

 1

A short introduction to Columbus/CAN

Rudolf Ferenc, Árpád Beszédes, Ferenc Magyar and Tibor Gyimóthy
{ferenc, beszedes, magyar, gyimi}@cc.u-szeged.hu

RGAI – University of Szeged
H-6720 Szeged, Aradi Vértanúk tere 1, Hungary

Abstract: In this paper we shortly present a reverse
engineering framework called Columbus that is able to
analyze large C/C++ projects. Columbus supports pro-
ject handling, data extraction, -representation, -storage
and -export. Efficient filtering methods can be used to
produce comprehensible diagrams from the extracted
information. The flexible architecture of the Columbus
system (based on plug-ins) makes it a really versatile
and an easily extendible tool for reverse engineering.
Keywords: reverse engineering, source code parsing,
large-scale software systems, UML, Class Model,
C/C++, templates, call graph

1. Introduction
One of the most critical issues in large-scale software
development and maintenance is the rapidly growing
size and complexity of the software systems. As a re-
sult of this rapid growth there is a need to understand
the relationships between the different parts of a large
system [1] [2]. The substantial amount of existing leg-
acy code and/or high number of the participants in
code development also necessitates the use of tools for
reverse engineering [11]. Reverse engineering is “the
process of analyzing a subject system to (a) identify the
system’s components and their interrelationships and
(b) create representations of a system in another form
at a higher level of abstraction” [4].

In this paper we present a reverse engineering
framework called Columbus [5], which has been de-
veloped in a cooperation between the Research Group
on Artificial Intelligence in Szeged and the Software
Technology Laboratory of the Nokia Research Center.
Columbus is able to analyze large C/C++ projects and
to extract their UML Class Model [9] and call graph. It
supports project handling, data extraction, data repre-
sentation and data storage. Furthermore, efficient filter-
ing methods can be used to produce comprehensible
(clear-cut) diagrams from the extracted information.

2. Columbus
The main motivation for developing the Columbus

system was to create such a tool, which implements a

general framework for combining a number of reverse
engineering tasks and to provide a common interface
for them. Thus, Columbus is a framework, which sup-
ports project handling, data extraction, data representa-
tion, data storage, filtering and visualization. All these
basic tasks of the reverse engineering process for the
specific needs are accomplished by using the appropri-
ate modules (plug-ins) of the system. Some of these
plug-ins are present as basic parts of Columbus, while
the system can be extended for other reverse engineer-
ing requirements as well. This way we get a really ver-
satile and an easily extendible tool for reverse engi-
neering.

2.1 Overview of the Columbus System

The basic operation of Columbus is performed by the
use of three types of plug-ins (in form of MS Windows
DLLs). These are the following:

• Extractor plug-ins (currently an extractor for
C/C++) – The task of an extractor plug-in is to
properly analyze a given input source file and to
create a file, which contains the extracted informa-
tion.

• Linker plug-ins – The task of a linker plug-in is to
build up (in the memory) the complete merged in-
ternal representation of the project. This process is
carried out based on the files created by the extrac-
tor plug-in. This plug-in is responsible also for fil-
tering the merged data in order to produce a more
clear-cut internal representation for exporting.

• Exporter plug-ins – The task of an exporter plug-in
is to export the internal representation built up and
filtered by the linker plug-in into a given output
format. (The currently available exporters are for:
TDE Mermaid 2.2, TED 1.0, Rational Rose, Micro-
soft Jet Database, HTML, XML and ASCII.)

Beside the delivered plug-ins the user can easily
write and add his/her own new plug-in DLLs to the
Columbus system using the plug-in API.

 2

2.2 Columbus Projects

The extraction process is based on a Columbus project.
A project stores the input files (and their settings: pre-
compiled header, preprocessing, output directories,
message level, etc.) displayed in a tree-view, which
represents a real software-system. The project can si-
multaneously contain source files of different pro-
gramming languages. Non-source code files can be
added to the project as well (e.g. documents, spread-
sheets), which are displayed by Columbus using OLE
technology.

2.3 The Extraction Process

The complete extraction process in Columbus can be
seen in the Figure below:

C/C++
extractor

C/C++
extractor

Other
extractor

C/C++
linker

Other
linker

internal
repr. for
C/C++

1st C/C++
exporter

2nd C/C++
exporter

Other
exporter

1.cpp

2.i

1.other
Other

internal
repr.

target
file 1

target
file 2

target
file 3

object 2

object 3

object 1

STAGE 1 STAGE 2 STAGE 3
(extraction) (linking) (exporting)

The whole process is very similar to compiler sys-

tems. The first stage of the extraction process is the
data extraction. Columbus takes the input files one by
one and passes them to the appropriate extractor, which
creates the corresponding internal representation files.

In the second stage the linker plug-in is automati-
cally invoked in order to link (merge together) the in-
ternal representation files in the memory.

In the third stage after selecting the desired export
format the exporting is performed. The exporting is
usually based on a filtered internal representation. Fil-
tering is discussed in detail in Section 4.

All stages of the extraction process can be influ-
enced by setting various plug-in specific options. An
important advantage of the Columbus system is that it
can incrementally perform all of the above described
steps, i.e. if the partial results of the certain stages are
available and the input of the stage has not been
changed, the partial results will not be recreated.

3. CAN
The parsing of the input source codes is performed by
the C/C++ extractor plug-in of Columbus, which in-
vokes a separate program called CAN (C++ ANalyzer).
CAN is a command-line (console) application for ana-
lyzing C/C++ sources. This allows that it can be inte-
grated into the user's makefiles and other configuration
files by which it facilitates its automated execution in
parallel with the software build process.

Basically, CAN accepts one complete translation
unit at a time (a preprocessed source file). However,
for files that are not preprocessed a preprocessor will
be invoked. The actual results of CAN are the internal
representation files, which are the binary saves of the
internal representations built up by CAN during extrac-
tion.

One of the greatest asset of CAN is probably the
handling of templates and their instantiation at source
level, which is accomplished using a two-pass tech-
nique for analysis. This way a separate analyzer be-
longs to both passes, which recognize different things
from their inputs. As the task of the first pass is only to
recognize the language constructs in connection with
the templates, the analyzer of this pass ignores every-
thing else (like a “fuzzy” parser). The second pass
performs the complete analysis of the source code and
creates its internal representation. So the analyzer of
this pass is a complete C++ analyzer. The language
description of C++ implemented in the analyzer covers
the ISO/IEC C++ standard of 1998 [10]. Furthermore,
this grammar is extended by the Microsoft extensions
used in Microsoft Visual C++ 6.0.

The information collected by CAN comprises the
UML Class Model including C++ templates (defini-
tions, specializations and instantiations) and the call
graph. CAN supports the precompiled headers tech-
nique as well that is widely used by compiler systems
in order to decrease compilation time. This technique is
efficient especially in case of large projects. The parser
is fault-tolerant (it has the ability to parse incomplete,
syntactically incorrect source code), which means that
it can continue the analysis from the next parsable
statement after the error.

4. Producing Comprehensible Diagrams
The reverse engineered code can produce huge amount
of extracted data, which is hard to visualize in a way
that offers useful information for the user (the user is
interested only in parts of the whole system at a time).
Different filtering methods in Columbus can help solv-
ing this problem.

 3

There are four options for filtering:

• Filtering by input source files: only classes that
come from the given input files can be selected.

• Filtering according to scopes. Classes or name-
spaces can be selected individually in a tree-view
browser.

• Filtering using class dependencies (e.g. aggrega-
tion, inheritance), with which the given relations
can be selected. An interesting and useful feature is
Diagram Completing, with which we can control
the possible elements brought in by the relations
transitively controlling this way the completeness
of the class diagram (e.g. using this option we can
select all derived classes of a given class).

• Filtering “by hand”: The classes can be individu-
ally selected/deselected on the displayed class dia-
gram customizing it this way.

5. Conclusion
In this paper we briefly presented the functionalities of
the Columbus toolset with respect to its reverse engi-
neering capabilities.

Columbus supports several reverse engineering
tasks (e.g. project handling, data extraction and data
representation/visualization with filtering and export-
ing options). The current version is able to analyze
C/C++ projects but due to its flexible architecture it is
easy to extend it with other languages as well.

The main features of Columbus can be summarized
as follows:

• Effective project handling (capability for importing
MS Visual C++ projects, integration into the user's
project).

• Powerful C/C++ extraction (fast, fault-tolerant
parsing, handling of complex templates, visualizing
“hidden” template instances).

• Direct access to the extracted information (via its
API).

• Creation of comprehensible diagrams (filters, lay-
out).

• Easy-to-use user interface (very similar to IDE-s).
• Extensibility (plug-in architecture, user plug-ins via

its plug-in API).
• Various output formats (Mermaid, TED, Rose, MS

Jet, html, XML, ASCII).

In the future we will extend the system for other
source languages (e.g. Java) and more output (export-)
formats. Further improvements are under development
as well, which may be useful for better code under-

standing (e.g. dependency-graph [6][3][7]). In the fu-
ture we plan to enhance Columbus so that it supports
architectural reconstruction of software systems [1]
(recognizing design-patterns [8], component interac-
tion, structural information).

References
1. Armstrong, M. N., Trudeau, C. Evaluating Archi-

tectural Extractors. In Fifth Working Conference
on Reverse Engineering. Oct. 12-14, 1998. Hono-
lulu, Hawaii, USA. 30-39.

2. Bellay, B. and Gall, H. An Evaluation of Reverse
Engineering Tool Capabilities. In Software Main-
tenance: Research and Practice. 10. 1998, 305-331.

3. Beszédes, Á., Gergely, T., Szabó, Zs. M., Csirik, J.
and Gyimóthy, T. Dynamic Slicing Method for
Maintenance of Large C Programs. In Proc. 5th
European Conference on Software Maintenance
and Reengineering (CSMR 2001). Lisbon, Portu-
gal, March 14-16, 2001. 105-113.

4. Chikofsky, E.~J. and Cross II, J.~H. Reverse engi-
neering and design recovery: A taxonomy. IEEE
Software 7, 1. Jan. 1990. 13-17.

5. Columbus Setup and User's Guide. Version 2.5, ©
1998-2000 Nokia Research Center.

6. Gyimóthy, T., Beszédes, Á., and Forgács, I. An
Efficient Relevant Slicing Method for Debugging.
In Proc. 7th European Software Engineering Con-
ference (ESEC). Toulouse, France. Sept. 1999.
LNCS 1687. 303-321.

7. Jackson, D. and Rollins, E. J. A new model of pro-
gram dependences for reverse engineering. In Pro-
ceedings of the second ACM SIGSOFT symposium
on Foundations of software engineering. 1994. 2-
10.

8. Keller, R. K., Schauer, R., Robitaille, S. and Pagé,
P. Pattern-Based Reverse-Engineering of Design
Components. 1999. ICSE '99, Los Angeles CA,
USA. 226-235.

9. OMG Unified Modeling Language Specification.
Version 1.3, © 1999 Object Management Group,
Inc.

10. Programming languages – C++. ISO/IEC
14882:1998(E).

11. Quilici, A. Reverse engineering of legacy systems:
a path toward success. Proceedings of the 17th in-
ternational conference on Software engineering.
1995. 333-336.

