
Relating Code Coverage, Mutation Score and Test
Suite Reducibility to Defect Density

Dávid Tengeri∗ László Vidács∗, Árpád Beszédes†, Judit Jász†,
Gergő Balogh†, Béla Vancsics† and Tibor Gyimóthy†
∗MTA-SZTE Research Group on Artificial Intelligence

†Department of Software Engineering
University of Szeged, Szeged, Hungary

{dtengeri,lac,beszedes,jasy,geryxyz,vancsics,gyimothy}@inf.u-szeged.hu

Abstract—Assessing the overall quality (adequacy for a par-
ticular purpose) of existing test suites is a complex task. Their
code coverage is a simple yet powerful attribute for this purpose,
so the additional benefits of mutation analysis may not always
justify the comparably much higher costs and complexity of the
computation. Mutation testing methods and tools slowly start to
reach a maturity level at which their use in everyday industrial
practice becomes possible, yet it is still not completely clear in
which situations they provide additional insights into various
quality attributes of the test suites. This paper reports on an
experiment conducted on four open source systems’ test suites to
compare them from the viewpoints of code coverage, mutation
score and test suite reducibility (the amount test adequacy is
degraded in a reduced test suite). The purpose of the comparison
is to find out when the different attributes provide additional
insights with respect to defect density, a separately computed
attribute for the estimation of real faults. We demonstrate that
in some situations code coverage might be a sufficient indicator
of the expected defect density, but mutation and reducibility are
better in most of the cases.

Index Terms—Mutation analysis, code coverage, defect density,
test adequacy criteria, test suite reduction.

I. INTRODUCTION

Measurement and prediction of test suite adequacy is a
constant debate topic both among testing practitioners and
researchers. The level of adequacy for a particular set of
test requirements might be seen as a quality indicator of
the underlying test suites, hence it is of high importance. In
white-box testing, a simple yet highly useful quality attribute
is code coverage, but it has also been shown that code
coverage is not always sufficient to predict the defect detection
capabilities of test suites [1]. As a fault-based technique,
mutation analysis [2] has been introduced with the hope to
offer additional insight in this respect. However, it is still not
precisely known in what situations would mutation analysis
provide more reliable estimate of the ability to find real faults,
or in fact, when is code coverage a good enough estimator
itself. Furthermore, mutation analysis is still widely seen as a
very expensive technique and that there are a lot of barriers
to its wider adoption in industrial practice [2], [3].

At the same time, the demand from the industry for more
reliable mutation testing methods and tools is growing, and
fortunately there are promising trends to satisfy this need [4].
For instance, in the Agile High Assurance methodology,

Binder proposes a 3-way Coverage Definition of Done, which
includes code coverage, clean report from static analyzers,
and minimum mutation score [5]. Also, there are mutation
tools which can handle bigger industrial projects as well, for
instance the PIT tool [6].

However, the testing community still needs to find out
in what situations is mutation testing worth the effort. And
we can go further: can we use further adequacy criteria in
addition to code coverage and mutation scores to get better
predictors of test suite effectiveness in finding real faults? Our
test suite assessment methodology [7], [8], [9] tries to involve
different adequacy criteria and combine them into a model for
describing different quality aspects of test suites. The model
currently mostly relies on code coverage based information,
but involvement of additional criteria is an ongoing effort.

This paper is an early report on a combined use of dif-
ferent test suite adequacy criteria in an experiment which we
conducted on the test suites of four non-trivial open source
systems. The goal was to compare the criteria to the actual
faults reported for the projects. For the criteria we used code
coverage ratio, mutation score, and test suite reducibility. For
the latter, we considered the amount the test suite can be
reduced without degradation in code coverage and mutation
score. For the estimation of the actual faults in the systems
we used a Defect Density metric computed from the respective
defect reporting systems (as the confirmed number of defects
per system size). In this phase, we used two mutation operators
with manually verified mutants. Our results are promising:
we identified indications that code coverage alone is rarely a
good indicator of the expected number of defects (hence test
suite quality), and that the other two aspects provide useful
additional insights.

The next section of the paper gives more details about the
goals of the study and the methods we used, while Section III
reports on the results. In Sections IV and V, we overview
relevant related work and threats to validity, before concluding
in Section VI.

II. GOALS AND METHOD

Our long term goal is researching test suite quality assess-
ment methods, which involve various test adequacy criteria,
and verify them on existing test suites. Our goal is to compare

Mutation

Mutant

code
Mutant

code
Mutant

code
Mutant

code
Mutant

code
Mutant

code

Source

code &

test

suite

Project

history

Coverage

Mutant

code
Mutant

code
Mutant

code
Mutant

code
Mutant

code
Reduced

tests

Test

reduction

Defect

density

Fig. 1: Summary of test suite assessment process

the test suites, identify differences between them and to find
out any relationships of these differences to other indicators,
most importantly the test suite’s ability to find real faults.

In particular, our question is when does mutation analysis
(in terms of the mutation score) provide additional information
to code coverage during the assessment and comparison of test
suites. In addition, we experiment with test suite reducibility,
a concept used to describe to what extent a test suite can be
reduced without degrading a given adequacy criterion (such as
code coverage or mutation score), or—viewed from a different
angle—, given a reduced subset of the test suite, how much
the adequacy is worse than the adequacy of the full test suite.
If a small reduced part of the test suite is not- or only little
less adequate than the full one, we say the test suite is more
reducible (more redundant) than in the opposite case. In our
research, our question is if reducibility provides additional
insights over code coverage and mutation score.

We compare these three criteria to the Defect Density –
DD [10] of the projects in question, which is in essence
treated as the proxy for the actual test suite quality. Defect
density is expressed as the number of confirmed defects in
the system divided by the system size, and is typically used
to characterize the project or the process itself. We apply this
concept to post-release defects to characterize the test suite: we
use the assumption that if a lower quality test suite is used in
the project, fewer defects will be found during testing, hence
higher defect density will be observed after release. Clearly,
other aspects may contribute to actual DD values, not only
test suite quality, but we currently rely on this estimation.

The method to measure these viewpoints is overviewed
in the following. Figure 1 shows the process used in our
experiments with the viewpoints on the right hand side. Code
coverage ratio, mutation scores and test reducibility can be
directly computed by running and analyzing the source code
and tests. On the other hand, we consider defect density from
project issue management history, which serves as separate
dimension in the comparison.

a) Coverage ratio: Test coverage ratio is a basic metric,
which is natural to measure and understand during test suite
assessment. Our view is that any deeper analysis needs to
be interpreted in the light of coverage ratio, since low test
coverage has impact on many other factors: e.g., if a mutant
is not covered by the test cases it may never be killed. We
will investigate code coverage mostly in terms of how the
other factors can extend this adequacy criterion.

b) Mutation analysis: Our approach to mutation analysis
is to randomly sample a limited number of mutation points
and manually implement mutations by source code annotation
and script-based post-processing of the code. We did not use
mutation tools so that we could manually control and verify
the mutant generation process. We also limit our mutation
operators to two which are expectedly likely to be killed by
the test suite. Similar operators are referred to as “trivial”
operators by some authors, however we think that if a test suite
does not kill such mutants while covering them it may indicate
serious deficiencies. The first operator mostly interferes with
the data flow of the program, while the other one affects
control flow. Similar approaches were proposed by Wong
and Mathur [11], who also advocated a very low number of
operators. The first operator we defined negates the result of
return statements in the case of boolean and number return
types (called the return negation, RN), while the second opera-
tor negates the whole conditional expression in if statements
(called if negation, IN). The annotated source code is used to
generate two types of outputs. First, an instrumented code is
generated and run for coverage measurement for each mutation
point. Second, all mutants are generated and run to obtain test
results. Based on coverage data and test results, a detailed
mutation analysis is possible.

c) Test suite reduction: Test suite reduction methods seek
to minimize the size of a test suite by eliminating test cases
with respect to an adequacy criterion such as code coverage.
We use a traditional code coverage based reduction, where
a possibly minimal subset of the test suite is computed that
achieves the code coverage of the full test suite. The reduced
subset is computed by a heuristic algorithm based on greedy
addition of test cases with highest additional coverage [12].
Then, the obtained reduced test suite is assessed for mutation
score. As indicators, we use the relative size of the reduced
set and the difference of the resulting score to the score of the
unreduced test suite. In the first case, a greatly reduced test
suite might indicate redundancy from code coverage point of
view, while the intuition behind the second concept is that if
the score difference is big, maximal coverage alone does not
indicate that the test suite is redundant because the eliminated
test cases are able to kill some mutants.

d) Defect density: Defect density is computed using
historical data of the subject projects from the respective
issue tracking systems. Our open source subject projects are
available on GitHub, which allows us to process the status
and the history of issue reports. Defect density is not directly
dependent on failing tests, but on problems found and reported
by project collaborators and users. Although we did not verify
each reported defect individually, they are usually reported for
the released versions of the systems, meaning that the defects
were not found during testing. Hence we assume that higher
defect density rate is an indicator of unsuccessful testing and
lower quality of the test suite.

III. EXPERIMENT RESULTS

A. Properties of Subjects

For the experiments, we used four medium size open
source Java programs, which are actively developed and which
include regularily maintained test suites. Table I shows basic
data about the subject programs. They belong to various
domains: MapDB is an embedded database engine, Netty is
an event-driven network application framework, OrientDB is
a distributed graph database project, while Oryx is a real-time
large scale machine learning engine. The total lines of code of
the projects is about 450K, varying between 31K and 229K
LOC. In the table, the number of methods and the number
of test cases are also shown, together with the total coverage
ratio of the whole test suite on method level. Here, the Clover
tool [13] was used which computes the coverage based on
source code instrumentation. The coverage ratio varies among
projects, which makes them appropriate for our goals.

TABLE I: Subject programs

Program LOC Methods Tests Cover. Domain
mapdb 53K 1 582 1 784 77.67% database
netty 140K 8 133 4 079 48.88% networking
orientdb 229K 13 052 1 058 39.38% database
oryx 31K 1 557 208 27.51% machine learning

B. Mutant Generation

As mentioned, mutations were manually added using source
code annotation. Given the large effort required for manual
mutant generation, only a randomly selected part of possible
mutation points was implemented. Table II reports the number
of candidate mutation points in the second and fourth columns
for the two operators, while columns three and five contain
the number of the actually annotated mutants. We will use the
notation M0 for the base set of generated mutants.

For determining the possible mutation points, the source
code was scanned using the grep tool (for RN the return
keyword and for IN the if keyword was used in the search).
The order of the obtained list was then randomized. During
the manual annotation process the random list was followed
with the exclusion of false positives such as when the keyword
was found in a comment. In case of RN annotation the return
type of a given method was also manually checked, since only
boolean and number types were negated. Finally, all mutants
were successfully built, but in 12 cases they failed to produce
test results because the test framework stopped with timeout.
These cases were excluded from the final list, which is shown
in the last column of the table. Overall, for the experiments
we used 667 mutations. In the remaining part of the paper we
present summarized results of the two operators.

C. Mutant Classification

Mutants can basically be divided into three groups based on
their runtime behaviour: not covered, dead and live mutants.
In this study, we distinguish between two subgroups of the not
covered mutants: mutants whose method is not covered at all
and mutants whose method is covered but the mutant itself is

TABLE II: Total number of generated mutants

IN RN All
Program Candidates |M0| Candidates |M0| |M0|
mapdb 1 002 50 1 539 53 100
netty 6 623 101 8 766 90 188
orientdb 15 765 150 14 009 134 278
oryx 1 143 51 2 038 50 101

not covered. The set of all mutants M0 is thus divided into
the following four groups:

M1: set of mutants whose methods are not covered,
M2: set of mutants whose methods are covered but the
mutant is not covered,
M3: live – set of mutants which are covered and test
results did not change,
M4: dead – set of mutants which are covered and at least
one previously passed test failed.

TABLE III: Mutant coverage and liveness

All Not cov. meth. Not cov. mut. Live Dead
Program |M0| |M1| |M2| |M3| |M4|
mapdb 100 2 5 9 84
netty 188 63 17 34 74
orientdb 278 126 33 31 88
oryx 101 45 4 3 49

Table III shows the associated numbers for each project,
while the same data is shown in a normalized form in
Figure 2a. The first thing to observe from the data regards the
not covered mutants. Separating them to M1 and M2 gives
insights into the mutation process. It can be observed that the
|M1|/|M2| ratio is larger in the case of the last 3 projects, the
projects for which the total coverage is low. In other words, an
overall low coverage has a negative effect on the interpretation
of other data. This observation leads to a refined mutation
score definition discussed later in this section.

0%	

20%	

40%	

60%	

80%	

100%	

mapdb	 ne0y	 orientdb	 oryx	

M
ut
an

t	%
	

Not	cov.	method	(M1)	 Not	cov.	mutant	(M2)	

Live	(M3)	 Dead	(M4)	

(a)

0%	
10%	
20%	
30%	
40%	
50%	
60%	
70%	
80%	
90%	
100%	

mapdb	 ne4y	 orientdb	 oryx	

M
ut
an

t	%
	

Live	(M3)	 Dead	(M4)	

(b)

Fig. 2: Mutant coverage and liveness of covered mutants

The crucial part in mutation analysis is recording the ratio of
killed mutants, which will then lead to computing the mutation
score. This data can be read from the last two columns
of Table III and from Figure 2a. If we observe the overall
number of dead mutants among the total number of mutants,
it becomes clear that mapdb is best performing in this respect,
and the other three are much worse but comparable to each
other. This information is misleading though, because in this

basic calculation a mutant may be live for two reasons: either
it is never covered or it is covered but the test suite failed
killing it. mapdb has a high coverage compared to the other
subjects, so this might explain the mentioned relationships. To
clean the data from the bias of total coverage, we present the
dead/live ratio of covered mutations in Figure 2b. From this
viewpoint the test suite of the oryx project is the best in killing
mutations, despite it has the lowest total coverage.

D. Mutation Score

Mutation score is the traditional adequacy measurement of
the test suite in mutation analysis. It is the ratio of the number
of killed mutants over the total number of non-equivalent
mutants, which includes the not covered mutants too [2]. There
are two notable issues with the denominator of this fraction.
First one is the exclusion of equivalent mutants. In this study
we did not apply a systematic method for the detection of
equivalent mutants because we specifically picked mutation
operators that severely modify the program behaviour, and
hence unlikely generate equivalent mutants. Nevertheless, we
manually verified all not dead mutants of two of the subjects
(mapdb and oryx) and found that less than 10% of them
are possible equivalent mutants. Hence, we define the basic
mutation score as follows:

S = |M4|/|M0|

The other issue of the score computation regards the inclu-
sion of not covered mutants, which is the approach followed
by most mutation methods and tools. However, to eliminate
the dominance of not covered mutants in subjects with low
coverage, we define a modified version of mutation score by
leaving out the not covered mutants:

SCOV = |M4|/|M3 +M4|

Columns 2–3 of Table IV summarize mutation score values
of the subject programs. It can clearly be seen how the low
coverage distorts the mutation score, only mapdb has a similar
value for the two score types. In fact, the relative order of the
subjects according to their score values changes significantly.

TABLE IV: Mutation scores, suite size and score decrease
when the test reduction reaches maximum coverage

Program S SCOV Reduced size S decrease
mapdb 0.84 0.90 10% 8%
netty 0.39 0.69 11% 11%
orientdb 0.32 0.74 26% 7%
oryx 0.49 0.94 37% 14%

E. Test Reduction

The test reduction algorithm has been applied to the subjects
with fixed reduction sizes from one single test case to the
whole unreduced test suite. This way, we could compare the
characteristics of the gradual increase of the coverage ratios
and the mutation scores of the reduced test suites. Figure 3
shows the changes of the coverage and S score values for
oryx. We can observe that mutation score is still increasing

after coverage reached its maximum. In this case, maximum
coverage was achieved by selecting 37% of the test cases, at
the same time the reduction of S was 14%.

The last two columns of Table IV show the reduced size
and the mutation score decrease compared to the full test
suite for all subjects. We use both values as the reducibility
indicators. The increase curves of the other programs showed
similar characteristics to oryx, except that for the subjects with
lower score decrease values they were more flat.

0,2	

0,25	

0,3	

0,35	

0,4	

0,45	

0,5	

10%	 20%	 30%	 40%	 50%	 60%	 70%	 80%	 90%	100%	

Co
ve
ra
ge
	a
nd

	sc
or
e	

Number	of	tests	(%)		

oryx	

Max	of	Coverage	

Coverage	

Score	

Fig. 3: Coverage and mutation score changes during test
reduction for oryx

F. Defect Density
We computed DD values as the number of confirmed and

closed issue reports marked as defects divided by the actual
size of the system at the time of the analysis. The defects
were obtained from the respective issue tracking databases on
GitHub taking into account the whole lifetime of the projects.
Table V shows the number of the identifed defects, the labels
used to determine the defects among all issue reports, and
the calculated defect density values. For the normalization we
used the ratio per one thousand lines of program code, which
is also shown in the table.

TABLE V: Defect density details

Program Filter label Closed defects KLOC DD
mapdb ’bug’ 176 53 3.3
netty ’defect’ 811 140 5.8
orientdb ’bug’ 388 229 1.7
oryx ’bug’ 44 31 1.4

G. Analysis of Results
In this study we used code coverage, mutation score and

test reducibility as different indicators of test suite adequacy,
which we aim to compare with defect density, an independent
dimension acting as a proxy for test suite quality. In Figure 4,
all these viewpoints are presented side by side, where the
subjects are listed in an ascending order by defect density.
Except defect density, the data take values from 0 − 1, but
the actual values are not very important in this summarization,
only their relative order. An ideal case would be if all indicator
curves would show an opposite steepness to the defect density,
because in each case a bigger value indicates higher quality,
which we mirror to low defect density.

We summarize our observations as follows:
1) Coverage ratio in itself is not enough to reason about

defect density: only between subjects mapdb and netty
can we observe the desired relationship.

oryx orientdb mapdb netty

Total COV S S COV S decrease Defect density

1.4
1.7

3.3

5.8

0

1

2

3

4

5

6

7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

oryx orientdb mapdb netty

D
ef

ec
t

d
en

si
ty

Te
st

 S
u

it
e

A
d

eq
u

ac
y

In
d

ic
at

o
rs

Defect density Total COV S S COV S decrease Reduced size

Fig. 4: Test suite adequacy indicators and defect density

2) Considering traditional mutation score S improves the
relationship to defect density. It gives oryx a higher rank,
which is more aligned with what is expected, but the
characteristic of this indicator is still very much aligned
with the overall code coverage.

3) Elimination of the coverage-bias mentioned for Fig-
ures 2a and 2b greatly improves defect density estima-
tion. Except for the orientdb-mapdb pair, the order is
aligned with defect density for SCOV .

4) Finally, test reducibility underlines the usefulness of
additional adequacy criteria: it categorized mapdb cor-
rectly, which none of the other indicators managed.

The summarization of these results can be seen in Table VI.
It includes a pairwise comparison of the subjects according
to whether their relative order for to the respective indicator
follows the relative order given by DD. The table contains the
pairs in each row and there is a 1 in the column for an indicator
if the order is aligned. As can be seen, code coverage is a good
indicator only in one of the six cases, the traditional mutation
score matches in half of the cases, while the score for covered
mutants matches in 5 cases out of 6. It is also interesting
to observe that the reduction size is aligned with DD in all
but one case, and this indicator is not dependent on mutation
analysis. A particular case to highlight is subject oryx, which
has the lowest code coverage (only 27.51%), still has the
lowest defect density ratio. All adequacy criteria except, of
course, coverage are able to predict this attribute.

A promising direction of future research may be to find
models to predict in which cases would be a specific indicator
be suitable for test suite quality assessment; in other words,
when would code coverage be enough in itself and when would
mutation or reducibility analysis be required.

TABLE VI: Pairwise comparison of indicators to DD

Total S SCOV Reduced S
Program-pair COV size decrease
oryx–mapdb 0 0 1 1 1
oryx–orientdb 0 1 1 1 1
oryx–netty 0 1 1 1 1
mapdb–orientdb 0 0 0 1 0
mapdb–netty 1 1 1 0 0
orientdb-netty 0 0 1 1 0
Total match 1 3 5 5 3

IV. RELATED WORK

Despite decades of research in the field, the concept of
mutation analysis is still too stubborn to leave the academic
research labs and become an everyday technique in industrial
testing practice [3]. Researchers identified several key barriers
for the adoption, including the identification of equivalent
mutants, test case generation, reliable tooling, and the very
high resource need compared to the expected benefits. Jia and
Harman presented an excellent literature review of the field [2].

So, a very important research area is to find out in what situ-
ations can results from mutation analysis be used as successful
test adequacy criteria. Previous studies used various kinds
of mutation-based adequacy criteria like control-flow path
coverage for the evaluation of so called class mutations [14],
simulation-based models of distributed systems [15] and to
explore alternatives of mutation to reduce its cost without
significantly deteriorating its strength and effectiveness [16].
In our research, we seek for combined test adequacy criteria,
which use code coverage, mutation score, and also test suite
reducibility. Essentially, we are working on a general test
suite assessment methodology, in which mutation analysis
would play an important role. Other approaches to test quality
include applying general source code measurement on test
suite code [17], or evaluating tests from the testing process
perspective [18].

There are several positive evidences that mutants are a valid
substitute for real faults (following the coupling effect) [19],
[20], however this is very hard to verify in a general context,
and generalize to different systems, test suites, mutation tech-
niques and tools. Higher order mutants are another approach
to increase the coupling effect [21], [22]. In our work, we
used a specific kind of defect density measurement to verify
the adequacy of mutation analysis.

Selective mutation is a popular approach to cost reduc-
tion [2]. Our approach was to use only two mutation operators,
which were expected to be able to sufficiently indicate the ad-
equacy of the test suites. Delamaro et al. [23] found that using
only deletion operators is a cost-effective approach. Another
direction is to find a set of “sufficient operators,” which are
statistically not too much worse than the full set, while being
much more limited [24]. Mathur and Wong, for instance, used
only two operators [11], while Navanti et al. [25] worked with
a small set of specific ones. Mutation faults have been used
in test case prioritization. Usaola et al. [26] present a test
reduction method using mutation score. Methods for reducing
regression test suites based on mutation have been presented
by Offut et al. [27]. The problems related to equivalent mutants
have been studied extensively (for a review, see [28]). While
there are some very innovative approaches (see for instance
the works by Papadakis et al. [29], Kintis and Malevris [30]),
the problem is still largely unsolved.

V. THREATS TO VALIDITY

This experiment used only two mutation operators and
four subject programs, so our findings should be generalized
with caution. Generating mutations manually is very time

consuming and there are tools that can solve this efficiently,
however in this preliminary study we wanted to control and
validate each step of the mutation generation. We did not
perform a systematic analysis of equivalent mutants due to
their unlikely occurrence as mentioned earlier, however this
may influence the validity of our results.

VI. CONCLUSION

The experiment presented in this paper underlined that code
coverage alone is rarely an indicator of the expected number
of defects in the system. On the other hand, the other two
adequacy criteria we used greatly improve the prediction;
mutation score and test suite reducibility. Since we used defect
density with real faults reported for the systems after release,
we treat the combination of these indicators as indicators of
test suite quality, hence a step towards a more general test suite
assessment model. At present, we rely on a small sample of
programs, and the experiment had other limitations as well.
Hence, we are not drawing too much general conclusions, but
the trends we observed are promising.

Unfortunately, merely knowing that code coverage is some-
times a good indicator in itself for test suite quality is not
enough. Our results do not explain yet in what situations
is mutation analysis superfluous, and what does reducibility
actually add to the big picture. These topics are open for
future research, because we believe that more complex anal-
yses should be avoided when not necessary, but should be
used whenever indicated. Approaches similar to the heuristic
prediction of mutation score by Jalbert and Bradbury [31]
might help constructing models to decide on these questions.
We plan to continue experimentation with more subjects, more
mutation operators and also using a dedicated mutation tool.

REFERENCES

[1] L. Inozemtseva and R. Holmes, “Coverage is not strongly correlated
with test suite effectiveness,” in Proceedings of the 36th International
Conference on Software Engineering (ICSE 2014). ACM, 2014, pp.
435–445.

[2] Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” Software Engineering, IEEE Transactions on, vol. 37,
no. 5, pp. 649–678, Sept 2011.

[3] P. Ammann, “Transforming mutation testing from the technology of the
future into the technology of the present,” 2015, Mutation 2015 Keynote.

[4] M. P. Usaola and P. R. Mateo, “Mutation testing cost reduction
techniques: A survey,” IEEE Softw., vol. 27, no. 3, pp. 80–86, May
2010. [Online]. Available: http://dx.doi.org/10.1109/MS.2010.79

[5] R. V. Binder, “Agile High Assurance: Testing re-imagined,” in Hungar-
ian Software Testing Forum, 5th Annual International Conference, Nov.
2015.

[6] “PIT homepage,” http://pitest.org/, last visited: 2016-01-13.
[7] D. Tengeri, Á. Beszédes, T. Gergely, L. Vidács, D. Havas, and T. Gy-

imóthy, “Beyond code coverage - an approach for test suite assessment
and improvement,” in 8th IEEE ICST Workshops (ICSTW’15); 10th
Testing: Academic and Industrial Conference - Practice and Research
Techniques (TAIC PART’15), Apr. 2015, pp. 1–7.

[8] F. Horváth, B. Vancsics, L. Vidács, Á. Beszédes, D. Tengeri, T. Gergely,
and T. Gyimóthy, “Test suite evaluation using code coverage based
metrics,” in Proceedings of the 14th Symposium on Programming
Languages and Software Tools (SPLST’15), Oct. 2015, pp. 46–60.

[9] L. Vidács, F. Horváth, D. Tengeri, and Á. Beszédes, “Assessing the
test suite of a large scale system based on code coverage and derived
metrics,” in 1st International Workshop on Validating Software Tests
(VST’16) – accepted paper, Mar. 2016, pp. 1–4.

[10] “Standard glossary of terms used in software testing,” International
Software Testing Qualifications Board, 2014.

[11] W. Wong and A. P. Mathur, “Reducing the cost of mutation testing: An
empirical study,” Journal of Systems and Software, vol. 31, no. 3, pp.
185 – 196, 1995.

[12] G. Rothermel, R. J. Untch, and C. Chu, “Prioritizing test cases for
regression testing,” IEEE Trans. Softw. Eng., vol. 27, no. 10, pp. 929–
948, Oct. 2001.

[13] “Clover java and groovy code coverage tool homepage,” https://www.
atlassian.com/software/clover/overview, last visited: 2015-11-03.

[14] S. Kim, J. Clark, and J. McDermid, “Assessing test set adequacy for
object oriented programs using class mutation,” in 28 JAIIO: Symposium
on Software Technology, 1999.

[15] M. J. Rutherford, A. Carzaniga, and A. L. Wolf, “Evaluating test
suites and adequacy criteria using simulation-based models of distributed
systems,” IEEE Transactions on Software Engineering, vol. 34, no. 4,
pp. 452–470, 2008.

[16] W. E. Wong, A. P. Mathur, and J. C. Maldonado, “Mutation versus all-
uses: An empirical evaluation of cost, strength and effectiveness,” in
Software Quality and Productivity. Springer, 1995, pp. 258–265.

[17] D. Athanasiou, A. Nugroho, J. Visser, and A. Zaidman, “Test code
quality and its relation to issue handling performance,” Software En-
gineering, IEEE Transactions on, vol. 40, no. 11, pp. 1100–1125, Nov
2014.

[18] B. Marick, J. Bach, and C. Cem Kaner, “A manager’s guide to evaluating
test suites,” in 13th International Software Quality Conference (Quality
Week), Jun. 2000, pp. 1–16.

[19] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an appropriate
tool for testing experiments?” in Proceedings of the 27th international
conference on Software engineering. ACM, 2005, pp. 402–411.

[20] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser,
“Are mutants a valid substitute for real faults in software testing?” in
Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering. ACM, 2014, pp. 654–665.

[21] Y. Jia and M. Harman, “Higher order mutation testing,” Inf. Softw.
Technol., vol. 51, no. 10, pp. 1379–1393, Oct. 2009.

[22] E. Omar, S. Ghosh, and D. Whitley, “Comparing search techniques for
finding subtle higher order mutants,” in Proceedings of the 2014 Annual
Conference on Genetic and Evolutionary Computation, ser. GECCO ’14.
New York, NY, USA: ACM, 2014, pp. 1271–1278.

[23] M. Delamaro, J. Offutt, and P. Ammann, “Designing deletion mutation
operators,” in Software Testing, Verification and Validation (ICST), 2014
IEEE Seventh International Conference on, March 2014, pp. 11–20.

[24] A. Siami Namin, J. H. Andrews, and D. J. Murdoch, “Sufficient mu-
tation operators for measuring test effectiveness,” in 30th International
Conference on Software Engineering. ACM, 2008, pp. 351–360.

[25] J. Nanavati, F. Wu, M. Harman, Y. Jia, and J. Krinke, “Mutation
testing of memory-related operators,” in Software Testing, Verification
and Validation Workshops (ICSTW), 2015 IEEE Eighth International
Conference on, April 2015, pp. 1–10.

[26] M. P. Usaola, P. R. Mateo, and B. P. Lamancha, “Reduction of test suites
using mutation,” in Fundamental Approaches to Software Engineering.
Springer, 2012, pp. 425–438.

[27] J. Offutt, J. Pan, and J. M. Voas, “Procedures for reducing the size of
coverage-based test sets,” in Proceedings of International Conference
on Testing Computer Software, 1995, pp. 111–123.

[28] L. Madeyski, W. Orzeszyna, R. Torkar, and M. Józala, “Overcoming the
equivalent mutant problem: A systematic literature review and a com-
parative experiment of second order mutation,” Software Engineering,
IEEE Transactions on, vol. 40, no. 1, pp. 23–42, 2014.

[29] M. Papadakis, Y. Jia, M. Harman, and Y. LeTraon, “Trivial compiler
equivalence: A large scale empirical study of a simple, fast and effective
equivalent mutant detection technique,” in 37th International Conference
on Software Engineering (ICSE), 2015.

[30] M. Kintis and N. Malevris, “Using data flow patterns for equivalent
mutant detection,” in Software Testing, Verification and Validation Work-
shops (ICSTW), 2014 IEEE Seventh International Conference on, 2014,
pp. 196–205.

[31] K. Jalbert and J. S. Bradbury, “Predicting mutation score using source
code and test suite metrics,” in Proceedings of the First International
Workshop on Realizing AI Synergies in Software Engineering. IEEE

Press, 2012, pp. 42–46.

