 and A6 support our assumptions as well.
Based on this, we may safely assume that the learning meth-
ods probably discovered these relationships as well.

6.2 Strategy Candidates Investigation

First we will overview some interesting candidates we
encountered during the investigation of Strategy instances.
There was a class called SwModify, which behaved as a
Context, while SwClient took the role of Strategy. The for-
mer had a method called Modify that would call the Modify
method of the latter. Inherited (direct or indirect) classes of
SwClient defined different Modify methods, so we classi-
fied this candidate as a true one. We also noticed that the
number of ConcreteStrategy-s was quite high (65) that jus-
tified the usefulness of predictor S4.



The mentioned Strategy class, SwClient, appeared also
in another candidate instance as the Strategy class, which
we finally treated as a false one for the following reasons.
The Context was represented by the class SwClientlter that
communicated with SwClient through the AlgorithmInter-
face method called IsA. The ConcreteStrategy-s defined this
method, but since its purpose was only RTTI (runtime type
identification) and not that for a real algorithm (in other
words, its S3 predictor was quite low), we classified this
candidate as false.

There were also some candidates with only one Con-
creteStrategy. We decided to classify these as false in-
stances because, after investigating all other true instances,
it was obvious that a real Strategy pattern should have sev-
eral ConcreteStrategy-s otherwise its initial purpose is lost
(the value of predictor S4 should be greater than one).

We also investigated the predictor values together with
the classifications of Strategy in more depth in order to ver-
ify our initial assumptions about the predictors. Table 3
shows four example candidates with the predictor values
and the classifications.

S1 | S2 S3 S4 | S5 | S6 | Classification
0 0 | 10.15 | 65 2 | 57 True
0 1 13.6 10 1 9 True
3 3 0 1 2 2 False
1 1 0 2 6 35 False

Table 3. Some predictor values for Strategy

The first row contains the predictor values for a true can-
didate. It can be clearly seen that the S1 and S2 predictors
are low, while S3 and S4 are high, as expected. Predictor S5
is greater than 0 and S6 is smaller than S4, so this also sup-
ports being a true instance.

The last row represents a false candidate, where the S1
and S2 predictors are not zero. Furthermore S3 and S4 are
very low, which suggests that this should be a false instance
according to our assumptions. Finally, S6 is also much
higher than S4, which further supports the belief that this
is a false candidate. The manual classification was false, so
our assumptions about the predictors were again correct.

In the next section, where we will show the actual results
of learning efficiency, we will see that the learning methods
successfully discovered these features of the predictors and
incorporated them into their models.

6.3 Learning Efficiency

To assess the precision of the learning process we ap-
plied the method of three-fold cross-validation,* which
means that we divided the predictor table file into three

4We did not have enough design pattern instance candidates to per-
form the usual ten-fold cross-validation method so we decided to divide
the training set into three parts instead of ten.

equal parts and performed the learning process three times.
Each time we chose a different part for testing and the other
two parts for learning.

We measured the learning precision in each case simply
as the ratio of the number of correct decisions of the learn-
ing systems (compared to the manual classification) to the
total number of instance candidates. Finally, we calculated
the average and standard deviation (shown in parentheses)
from these three testing results and got the values shown in
Table 4.

Neural network
66.70% (23.22%)
95.24% (4.12 %)

Decision Tree
66.70% (21.79%)
90.47% (4.13 %)

Design Pattern
Adapter Object
Strategy

Table 4. Overall learning precision results

It can be seen that the two learning methods produced
very similar results, however the precision was worse in the
case of Adapter Object. This is probably due to two reasons.
First, one of the three validation tests produced very bad
results which worsened the overall percentages, and second,
it seems that we have managed to find better predictors for
Strategy than for Adapter Object.

However, the real importance of the achieved learning
precision will be appreciated only by investigating how the
application of machine learning improves the precision of
the design pattern recognition. To do this we defined the
following measures (see Tables 5-8):

o Effectiveness It measures the effectiveness of filter-
ing out false hits, and is essentially the ratio of the
number of correctly predicted false classifications by
the decision model to the number of manually identi-
fied (observed) false hits of the basic method.

(Really false | False observed)

e Reliability It shows to what extent the prediction
of false hits was wrong, i.e. the ratio of the number
of correctly predicted false classifications to the total
number of false classifications.

(Really false | False predicted)

e Completeness It measures how many of the manually
identified (observed) true hits are correctly predicted
by the learning method.

(Really true | True observed)

e Correctness It shows the degree of correctly pre-
dicted true hits.
(Really true | True predicted)

Tables 5-8 show these measures for the two learning
methods. It may be concluded from the tables that the filter-
ing effectiveness is really good with both learning methods
and design patterns (85-94%), and that few true hits were
wrongly predicted as false ones, so the reliability of filtering
is also quite good.



Design Pattern | Total hits | False observed | False predicted | Really false | Effectiveness | Reliability

Adapter Object 84 59 71 51 86.44% 71.83%

Strategy 42 35 35 33 94.29% 94.29%
Table 5. Decision tree statistics for false hits

Design Pattern | Total hits | False observed | False predicted | Really false | Effectiveness | Reliability

Adapter Object 84 59 69 50 84.75% 72.46%

Strategy 42 35 33 33 94.29% 100%

Table 6. Neural network statistics for false hits

Design Pattern | Total hits | True observed | True predicted | Really true | Completeness | Correctness

Adapter Object 84 25 13 5 20.00% 38.46%

Strategy 42 7 7 5 71.43% 71.43%
Table 7. Decision tree statistics for true hits

Design Pattern | Total hits | True observed | True predicted | Really true | Completeness | Correctness

Adapter Object 84 25 15 6 24.00% 40.00%

Strategy 42 7 9 7 100% 77.78%

Table 8. Neural network statistics for true hits

As for the ability to predict true hits, the results are di-
verse. Strategy instances were fairly well predicted, but
only one fourth to fifth of Adapter Object instances were
found by the learning methods with modest correctness. We
can explain this effect by the fact that the predictors were
designed with the intent to filter out false pattern instances
and not to support true ones.

7 Conclusion and Future Work

In this paper we presented an approach with which sig-
nificant improvements in precision can be achieved in de-
sign pattern recognition compared to the usual structure
matching-based methods. The main idea here was to em-
ploy machine learning methods in order to refine the results
of the structure-based approaches.

Our goal was to filter out the false hits from the results
provided by our structure-based pattern miner algorithm
presented in [4]. In our experiments we achieved learning
precisions of 67-95% and with the model obtained we could
filter out 51 of the 59 false hits of the Adapter Object design
pattern (out of a total of 84 hits) and 33 of the 35 false hits
of the Strategy pattern (out of a total of 42 hits).

While our experiments showed that this approach has the
potential to enhance current design pattern mining methods,
further efforts should be made to develop the system. This
includes calculating further/better predictors, supporting all

the design patterns from [11] and training the tool on further
software systems (e.g. on large open source software like
the Mozilla internet suite).

Our method is purely static, which means that no runtime
information is used. This makes it easy to use, because no
test-runs have to be performed. But, of course, at runtime
additional information (like execution history) can be ob-
tained, so one possible direction for future enhancements
would be to also incorporate dynamic (runtime) informa-
tion in our design pattern miner tool.
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