
Code Coverage-Based Regression Test Selection and Prioritization in WebKit

Árpád Beszédes, Tamás Gergely, Lajos Schrettner, Judit Jász, László Langó, Tibor Gyimóthy
University of Szeged, Department of Software Engineering & HAS Research Group on AI, Szeged, Hungary

{beszedes,gertom,schrettner,jasy,lango,gyimothy}@inf.u-szeged.hu

Abstract—Automated regression testing is often crucial in
order to maintain the quality of a continuously evolving
software system. However, in many cases regression test suites
tend to grow too large to be suitable for full re-execution at
each change of the software. In this case selective retesting can
be applied to reduce the testing cost while maintaining similar

defect detection capability. One of the basic test selection
methods is the one based on code coverage information, where
only those tests are included that cover some parts of the
changes. We experimentally applied this method to the open
source web browser engine project WebKit to find out the
technical difficulties and the expected benefits if this method
is to be introduced into the actual build process. Although
the principle is simple, we had to solve a number of technical
issues, so we report how this method was adapted to be used
in the official build environment. Second, we present results
about the selection capabilities for a selected set of revisions
of WebKit, which are promising. We also applied different test
case prioritization strategies to further reduce the number of
tests to execute. We explain these strategies and compare their
usefulness in terms of defect detection and test suite reduction.

Keywords-Regression testing, test case selection, code cover-
age, test prioritization, test quality, WebKit.

I. INTRODUCTION

Regression testing is a widely used approach to maintain
the quality of continuously evolving software systems [1].
Stakeholders often rely heavily on regression tests to en-
sure quality if their system changes frequently, which is
often the case in traditional software engineering, but even
more emphasized in different agile methods. Although the
possible benefits are clear, a practical implementation and
sustained reliability of regression testing are not always
easy to achieve. In general quality management practice
there are approaches for maintaining software quality at the
process level and product level with numerous supporting
methodologies and tools. However, as opposed to processes
and products, the quality, hence, reliability of regression

tests is rarely checked and controlled in a systematic way.
Consequently, building the quality of the system solely upon
a regression test suite may be a major risk.
The main indicator of regression test suite quality is

its defect detection capability, but this is usually replaced
by other characteristics, such as completeness (in terms of
functional/code coverage), redundancy (whether the same
defects are detected by several tests), or maintenance status

(whether the test suite evolves together with the system).
Unfortunately, even a properly developed and optimized
regression test suite can grow extremely large if the system
under test is also large and complex. The consequence is that
full regression testing can become prohibitively expensive.
In this work, we report on our experiences in the appli-

cation of one of the fundamental techniques in regression
testing, namely regression test selection and prioritization

based on code coverage [2]. We worked with the open
source system WebKit, a popular web browser engine
integrated into several leading browsers by Apple, KDE,
Google, Nokia, and others [3]. It is a large, complex, and
lively evolving system developed and maintained by a huge
international community, making it a perfect subject.
Despite the available resources offered by the community,

the WebKit regression test suite cannot always be run after
each modification made to the source code, because the
system and the test suite are too large and changes occur too
frequently. As a first step, we wanted to investigate whether
it is possible to implement selective regression test execution
based on code changes as an alternative to full testing. If the
selection is significant and reliable (i. e., the same defects are
captured), then developers will be able to check much more
revisions against regressions than previously and capture
defects earlier in the life cycle.
Change-based selective testing is one of the fundamental

hypotheses in regression testing [4], yet few reports can
be found that deal with its defect detection capability in
real environments. In this experiment, we applied procedure
level code coverage of the changes (on C++ functions and
methods), and used data taken from the WebKit version
control system, test execution and defect databases, covering
a fixed interval of the system’s evolution. We report on
the current state of the research, and make the following
contributions:

• We implemented an experimental environment to assess
the regression test selection, and performed experiments
for several hundred revisions of the WebKit system
applying static code analysis, code instrumentation, and
additional tools.

• We investigated various properties of the tests in the
analyzed period and looked at how successful the se-
lection is, i. e., 1) whether the reduced test set identifies
the same failures and 2) how much reduction can be
achieved on average.

978-1-4673-2312-3/12/$31.00 c© 2012 IEEE

• Since we found the initial results very promising, we
extended the WebKit build system with an optimized
test selection component, which is currently in live op-
eration. It uses a procedure level coverage database with
manual update, change based selection and integrated
execution and reporting, and is implemented both as
part of the automatic build process and as an early
warning system in the issue management system.

• We present different test case prioritization strategies
that can reduce the size of large selection sets, and
report results about their performance compared to the
unprioritized test set. We found that the strategy which
selects the least covering test cases beside the changes
was the best in this respect, by which we can limit
the size of the selection to below 10% and still achieve
about half of the inclusiveness of failures observed with
respect to the non-prioritizing case.

In the next section we overview related work, then in
Section III we present the basic research goals and the
measurement details. Section IV presents the results of
the initial measurements, while in Section V the details
and evaluation of the implementation in the live system
are presented. Section VI discusses our methods for test
prioritization with related findings. We present threats to
validity in Section VII and conclude with possible subjects
of future research.

II. RELATED WORK ON REGRESSION TESTING

An overview of regression test selection techniques has
been presented by Rothermel and Harrold, who introduced
a framework to evaluate the different techniques [4]. They
defined the evaluation criterion called inclusiveness, which
we rely on as well as one of the primary evaluation aspects
of our methods. It is the ratio of the failing test cases
included in the selection relative to the total number of
failing test cases when executing the complete test suite.
The other main evaluation criterion we will use is selection
size, which is expressed as the percentage of the number of
selected test cases over the total number without selection.
Another survey on regression test selection and prioritization
has been presented by Yoo and Harman [2].
Some algorithms for test case selection are based on

different program representations to determine the effects of
a program change [5], [6]. Our method also analyzes source
code in order to determine the modified procedures, but we
do not build any detailed program representations.
Inclusiveness is the focus of many researchers. Wong et

al. suggested that regression test reduction techniques can
lower the number of executed test cases without significantly
reducing the fault-detection capabilities of test suites [7].
However, Rothermel et al. examined the costs and benefits
of test-suite reduction techniques and their results show
that the fault-detection capabilities of test suites can be
severely compromised by test-suite reduction [8]. All subject

programs of the above case studies were small programs
with less than 1000 lines of code, and prepared by fault
seeding. In our case a specific software, the Qt port of
WebKit and its regression test suite were studied. The system
source contains 1.9 million lines of investigated C++ code
and the errors were not seeded but they were real failures
of the software.
Another important attribute of test case selection methods

is the coverage that is utilized in them. Wong et al. [7]
used all-uses coverage, while Rothermel et al. [8] used
all-edges coverage. The studies showed that the different
granularities used in test case selection produced different
reductions in the test suite size. In another study, Rotermel
and Harrold [9] found that coverage-based test suites may
provide test selection results superior to those provided by
test suites that are not coverage-based. We used procedure
level coverage in our study, but did not try to minimize the
test suite in terms of eliminating “redundant” test cases.
Other studies elaborate on different issues of regres-

sion test case selection. Kim et al. studied the relation-
ship between regression test application frequency and the
behaviour of different techniques [10]. Their experiments
exposed that as the number of changes between the pro-
gram versions increased, the number of test cases selected
also grew rapidly, and the effectiveness of test selection
increased. We apply test case selection to all versions where
important changes are present, and examine how often a full
retest is required to achieve dependable results.
Test case prioritization techniques have also been stud-

ied thoroughly. Wong et al. proposed a hybrid technique
combining modification, minimization and prioritization-
based selection to identify a representative subset of all test
cases that may result in different output behavior on the
new software version [11]. Case studies on regression test
prioritization have also been done. For example, Rothermel
et al. [12] conclude that prioritization techniques can be
effectively used, but the usefulness of a particular technique
on a specific test suite depends on many attributes of the
technique and the test suite. Our prioritization strategies
use greedy algorithms, just as most other authors’ as well,
however recently there has been some research presented to
use search algorithms instead [13].

III. BACKGROUND AND OVERVIEW OF THE RESEARCH

WebKit is a large, complex, and lively evolving software
system which is maintained by hundreds of developers
around the world, including several members of our depart-
ment. We have recently started a long term project with the
aim to enhance the internal quality of the system including
the reliability and efficiency of the regression testing system.
As a first step, we started with the assessment of the code
coverage and other attributes of the regression test suite.

A. The WebKit system

WebKit consists of about 2.2 million lines of code, mostly
C++, JavaScript and Python among others. In this research
we concentrated on C++ components only, which attributes
to about 86% (1.9 million lines) of the code. The system also
has a relatively big collection of regression tests consisting
of nearly 24 thousand test cases.
WebKit has a large, geographically distributed develop-

ment community, and its development environment is a typ-
ical one for such a distributed team, which includes serious
configuration management and strict integration rules. For
instance, before any patch can land in any of the components
in the version control repository, a set of regression tests
must pass. As of April 11, 2012 there are 113914 revisions,
and about 90 revisions are created on average each day.
Due to the big size of the regression test suite and very
frequent revisions, this requirement of always executing
all the regression tests cannot be fulfilled in many cases.
The automated build system [14] continuously performs
regression tests, but the computation capacity of the server
is not enough for testing each and every revision. This can
imply that if a failure is detected it will be often hard to
trace the actual revision responsible for the defect, hence
making the correction more difficult.
Furthermore, the reliability and completeness of the re-

gression test suite has never been systematically checked,
so currently there is no real indication about the defect
detection capability of the regression test suite. There may be
defects that are either captured by several test cases, or may
remain undetected. Motivated by these issues, we wanted to
investigate the possibility to speed up the execution of the
tests by test selection and prioritization, while keeping the
same level of reliability and defect detection capability.

B. Research goals

Since the beginning of our project in autumn 2011, there
were three main phases of our research. In the first round
(referred to as initial experiments in the following) we
analyzed a decent number of actual revisions of WebKit
to collect data and get a deeper insight into the source
code, the changes made to it, the regression test suite, the
test executions, and code coverage. Section IV presents the
details of initial experiments. Then, in the second phase,
based on our findings we implemented an optimized and
a slightly different version of test selection in the official
WebKit build system, and initiated its continuous opera-
tion in parallel to the build processes. We monitored the
performance of the system for a certain period of time
and performed additional measurements and analyses on the
collected data in order to verify the initial findings (we will
call this the live system). The results of this analysis are
presented in Section V. Our most recent research activity is
to further enhance the efficiency of the implementation by
applying test prioritization in addition to simple selection.

In Section VI, we propose different heuristic approaches to
test prioritization with which we can reduce the size of the
coverage-based selection, and discuss their usefulness on the
set of data collected from the live system.
We base our approach for test optimization on the long

standing assumption that it is possible to select the more
relevant tests from a complete test suite based on the set
of changes applied to the system. We employ the simplest
version of this principle, namely selection based on code

change coverage of the tests, in particular computed on the
level of individual procedures (functions and methods in
C++). The following is an overview of the approach:

1) We determine the initial coverage information (re-
ferred to as coverage database) for each procedure
in the system and test case in the regression test suite.
(The coverage database is periodically recomputed to
reflect up-to-date coverage information.)

2) We identify the set of changed procedures for a
specific revision.

3) We look up in the coverage database the set of test
cases which execute any of the changed procedures.

4) Optionally, if the selection is too large we apply test
prioritization to reduce the overall testing time.

5) We execute the selected tests only in the regression
testing of the revision in question.

Selective regression testing based on these principles has
been studied extensively, constantly relying on the assump-
tion that change based selection provides reliable defect
detection. Usually the reduction rate is regarded as the most
important factor, however, there is little research on actually
how efficient this strategy is in terms of inclusiveness (how
many failing tests are included in the selection) and precision
(how many unnecessary tests are included).
We articulate the following Research Questions:

RQ1 Is it true that only a small portion of the test cases
is responsible for revealing defects after a typical
change is made to the system?

RQ2 Can a coverage-based test selection method select
all or most of the failing test cases and, with the
overheads of analyzing the changes, measuring the
coverage, executing the selection method, etc., can
it still reduce the time of the overall test execution
process and hence provide opportunity to more
frequent regression test execution?

RQ3 When the coverage-based selection provides an
overly large set of test cases, test case prioritization
can be used to reduce testing time. From the
proposed heuristic prioritization strategies, which
strategy can select the most defect revealing tests,
and hence further reduce the test set without affect-
ing inclusiveness significantly? Is change-based se-
lection better than other test prioritization methods
that do not depend on the changes?

C. Measurement scope and experimental tool setup

In this work, we limit our analyses to a specific configu-
ration of WebKit, the Qt port, and to its C++ components.
The build process and the test cycles are relatively re-

source consuming in WebKit even for a single revision,
so we had to develop a sophisticated toolchain which we
used for our research. For the initial experiments, the mea-
surement process included automated and manual phases as
well, and basically consisted of two types of tasks: build and
test execution. To collect the runtime information about the
execution we used code instrumentation, which resulted in a
special type of build and test execution. To be able to assess
the overhead of the analysis, we experimented with both
normal and instrumented types of builds and test executions.
In the implemented live version we slightly modified some

of the tools to be suitable for continuous and real time
operation, and to better conform to the required coding
standards of the community. We also had to use a periodic
coverage database update strategy as elaborated below.
In the following, we will overview the most important

tools used in our toolchain.

• Procedure level coverage measurement. We used a
tool that utilizes the “instrument-functions” feature of
the GCC compiler that allowed us to instrument the
beginning of each procedure with code that outputs a
procedure identifier.

• Identification of changes made to the source code. To
collect the set of changed procedures, initially we used
the Columbus tool [15], which contains a C/C++ front
end for producing a source code representation with
sufficient details for us to compute structural differ-
ences between two revisions. As this kind of source
code analysis was required for some other research as
well [16], it was a straightforward choice. On the other
hand, a build with this static analysis was 5 times longer
than the native one, so we decided to switch to a less
precise but more efficient approach based on fast tex-
tual difference computation. Specifically, an extended
version of the PrepareChangeLog WebKit utility
is used currently.

• Coverage database and database update. Initially, we
computed coverage information for all revisions and for
the whole program, and stored all the results in the file
system. However, this approach proved to be unusable
for the live system due to the huge amount of data
to be processed very frequently. Furthermore, we had
to use a periodically updated coverage database of se-
lected revisions instead of computing an up-to-date full
coverage information for each revision. This implies
that for some intermediate revisions a slightly outdated
database is used, so we performed some experiments
to determine the difference between the revisions and
what an acceptable database update interval would be.

IV. INITIAL EXPERIMENTS

We experimented with revisions in the range 96803–
97370 which represents the development period from Oc-
tober 6, 2011 to October 13, 2011. Since we limited our
scope of analysis to the C++ subsystem of WebKit, we had
to drop 441 revisions where no relevant changes were found.
There were 61347 C++ procedures in the system that we
identified for use in our experiments, and 23574 test cases
in the regression test suite during this period.
In this phase we selected those test cases for execution

that fit into any of the following sets: 1) each new or
changed test case, 2) each test case whose coverage contains
a changed procedure, and 3) each test case that failed during
the previous test execution. The coverage information was
computed individually for each investigated revision.

A. Regression test suite statistics

First we determined what portion of the procedures is
covered by test cases; the figure turned out to be just below
74%, which mostly stays at this level. The analysis of failing
test cases showed that on average only 0.07% of the test
cases failed per revision, the maximum is 0.31%.
To find out whether the failing test cases come from a

well defined set or are they usually different, we investigated
the failing tests for each revision, and calculated how much
additional failing tests can be found in subsequent revisions.
In Figure 1, we can see that the number of failing tests had
several peaks but usually it stayed around the average value.
There were a few revisions where an increased number of
failing test cases did not imply new additional tests (around
rev. 96960), but usually it is the opposite: failing tests are
different from revision to revision.

Figure 1. Failed test case variance. The lower plot shows the number of
failed test cases in the individual revisions, while the upper one shows the
number of test cases that failed at least once until the actual revision.

We also analyzed the number and composition of the
changed procedures in the investigated period. In Figure 2,
we can observe how many procedures were changed over
the range of the revisions. The lower plot shows this data
individually (the number ranges between 0 and 48 while the

average is 5.13 procedures). The two other plots correspond
to the cumulative number of changed procedures and the
sum of the changes (disregarding repetitions). Because the
two latter graphs run in parallel and the difference is small,
we can conclude that the changes are usually disjunct and
there is little repetition among the different revisions.

Figure 2. Number of changed procedures. The lower plot shows the
number of changed procedures in the individual revisions, the middle one
shows the number of all procedures changed at least once until the actual
revision, while the upper plot shows the number of procedure changes until
the actual revision.

Finally, we wanted to find out whether the changed
procedures affect only a few or a high number of test cases.
It turned out that most changes affect a smaller number of
test cases, 1887 on average. The distribution of this data is
also very skewed at the lower end, so there are relatively
few changes that cover many test cases.
This data and Figures 1–2 show that there is a high

diversity (little repetition) in the changes and the failures
over a range of subsequent revisions. Furthermore, having
in mind that the overall coverage is relatively high, we
concluded that it was overly redundant to execute the whole
test suite upon every change, and change based test selection
could be used instead.

B. Test case selection efficiency

To find out whether we can achieve similar defect de-
tection ratio using a significantly reduced set of test cases
executed after a change, we measured the inclusiveness and
the selection size of test selection as defined in Section II.
Note that we do not deal with the precision rate [4] in
this article, since it is not the property of the test selection
method but of the development and is rather arbitrary, hence
it is of lesser value in the present experiment.
In this phase of the research we could use a rather

accurate way of determining the coverage for each revision
(as opposed to the implementation in the live system in
Section V), and we treated reoccurring failures as always
selected. This way we could achieve quite a high rate of
inclusiveness overall; it was 100% in 58.7% of the cases, and
over 90% in 88.9% of the cases (the average inclusiveness

was 95.08%). It is interesting to see why the inclusiveness
was not perfect in some cases, although theoretically it
would have been expected. This can be attributed to a
combination of factors that limit the approach (exclusion
of non-C++ code, flaky tests [3], imperfect determination
of the changes and their correlation to the C++ procedures,
etc). We addressed some of these issues in the live system,
while there are still some problems to solve in the future to
make the approach more reliable.
At the same time the selection size was quite significant:

in more than 87% of the cases it was below 1%, and for
half of the cases it was below 0.06% (the average selection
size was 20.57%).
As mentioned earlier, we use a periodic coverage database

update strategy in the live system. But before we imple-
mented this feature, we analyzed a set of existing revisions
for the complete coverage, and compared these coverage
data to each other to find out how different they were from
one revision to another. Although there were some variances
in the consecutive revisions, the overall difference with re-
spect to the base revision was steadily growing. On average,
one week of development makes the way procedures are
covered by test cases change by approximately 15%. (While
the total coverage percentage did not change notably.)

V. THE LIVE SYSTEM – MEASUREMENTS AND RESULTS

The results presented sofar were obtained using an unop-
timized toolchain with custom solutions and on a limited set
of revisions. So we implemented the approach in a slightly
modified way in the actual WebKit build system, initiated
its continuous application tied to the actual changes from
the version control system, and started the observation of
the actual results in this “live” environment.
Beside the implementation in the automatic build system,

the method is also implemented in the so called Early
Warning System of WebKit, which analyzes the submitted
patches to the issue tracking system before submission to
the version control system. In this article we mainly deal
with experiences about the build system implementation.

A. Technical details of the implementation

Our department is an active contributor to the WebKit
community both in development and quality assurance re-
lated tasks. As part of the latter, the department hosts and
supervises one of the two official Build Master servers for
continual integration tasks [14]. These servers are running
“buildbots” that continuously check the version control
repository and when a change appears they initiate its build
and regression testing for different build-configurations of
WebKit. The build configurations include a variety of ports
and different platforms (for example Linux, ARM, Windows,
Mac OS X). In this research we were interested in the
Qt port and used the x86-based Linux platform for the
measurements. Since the frequency of new revisions is fairly

high due to the large development community and intensive
development (about one revision per 16 minutes happens on
average), the continuous build and test could not necessarily
be completed for each and every revision. On average, every
second revision is skipped, while in the worst case this
number goes up to 20.
Our regression test selection method is implemented as a

new build configuration referred to as Selective Test. In this
new configuration, the steps up to the end of compilation
work as usual, but after that a test selection step was inserted,
and the test execution runs only the selected tests. The
coverage database used for test selection is a PostgreSQL re-
lational database, which was initially prepared for the latest
revision we had coverage information for at the time when
we started the continuous measurement (rev. 97370). Since
then, the database has been updated on a mostly irregular ba-
sis, but we are currently implementing an automatic update
method. The list of changed procedures is determined using
a modified version of the PrepareChangeLog script
(the original helps developers to find the locally modified
procedures when they make their revision comments). The
user interface of the build system, and hence of Selective
Test as well, is a web site that shows the latest results of
the build and tests [14] in various formats.

B. Current status and general statistics

As of April 11, 2012, the Selective Test configuration
performed the analysis of 9690 revisions since its launch
date on November 16, 2011. This corresponds to about 72%
of the commits between the revisions 100422–113914. It is
interesting to note that the full test configuration for the
same platform analyzed only 6005 revisions in the same
period, which means that about 61% more revisions were
checked by the Selective Test builder. Table I shows some
performance figures for the original and the Selective Test
processes. This shows that testing with selection saves a
significant amount of time even taking into account the
necessary overheads.

Table I
FULL AND SELECTIVE TEST PERFORMANCE. PERCENTAGES IN

PARENTHESES ARE RELATIVE TO THE FULL TEST TIMES.

Full Test Selective Test
average compilation time 196 secs 111 secs
average selection time - 33 secs
average test suite execution time 1059 secs 126 secs (11.9%)
average total time 1339 secs 287 secs (21.4%)

The overall coverage statistics for the live system are
generally similar to what we found in our initial experiments.
The coverage for all procedures in the system was about
68% and the number of failures per revision varied between
0 and 254, the average being 2.1. On average, 8.6 procedures
changed per revision, and an average procedure was covered
by less than 10% of the test cases. Since we limit our

tools to C++ code only, it is important to see the overall
amount of changes that affect C++ code (86% of the code
base is C++). 18% of the revisions contained only C++
modifications, 56% was mixed and the rest did not contain
C++ code modifications.

C. Manual verification of test selection

We investigated the effectiveness of test selection in two
phases: first by manually investigating a subset of the builds
and then by computing overall statistics.
For the manual investigation we needed a set of revisions

shared by both the full and the selective build bots. As
mentioned, they ran in parallel for the investigated period,
both skipping some of the revisions, but because their build
queues were not synchronized, only a certain number of
revisions were built by both of them, which resulted in 1665
revisions for comparison. The next filtering we made was
whether there were any new failures in them, leading to 119
revisions (with a total of 876 failures). Next, we classified
the revisions also according to whether they contained C++,
non-C++ or mixed changes. Out of the 119, there were only
C++ changes in 5 revisions, while 90 revisions were mixed,
and the rest contained no C++ changes.
From the C++-only revisions there was a build problem

with one of them, but in the remaining 4 revisions the
selective test captured all failures (30 altogether) of the
full test (inclusiveness was 100%). Since this number of
revisions is quite low to be representative, we calculated this
ratio for the mixed revisions too. One revision also crashed
from the 90, and from the remaining there were 76 revisions
where the selective test did not find all failures. However,
from the total 302 failures from these 89 revisions, an overall
of 60% (181) was correctly identified. Most of the missed
failures by the selective test could probably be attributed to
changes in some non-C++ code and the slightly outdated
coverage database. Regarding the selection size, the overall
distribution of the selection sets, though it was a bit larger,
resembled what we observed previously. In 67% of the cases
the size was below 1% of the total number of the test cases,
and the average was 19.3%.

D. Overall test selection statistics

We also verified the selection capabilities for the remain-
ing ca. 8000 revisions that were not subjects for manual
investigation. The selection was performed “offline” for
these revisions in a batch process specifically created for
this purpose. For this, we used the same coverage database,
list of changes and set of tools as the Selective Test bot.
To be able to compare the selection capabilities of the

live system to our initial experiments, first we selected the
closest settings to the initial results, which is the following:
we investigated only those revisions that contained changes
to C++ code only, and looked only at new failures in the
revisions. There were 855 revisions that satisfy these criteria.

The average inclusiveness for these revisions is similarly
quite high, 96.63%, while the selection size is larger than we
observed previously: the average is 9473 test cases, which
is about 40% of the total number (in contrast to 20.57%),
and only in about 28% of the cases is the size below 1%
(compared to more than 87% in the initial experiments). This
difference can be attributed to two factors: tools changed in
the live system leading to functional differences, and there
was a bigger change in the system code and the related test
cases during the investigated live period.
There is, however, an important issue with this kind

of interpretation of the average inclusiveness. Namely, we
included those revisions too that did not have any new
failures in them. Naturally, the selection inclusiveness is
perfect in these cases, so we calculated the data also only
for those revisions where these non-failing revisions were
filtered out (and keeping only C++). There were 70 of this
kind of revisions, 37 revisions with perfect inclusiveness and
27 with zero, while there were relatively few values between
these two extremes. The relationship between individual in-
clusiveness and selection size values can be seen in Figure 3.

Figure 3. Inclusiveness and selection size compared (excluding non-failing
revisions). Note, that in reality there are no cases with less than 100%
inclusiveness for 100% selection size. Where this may be observed in the
Figure it is a visualization weakness.

The interesting area is where the size is small with
large inclusiveness, while there are some cases when the
inclusiveness was achieved by a big selection set. These
latter cases are good candidates for test prioritization which
is the topic of our next section. The overall inclusiveness
(by counting the failures individually over all revisions) was
75.38%, which corresponds to 294 failures identified of a
total of 390 in all revisions. The selection in this case is a
bit bigger, 11743 test cases on average (49%).
We concluded that the inclusiveness data are comparable

to the initial experiments, and that the differences are due
to a slightly different way of coverage computation and
processing. There are different reasons for the imperfect in-
clusiveness, most notably, uncertainties with the GCC-based
instrumentation, the slightly outdated coverage database and
the imperfections of the change determination method.

VI. SELECTION REDUCTION BY PRIORITIZATION

Using a pure change-based selection, sometimes there
will be too many (if not all) test cases selected. If the
selection size is important, for instance, in applications for
embedded platforms where computation capacity is limited,
we can enhance the method by applying prioritization on
the selected test cases. We elaborated several strategies to
prioritize the test cases based on different attributes, and
observed their effects on the defect detection capability. We
plan to implement these features in the near future into the
live regression test selection system in WebKit.

A. Overview

The basic approach to the prioritization is to calculate
various attributes about the test cases and determine an
“award” value based on them, which will establish the order
of execution of the test cases. Currently, we rely on code
coverage only, but in the future we plan to include other
attributes as well like defect frequency.
Once we have the ordering, we can set a fixed threshold to

select only the first N tests for execution. We experimented
with different N values to get a picture of what threshold
would be small enough while maintaining reasonable in-
clusiveness ratios. We compare the different strategies to
find out which provides the best inclusiveness with this
same number of tests. As a baseline, we also used random
prioritization to find out whether any of the more advanced
prioritization strategies shows significant difference.
Initially, we worked on the prioritization of only the

change-based selected test cases. But another interesting
research question that we asked ourselves was whether
change-based selection is any better in the first place than
some other general approach which ignores the change but
relies only on some global property of the test cases. In
this case the same prioritization will apply regardless of
the change, so this experiment could support or reject the
relevance of the very principle of change-based selection.

B. Notations

We introduce some basic notations to make the description
of the methods more concise.1

R Set of revisions investigated
T Set of all test cases
P Set of all procedures

ch(r) ⊆ P Changed proc. at revision r ∈ R

chcov (r) ⊆ T Covered test cases by the changed
procedures at revision r ∈ R

tcov(r, t) ⊆ P Covering procedures of test case
t ∈ T at revision r ∈ R

1For simplicity of description, we assume that T and P are the same for
all revisions in R. In practice, one would use the actual sets at the given
revision. The computation of coverage information of changes at a revision
r, hence chcov (r) and tcov(r, t) are subject to any approximation, such
as our periodically updated database.

C. Prioritization strategies

The first three strategies are based on the changes while
the rest are their counterparts that ignore the changes (note
that Specific is meaningless for the ignoring case).

General: cover most procedures besides the changed
ones. Here, the assumption is that test cases with higher
overall coverage are better, which is one of the most often
discussed prioritization strategies. More precisely, at a given
revision r, prioritize ∀t ∈ chcov (r) test cases according to
the descending order of |tcov(r, t) \ ch(r)|.

Additional General: adds most additional coverage to
the global coverage. Following other authors (e.g., Rother-
mel et al. [12]), this strategy is a refinement of General

in the sense that it favors those test cases that yield greatest
addition to the overall coverage. Formally, at a given revision
r, prioritize ∀t ∈ chcov (r) test cases according to the
descending order of |tcov(r, t) \ ch(r) \ tcovcumulative|,
where tcovcumulative is a cumulative set of covered pro-
cedures by incrementally adding the coverage for already
processed test cases.

Specific: cover least procedures besides the changed
ones. This is the opposite of General in that it selects
those test cases first which cover little outside of the
changes, in other words, they are supposedly specific to
the changes. More precisely, at a given revision r, prioritize
∀t ∈ chcov (r) test cases according to the ascending order
of |tcov(r, t) \ ch(r)|.

General Ignore: cover most procedures. This strategy is
the traditional most covering strategy that does not take into
account the changes. For all revisions r ∈ R, prioritize ∀t ∈
T test cases according to the descending order of |tcov (r, t)|.

Additional General Ignore: adds most additional cover-
age. Similarly, this takes into account the greatest additions
to the coverage but ignoring the changes. For all revisions
r ∈ R, prioritize ∀t ∈ T test cases according to the
descending order of |tcov(r, t) \ tcovcumulative|.
In addition, we will also use Random prioritization on

the change-covering test cases, i. e., at a given revision r,
we prioritize ∀t ∈ chcov (r) test cases randomly.

D. Results

We applied the different strategies for test prioritization
to the final data set from the last section, that is, to those 70
revisions that had C++ changes only and at least one failure.
Once the priority order of the change-based test cases is
produced according to a strategy, the first N test cases are
kept (or all of them if there are less than N test cases in
the selection). To find out the effectiveness of prioritization
algorithms we measured the inclusiveness values at different
N values, and compared these values to the inclusiveness of
the unprioritized list (which was about 75%). We computed
these values for the first 50, 100, 150, and so on, until 1000,
and for 2000, 3000, until 25000 (this last value practically
means no selection by prioritization).

We found that there are interesting differences between
the performances of the strategies. The two most promising
strategies were General and Specific, so we compared them
for each mentioned N (see Figure 4). The first thing we can
observe on this graph is that these two approaches behave
differently, and apart from the small exception around 2000-
3000 (10% selection size), the Specific strategy always
outperforms General.

Figure 4. Inclusiveness for the General and Specific strategies at different
selection size thresholds.

For selection size 250 (which is about 1% of the total
number of test cases) Specific was more than three times
better, and in the region around 50% selection size it is
better by about 30%. Using the Specific strategy, we can
obtain over 30% inclusiveness by limiting the selection to
only about 3% of the test cases (the inclusiveness for the
unprioritized case is about 75%).
The result was surprising because, to the best of our

knowledge, there is no previous research that suggested to
use a strategy similar to Specific; most researchers suggested
high coverage as the most important prioritization strategy
(General in our case). At this stage of the research we did
not investigate the actual reasons for this finding, we just
speculate that it may be due to the hypothesis that those
tests are better at finding a specific fault in a change which
concentrate around the change and, hence, are less general.

Table II
SELECTION EFFICIENCY FOR TOP-N PRIORITIZATION.

Strategy Incl. Sel. size Incl. Sel. size

a) General 5.13% max 250 40.00% max 5000
b) Add. General 7.69% max 250 42.05% max 5000
c) Specific 17.95% max 250 46.67% max 5000

d) General Ignore 4.87% 250 21.54% 5000
e) Add. Gen. Ign. 0.00% 250 30.51% 5000

Random prior. 7.69% max 250 40.17% max 5000

No prioritization 75.38% avg 11743 75.38% avg 11743

In Table II, we compare all strategies to the random
and no prioritization cases for selection sizes of 250 (~1%)
and 5000 (~20%) test cases. It can be observed that the
Additional General strategy is better than General, which

corresponds to what other authors found. We implemented
random prioritization to verify the usefulness of the other
prioritization strategies and found that, although the differ-
ence is not so big, random prioritization shows worse per-
formance than most of the other change-based approaches.
The differences between Specific and the other change-

based strategies and random are biggest (Specific being
at least twice as better) at lower selection thresholds, up
to about 10%, which suggests that this strategy could be
applied with success at this level. It remains for future work
whether findings about this strategy can be generalized to
other systems and test environments.
It can be concluded that applying some prioritization is

advised since by limiting the selection size to only 10% we
can still obtain about half of the inclusiveness compared
to the unprioritized list. Furthermore, any change-based
selection is indeed a good strategy for test selection and
prioritization, rather than using some other global attributes
only. Our two strategies that do not take into account the
changes did not produce any convincing results compared
to any change-based selection, including random.

VII. THREATS TO VALIDITY

In this work, we used the ratio of observed failures in the
reduced test suite compared to the failures in the full test
suite as a measure of effectiveness of the method. However,
ideally one would be interested in the defect (fault) detection
rate instead, as many test cases can fail all because of one
single fault. Currently, we had to rely solely on test execution
results as fault information was available only from the bug
tracking system, which we did not analyze.
We had to modify different parts of the WebKit system

to achieve our goals. Although we believe that these mod-
ifications do not influence the original functionality of the
system, it may happen that certain attributes (like timing
of the tests) are reported differently than without applying
these modifications. Specifically, the DumpRenderTree

component [3] had to be modified in order to mark the
beginning and the end of the test cases, since more test
cases are exercised during a single execution of the tested
binaries. Since we are using a third-party instrumentation (a
built-in function of GCC), we must rely on the correctness
of this method. Indeed, we identified certain problems with
it that are related to different compiler versions. We also
modified the timing restrictions of the test suite because,
due to the need of producing and storing the coverage data,
test cases run slower. We raised the timeout value of the test
cases, and it might influence the actual results of the test case
executions where timing considerations are important.
The periodic coverage database update strategy is a clear

limitation of the approach. We had to choose this method,
since it is infeasible in this project to recompute the coverage
after each revision. The effect is that test selection and
prioritization algorithms may work on obsolete data. That is

why we apply a regular database update as discussed earlier.
We plan to implement a more frequent coverage database
update by using a dedicated server for this purpose, which
will not perform the actual selection.
As mentioned, regression tests are executed in a batch, and

unfortunately not all test cases are completely independent
from each other. It can happen that the execution of a test
case can influence the outcome of some other ones, and what
is more, sometimes this behavior is nondeterministic. This
can be due to different specialities of the WebKit system
not detailed here. The community treats these situations in
such a way that if the result of a test case is fail it is re-
executed to verify whether it is consistently failing. If yes,
then the final result is fail, otherwise it is treated as such
an “unreliable” test case in this execution. These tests are
called flakey tests. We try to minimize the effect of flakey
tests in our experiments by treating them as passing tests. It
remains for future work to investigate more deeply the nature
of flakey tests and their effect on the selection method.
For the identification of changed procedures we use

an approximate code analysis. The PrepareChangeLog
WebKit script is used for this purpose, which is based on
a textual diff and an approximate source code parser. It has
known issues in handling some specific code constructs like
C++ template instances. This can result in input errors for
the coverage computation. Although it could be improved
in a number of ways, based on our manual analysis of the
precision of this approach the error margin is quite low, well
below 1% of the changed procedures.
Finally, we must note that external validity may be af-

fected, since in this report we dealt with only one system
and one of its configurations. However, we performed the
analysis of the system for about a half-year period of
development, which we feel is relatively long to be able
to draw valid conclusions for this project. Furthermore,
currently we are dealing with C++ language modules only.
However, these restrictions are relatively mild with respect
to the whole WebKit project, since these cover over about
86% of the whole code base, and we believe that the method
would perform similarly for other configurations as well.

VIII. CONCLUSIONS AND FUTURE WORK

The method for regression test optimization applied in this
research is based on change-based test selection. Although
the basic principle is simple, we reported a fairly complex
adaptation in a real, large open source project. One of our
basic experiences with this project is that it is far from trivial
to achieve what is theoretically to be expected from the
basic method, namely perfect inclusion. There were a lot
of technical problems to solve, which were, we believe, a
significant engineering result. This is supported also by the
warm support for the project by the project community.
In summary, the answers to our research questions set

forth in Section III of this article are the following. For the

WebKit system, change-based selection is beneficial since
usually only a small portion of the tests is relevant for the
changes (RQ1). Our change-based test selection method has
been successfully implemented in the live environment of
the project and can be used to detect failures at a high
rate, although due to the limitations required by practical
constraints, the inclusiveness is not perfect (RQ2). Includ-
ing the overheads, the selective test provides significant
improvement in total testing time (RQ2). Finally, our test
case prioritization strategies proved to be useful to reduce
the size of the selection set (RQ3). The strategy that selects
the least covering test cases besides the changes was the
best in this respect, by which we can limit the size of
the selection to below 10% and still achieve about half
of the inclusiveness compared to the non-prioritizing case.
This result was surprising because it outperformed the most
promising approach: the most covering first method.
In this ongoing project we have a set of short- and long-

term plans for continuation. On a short-term, we plan with
different optimizations to the framework, which regards the
instrumentation framework, additional investigation of the
flakey tests, inclusion of other languages besides C++, since
all these pose threats to the reliability of the method. The
periodic coverage database update strategy also needs further
research to make it fully automatic and much more effective.
As part of our long-term research agenda, we want to

investigate the overall quality of the testing system of the
project from other perspectives as well, not just simple code
coverage, and hence offer other improvements to the system.
For example, we plan to involve the bug database in the
analysis, since that way we could get access to other kinds
of information which is not possible from the currently used
build logs (such as fault detection rate). We also plan to
investigate the benefits of applying change impact analysis
methods to amend the change-based test selection.
The different heuristics for prioritization we experimented

with are promising directions for future work. We plan to
continue this research and define more classification types
of the tests, and verify the findings on other projects as well.
The ultimate verification of our activities would be if the

regression test suite is provably more efficient in finding
defects, but for this further research and a longer real usage
of the system is required.

ACKNOWLEDGEMENTS

The authors would like to thank Csaba Osztrogonác, Péter
Siket, Béla Váncsics, John Taylor and Attila Kerék for their
valuable supporting work for this research. This research
was supported by the Hungarian national grants GOP-1.1.1-
11-2011-0039 and OTKA K-73688.

REFERENCES

[1] M. J. Harrold, “Testing: A roadmap,” in Proceedings of
the Conference on The Future of Software Engineering at
ICSE’00, 2000, pp. 61–72.

[2] S. Yoo and M. Harman, “Regression testing minimization,
selection and prioritization: A survey,” Software Testing, Ver-
ification and Reliability, vol. 22, no. 2, pp. 67–120, 2012.

[3] “The WebKit open source project,” http://www.webkit.org/,
last visited: 2012-04-19.

[4] G. Rothermel and M. J. Harrold, “Analyzing regression test
selection techniques,” IEEE Transactions on Software Engi-
neering, vol. 22, no. 8, pp. 529–551, Aug. 1996.

[5] ——, “A safe, efficient regression test selection technique,”
ACM Transactions on Software Engineering and Methodol-
ogy, vol. 6, pp. 173–210, Apr. 1997.

[6] R. Gupta, M. J. Harrold, and M. L. Soffa, “An approach to
regression testing using slicing,” in Proceedings of the 1992
Conference on Software Maintenance, 1992, pp. 299–308.

[7] W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur,
“Effect of test set minimization on fault detection effective-
ness,” in Proceedings on the 17th International Conference
on Software Engineering, 1995, pp. 41–50.

[8] G. Rothermel, M. J. Harrold, J. von Ronne, and C. Hong,
“Empirical studies of test-suite reduction,” Software Testing,
Verification and Reliability, vol. 12, no. 4, pp. 219–249, 2002.

[9] G. Rothermel and M. J. Harrold, “Empirical studies of a safe
regression test selection technique,” IEEE Transactions on
Software Engineering, vol. 24, no. 6, pp. 401–419, Jun. 1998.

[10] J.-M. Kim, A. Porter, and G. Rothermel, “An empirical study
of regression test application frequency,” in Proceedings of
the 22nd international conference on Software engineering,
2000, pp. 126–135.

[11] W. E. Wong, J. R. Horgan, S. London, and H. Agrawal,
“A study of effective regression testing in practice,” in Pro-
ceedings of the Eighth International Symposium on Software

Reliability Engineering, 1997, pp. 264–274.

[12] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Pri-
oritizing test cases for regression testing,” IEEE Transactions
on Software Engineering, vol. 27, pp. 929–948, 2001.

[13] Z. Li, M. Harman, and R. M. Hierons, “Search algorithms
for regression test case prioritization,” IEEE Transactions on
Software Engineering, vol. 33, no. 4, pp. 225–237, 2007.

[14] “WebKit QT port Buildbot,” http://build.webkit.sed.hu/, last
visited: 2012-04-18.

[15] R. Ferenc, Á. Beszédes, M. Tarkiainen, and T. Gyimóthy,
“Columbus – reverse engineering tool and schema for C++,”
in Proceedings of the International Conference on Software
Maintenance, 2002, pp. 172–181.

[16] J. Jász, L. Schrettner, Á. Beszédes, C. Osztrogonác, and
T. Gyimóthy, “Impact analysis using Static Execute After in
WebKit,” in Proceedings of the 16th European Conference on
Software Maintenance and Reengineering (CSMR’12), 2012,
pp. 95–104.

