
Simulating the Effect of Test Flakiness on Fault
Localization Effectiveness

Béla Vancsics
Department of Software Engineering

University of Szeged, Hungary
vancsics@inf.u-szeged.hu

Tamás Gergely
Department of Software Engineering

University of Szeged, Hungary
gertom@inf.u-szeged.hu

Árpád Beszédes
Department of Software Engineering

University of Szeged, Hungary
beszedes@inf.u-szeged.hu

Abstract—Test flakiness (non-deterministic behavior of test
cases) is an increasingly serious concern in industrial practice.
However, there are relatively little research results available
that systematically address the analysis and mitigation of this
phenomena. The dominant approach to handle flaky tests is still
detecting and removing them from automated test executions.
However, some reports showed that the amount of flaky test is
in many cases so high that we should rather start working on
approaches that operate in the presence of flaky tests. In this
work, we investigate how test flakiness affects the effectiveness
of Spectrum Based Fault Localization (SBFL), a popular class
of software Fault Localization (FL), which heavily relies on
test case execution outcomes. We performed a simulation based
experiment to find out what is the relationship between the level
of test flakiness and fault localization effectiveness. Our results
could help the users of automated FL methods to understand the
implications of flaky tests in this area and to design novel FL
algorithms that take into account test flakiness.

Index Terms—Test flakiness, flaky tests, fault localization,
Spectrum-Based Fault Localization, testing and debugging.

I. INTRODUCTION

Fault localization (FL) is a necessary step before any
automatic or manual program repair action. The successfulness
of program repair is hence dependent on the efficiency of
fault localization [1], [2]. There are a lot of FL approaches
that help to automatically detect the location of bugs, and one
of the largest families is Spectrum-Based Fault Localization
(SBFL) [3], [4], [5], [6], our focus in this article.

Current literature on program repair and fault localization
typically does not consider the possible flakiness of testing
environments; the performance of these approaches is pre-
dominantly investigated using bug benchmarks that rely on
deterministic test case behavior. Studies about the detection,
analysis and treatment of flaky tests reveal that there is a non-
negligible amount of tests with flakiness, which negatively
impacts current industrial practices [7], [8], [9]. However,
it is not known at this time how does flakiness impact
fault localization and how these applications could be fit for
potentially significant levels of flakiness.

In this paper we present an empirical study to investigate
the effects of test flakiness on existing SBFL fault localization
techniques (Tarantula [10], Ochiai [11] and DStar [12]), which,
we believe, enables a better understanding of how much does
flakiness affect the performance of traditional FL algorithms.
We define the flakiness-ratio metric to express the flakiness

of a test, and conduct a simulation-based experiment using
real projects with real faults. The goal is to measure how
much fault localization scores are affected by different levels
of flakiness of individual test cases. We investigate whether
the different localization scores and the ranks of the buggy
methods based on these scores are changed notably if a single
test case becomes flaky.

Results show that the different investigated algorithms are
affected by flakiness at different levels. In general, Tarantula
is more sensitive to flakiness than Ochiai and DStar. However,
results also indicate that this effect highly depends on the
characteristics of the actual project, and the related test cases
as well. Our empirical study also addresses the question if
different properties of the tests that become flaky or the bugs
themselves make any difference in this regard.

In Section II, we describe the goal and motivation of this
study. Section III describes how the experiment was prepared
and implemented, and in Section IV the results are presented
along with a discussion of some possible reasons of the
observed results (Section V), and the analysis of the threats
to validity (Section VI). In Section VII we elaborate on the
related work, and the conclusion is given in Section VIII.

II. GOAL AND RESEARCH QUESTIONS

A test case is called flaky if its outcome is non-deterministic,
i. e. sometimes it passes and sometimes it fails depending on
unknown circumstances. Flakiness is a known phenomenon
in software testing [13], [8], and requires attention. The
effect of flakiness has also been investigated for some testing
applications [14], [15].

We conducted an experiment in which we investigated
how the flakiness property of tests affected the performance
of FL algorithms and whether certain patterns could have
been identified using the characteristics of bugs and defective
methods. In this experiment we simulated the flakiness of
individual test cases in 28 versions of the Mockito program
(part of the Defect4J bug database [16]) with known bugs. In
the simulation, we assumed 100 executions of each test case
and assumed that some of these executions changed its original
result. To express the flakiness of a test case τ , we defined the
flakiness-ratio (FR) as shown in Eq. 1.

FR(τ) = 2
min(τP , τF )
τP + τF

(1)

978-1-7281-6271-3/20 c© 2020 IEEE VST 2020, London, ON, Canada

Accepted for publication by IEEE. c© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

28



In Eq. 1, τP is the number of passed executions of test case
τ and τF is the number of failed executions of test case τ .
For example, if the test_foo test case passed 70 times and
failed 30 times of the 100 executions, then FR(test_foo) =
2min(70,30)

100
= 0.6. If the test is not flaky (i. e. deterministic),

its flakiness-ratio is 0; if the test passes and fails equally, its
flakiness-ratio is 1. The ratio is symmetric in the sense that
the original result of the test itself does not affect the value
of this ratio (neither if it was a pass or a fail).

By conducting the experiment, we wanted to answer the
following research questions regarding the effect of flakiness
on the FL algorithms:
RQ-1: What is the effect of a single flaky test case on the

FL algorithms? At what flakiness-ratio the rank of the faulty
method(s) change notably? Is there a difference between the
different algorithms in their sensitivity to flakiness?

RQ-2: What other features/properties affect the performance
of the algorithms? Does the effect change if there is only one
or if there are more than one normally failing test cases? Does
the number of faulty methods (one or more) makes notable
difference? How different FL algorithms work if only passed
or only failed tests are flaky?

III. STUDY DESIGN AND DATA PREPARATION

In this section we describe how the experiment was con-
ducted.

A. Measurement Scenarios

We used the Mockito project from Defecst4J [16] as the
System Under Tests for the measurements. The program had
different faulty versions with 38 bugs known in the code
(functions) and the set of deterministic (non-flaky) test cases.
We executed fault localization for the bugs with simulated
flakiness.

First, for all bugs, we executed the test cases assigned to that
program version. During this execution method coverage was
also computed (it is required for FL). We used a bytecode
instrumentation tool which is based on Javassist to collect
the necessary information about the code coverage and test
results. The minimum requirement for Javassist is Java 5, so
we had to skip those versions where the instrumentation were
unsuccessful. A total of 28 bugs met these requirements, these
cover broad spectrum of different cases / properties (low vs.
high bug-ranks, one vs. more failed tests, one vs. more faulty
methods). After we had the results (i. e. what test cases passed
and failed) and the method coverage (what methods had been
called at least once during a test case), we simulated flakiness
in the following way.

First, we assumed 100 executions of each test case. The
original, deterministic, non-flaky measurement is equivalent
with the situation that all 100 runs of a single test case pro-
duced the same result. Then, the tests were re-run simulating
the situation that a certain number of runs of that test case
changed its outcome. We gradually incremented the number
of runs that changed their outcomes with an increment of 5
runs; i. e. we first assumed that 95 runs produced the same

result and 5 produced the opposite, then we assumed 90-10
ratio, then 85-15, etc., until the 50-50 ratio. The results have
been modified artificially, that is, the outcome of a test was
changed from passed to failed (or failed to passed), one test
case at a time, but the code has not been altered. The flakiness-
ratio metric value (FR) of the test case is FR = 0.0 for the
original run, FR = 0.1 for the 95-5 ratio, FR = 0.2 for the
90-10 situation, and at the end FR = 1.0 for the 50-50 ratio.

Finally, we performed fault localization for the bugs with
these simulated results using the algorithm below.

B. Fault Localization

There are several kinds of FL approaches based on the
information they use. In this work, we have chosen Spectrum-
Based Fault Localization (SBFL) methods, which capture
program execution data. They monitor the behavior of the
program and compare this execution data to the test results
to locate the erroneous code element(s). The FL formulas
we used in this experiment use code coverage to capture
program execution. In general, code coverage shows what code
elements are executed during the run of a test case.

In our case, we computed method level code coverage,
which tells us what methods have been called during the exe-
cution of a test case. To capture this coverage information, we
produced the coverage matrix of the faulty program version.
The rows of the matrix represent the tests (T ), and the columns
are assigned with the functions (F ). The coverage matrix has
a value of 1 in a given cτ,φ position if code element φ is
covered by test case τ , otherwise this value is 0.

The used FL formulas also need the result vector. The
results vector contains the pass-fail results of the tests, where
0 means pass and 1 means fail.

Using the coverage matrix and results vector, four basic
numbers can be determined for each φ ∈ F functions:

a) φep : number of passing tests covered by φ,
b) φef : number of failing tests covered by φ,
c) φnp : number of passing tests not covered by φ and
d) φnf : number of failing tests not covered by φ.

These numbers are then used by several SBFL formulas
to compute FL suspiciousness scores for the functions [4],
[17], [18]. These scores are then used to order the functions
and compute their final suspiciousness rank. The three pop-
ular formulas we utilized in this experiment are DStar [19],
Ochiai [11], and Tarantula [10]:

DStar :
φ2
ef

φep + φnf

,

Ochiai:
φef√(φef + φnf ) ⋅ (φef + φep)

,

Tarantula:

φef

φef +φnf

φef

φef +φnf
+ φep

φep+φnp

29



To overcome the frequent situation when more functions
get the same suspiciousness score, there are three possible
decisions. All methods with the same suspiciousness score
might have (1) the average rank, (2) the minimum rank, or
(3) the maximum rank of the given methods. In this work, we
use average ranks.

C. Modified Metrics

The above mentioned metrics are not prepared for flaky
results. In our case, the result of a test case is probabilistic,
representing not just a single run, but a series of test execu-
tions. Besides 0 (passed) and 1 (failed), the result can be any
value between them, meaning that the test is more or less flaky.
Thus, it was necessary to redefine/extend the above mentioned
four numbers and formulas to non-integers.

a)
φep

′ ∶= ∑
τ∈T

Θ(τ) and τ covered by φ

b)
φef

′ ∶= ∑
τ∈T

Γ(τ) and τ covered by φ

c)
φnp

′ ∶= ∑
τ∈T

Θ(τ) and τ not covered by φ

d)
φnf

′ ∶= ∑
τ∈T

Γ(τ) and τ not covered by φ

Θ(τ) = τP
τP + τF

=
⎧⎪⎪⎨⎪⎪⎩

FR(τ)
2

if τP < τF
1 − FR(τ)

2
if τP ≥ τF

Γ(τ) = τF
τP + τF

=
⎧⎪⎪⎨⎪⎪⎩

1 − FR(τ)
2

if τP < τF
FR(τ)

2
if τP ≥ τF

The “number of passed” and “number of failed” numbers
are no longer counts, but sums of the probabilistic test results.
Θ(τ) and Γ(τ) simply give the probability that test case τ
passes and fails, respectively. These definitions are backward
compatible with the original ones, but can handle flakiness.

To determine the rank of the test cases according to their
scores, we use the above mentioned average rank strategy.

IV. RESULTS

A. Overall Effect on FL

In the experiment, for each bug, we changed the results
of each of its tests individually. Given a bug, for each test
case τ we set the flakiness-ratio of τ between 0 and 1 with
a 0.1 increment leaving the flakiness of other test cases to be
0. Using these values, we computed FL scores and rankings
for all (τ,FR(τ)) configurations of the bug. Note that all
(τ,0) configurations are the same and gives the original,
non-flaky results. Then, for each configurations, we examined
the difference between the original and modified rank of the

faulty method(s) using the three formulas DStar, Ochiai, and
Tarantula.

Figure 1 shows how the performance of the three formulas
change as a function of FR. For each bug and FR level, the
figures show the average relative difference for all configura-
tions of that FR level (i. e., for a bug β, for an FR level x, it
shows average relative rank differences for all τ test cases of
β).

Comparing the results, several observations can be made:
1) Tarantula is more sensitive to FR than Ochiai and DStar,

so even with a lower flakiness value, there may be a more
notable difference in rank,

2) Ochiai and DStar produced very similar results,
3) there were bugs where Ochiai and DStar could improve

the original rank (diff(%) ≤ 100),
4) even with a relatively high FR value, the average rank-

diffs were moderate in most cases,
5) for different bugs the results are very different, proposing

that specific properties of the tests and/or bugs have high
influence on the FL results.

Flakiness-sensitivity is well illustrated by the histogram
(Figure 2), which shows how many (τ,1.0) configurations
(i. e. when the result of a single test τ is equally random)
produced different changes in the rankings. It can be seen
that in some cases (7.2% and 3.6% of the configurations)
Ochiai and DStar improved (i. e. the flakiness of the test
helped fault localizationation), and in most cases (82.2% of
the configurations) the new rank was in the ±25% of the
original. It is also obvious that Tarantula responded differently
to flakiness: in about 18% of the configurations the ranks were
at least doubled.

RQ-1: In the case of flaky tests, all FL formulas give
different scores and ranks to the faulty method(s). In
general, Tarantula is more sensitive to flakiness than
Ochiai and DStar, and starts to change notably at
lower flakiness levels. There is no single flakiness-ratio
where the algorithms start to produce notably worse
results and all three formulas have bugs that behave
differently than the other bugs.

B. Effect of Test Properties

To answer RQ-2, we filtered the FL results by 3 properties:
the number of originally failed test cases, the number of faulty
methods, and whether the flaky test originally failed.

First, we checked the difference between bugs having only
one failing test case and bugs having more failing test cases.
There were 15 bugs with one, and 13 bugs with more failing
test cases. The results of flakiness measurements are shown on
Figure 3 for a single failing test case and on Figure 4 for more
failing test cases. As the results show, in the case of a single
failing test case flakiness have a moderate effect on the ranks
(less then 20% away from the original in most cases), while
in the case of more failing test cases there can be a notable
difference (more than 50% worse in more cases).

30



Fig. 1: Tarantula, Ochiai and DStar results (one line represents the results for one bug)

Fig. 2: Tarantula, Ochiai and DStar diff - FR:1.0

The next feature we examined was the number of faulty
methods associated with the same bug. Again, we defined two
categories: bugs with a single associated faulty method and
bugs with multiple faulty methods. There were 18 bugs with
a single faulty method and in 10 cases the bug occurred in
more than one methods. The FL results of these groups are
shown in Figure 5 (single method) and Figure 6 (multiple
methods). The observed result is not really surprising: for bugs
with multiple faulty methods the algorithms are less sensitive
to flakiness. The average new ranks in all but one versions are
within a 25% range of the original rank. On the other hand, if
there is only one faulty method associated with the bug, the
difference between the original and average flaky rank is much
larger even for relatively small (e. g. 0.4) FR values. We think
that this can be caused by the larger set of faulty methods,
which can “smooth” the noise introduced by a single flaky
test.

We also examined how FL rankings change when an orig-
inally passing or originally failing test case becomes flaky.
The results of these experiments are shown in Figure 7 (only
failed tests are flaky) and Figure 8 (only passed tests are flaky).
The results are interesting. For both failed and passed flakies,
Tarantula behaves differently than Ochiai and DStar, which
are similar.

If the failed test cases become flaky, Tarantula formula
improves the average ranks a bit (less than 20%) at higher
flakiness in most of the cases, however, for two bugs it
produces notably worse results (around 50% points and 110%
points worse than the original rank). In the flaky failed cases
Ochiai and DStar formulas produce average ranks which are

±25% around the original averages, except for a single bug for
which they result in more than 150% worse ranks in average.

If the passed test cases become flaky, the situation is
different. In this case Tarantula produces much (more than
100%) worse ranks for five bugs as the flakiness-ratio gets
higher, and there is no bug for which higher flakiness would
result in better ranks. The relation between the flakiness-ratio
and the increase in rank is mostly linear. Ochiai and DStar
produces similar results to Tarantula, but the average ranks
are usually less than 100% worse than the original averages,
and for some bugs, improvements can be observed.

Another possible aspect of the categorization is the φep
value of the faulty methods, i. e. how many passing test case
executes the faulty methods. Studies [20], [11] have shown that
FL algorithms are less effective in finding faulty methods with
high φep values, i. e. when high number of test cases execute
the faulty methods without failure. Based on the original (non-
flaky) φep values, we created two categories of the bugs:
we classified 9 bugs (program versions) as high-φep , where
φep ≥ 100, and 19 bugs as low-φep , where φep < 100.

By examining the results on Figure 9 (low-φep rank change
distribution at FR = 1 level) and Figure 10 (high-φep rank
change distribution at FR = 1 level), we found that there
was no notable difference between the results of the two
groups using the Tarantula algorithm. However, the results
with Ochiai and DStar have shown observable differences.
When the φep value is low, there is ±25% difference between
the original and the flaky ranks in the vast majority of cases
(94.8%). However, for versions with high φep value, i. e. in
which more than 100 passing test cases exercise the faulty
methods, this proportion dropped to 55.6%. In 22.2% of the
bugs the average difference between the original and flaky
ranks were more than 100%, but at the same time, in about
10% of the cases, Ochiai and DStar produced improvements
in the ranks.

RQ 2: All algorithms are more sensitive to flakiness
if more than one test case fails for the bug, if there is
only one faulty method in the system, or if the failing
test cases become flaky. Tarantula seems to be less

31



Fig. 3: Results – one failed test (one line represents the results for one bug)

Fig. 4: Results – more failed tests (one line represents the results for one bug)

Fig. 5: Results – one faulty method (one line represents the results for one bug)

sensitive to whether the number of covering passing
test cases are low or high, while Ochiai and DStar
change the ranks differently in these cases.

V. DISCUSSION

It was not among the goals of this article to examine
the results in detail to find the root causes of our findings.
However, we have some preliminary ideas, which are topics
for future work.

First, Ochiai and DStar improve the ranks in some cases,
which can be attributed to the method level resolution, where

a test can pass even if it executes the faulty method (known
as coincidental correctness). Flakiness can reduce this effect
thus helping the formulas.

Next, Tarantula is more sensitive to flakiness, which might
be the result of the use of φnp in the formula. φnp is the
amount of passed tests not executing the faulty method. If the
faulty method is executed by only a small portion of the tests,
flakiness can have a more significant effect on the final score
of the faulty method.

Finally, the figures show that even with high FR value the
ranks may not change significantly. We can think of more
explanations for this phenomenon. As changes in the FL score

32



Fig. 6: Results – more faulty methods (one line represents the results for one bug)

Fig. 7: Tarantula, Ochiai and DStar – failed tests (one line represents the results for one bug)

Fig. 8: Tarantula, Ochiai and DStar – passed tests (one line represents the results for one bug)

do not necessarily modify the rank, this might hide the effect
of flakiness in individual cases. Furthermore, we present only
averages which can also hide individual changes.

VI. THREATS TO VALIDITY

It is a threat to validity that we only simulated the results,
but did not change the associated coverage. The fact that we
are working with method level coverage mitigates this threat,
however, it is still possible that a real flaky test would produce
different coverage for its pass and fail runs and it would
modify the computed rankings.

Another threat is that we did not examine all bug cases
manually. It might happen that some not examined core
features of the subject project versions have an influence on
the examined properties. For example, in case of bugs with
more failing test cases the ranks can drop severly while in case
of bugs with a single test case the rank change is moderate.
However, the root cause of this phenomenon can be something
else whose consequence was the number of failing test cases
in the given versions, and we only detected the co-occurrence
of these consequences.

In practice, not only one test can be flaky in one program
version. In these cases, flakiness can have a much more

33



Fig. 9: Tarantula, Ochiai and DStar – low φep

Fig. 10: Tarantula, Ochiai and DStar – high φep

complex effect on FL efficiency, but due to the limitations
of the study, we did not investigate this aspect.

VII. RELATED WORK

A. Fault Localization

Fault localization is a well-researched area with extensive
literature [21], [5], [22]. There are a lot of algorithms, all of
which are intended to determine the exact location of the bugs.
One of the largest fault localization algorithms family is the
Spectrum-Based FL (SBFL or Coverage Based Statistical Fault
Localization – CBSFL). The essence of these methods are that
the behavior of the program and thus the possible location of
the bug can be deduced from the collected execution data.

One of the most popular SPFL methods is Tarantula [10],
[3]. It prioritizes the methods using the coverage information
and the test results. The algorithm orders the methods based
on the ratio of the covering failed tests and the not covering
failed tests, as well as the covering and not covering passed
tests.

Abreu et al. used the Ochiai method in their studies ([23],
[11], [24]). This formula was adapted from molecular biology.
It was shown that Ochiai produces better results than Tarantula
using the Siemens and the SIR bug dataset.

Wong et al. [19] presented the DStar technique, which was
evaluated in 24 programs and compared the results of the
algorithm with 38 different techniques. Single-fault and multi-
fault programs are used for assessment. Empirical evaluation
has shown that DStar is better than all other methods.

There are many comparative studies [24], [25], [12] that
compare the results of different algorithms. These studies
came to the following conclusions: (1) there is difference in
efficiency of the algorithms for injected and real bugs, (2)

Ochiai performed better than Tarantula, (3) DStar was better
than Ochiai.

B. Flaky Tests

Flaky tests have an extensive literature and there are several
studies about the causes, effects, and identification of flaky
tests [26], [7], [15], [14], [27], [8].

Lam et al. [13] described their experience with flaky tests
by conducting a study on them. They identified flaky tests,
investigated their root causes and described them to help
the developers to avoid and/or fix flakiness. Five non-open
source (anonymized) real-world projects were analyzed, they
collected all relevant code to log various runtime properties,
examined the differences between passing and failing runs and
publicized them.

In their empirical study, Luo et al. [8] analyzed and clas-
sifed the most common root causes, described behavior, and
presented flaky tests fix-strategies. They defined 12 causes and
implications based on 51 examined open-source projects using
version-control commits and bug reports. The authors man-
ually grouped the semi-automatically identified cases/causes
into existing groups in the literature and, if necessary, created
new ones, then analyzed the manifestations and possible
improvement options.

A general method for identifying flaky tests is to run them
again, but this can often take a long time. Bell et al. [7]
presented a new technique (DeFlaker) wich can detect them
without rerunning. The method is based on the relationship
between coverage change and test result change: if a test
passed becomes failed and no coverage change happened, this
indicates that it is a flaky test. To validate the method, the
authors carried out experiments using 10 real projects and their
history, which resulted in only 1.5% false positive cases and
95.5% recall.

FlakiMe [15] is a similar approach/methodology to the one
we used. The effect of flakiness on mutation testing and
program repair was investigated by Cordy et al. using injected
test results modification. The authors also used Defects4J as a
benchmark. They concluded that flaky tests reduce the effec-
tiveness of (deterministic) repair techniques by 5% to 100%.
One of their related findings was that the non-deterministic
tests decreased effectiveness more when the generated patches
were covered by more tests. This is consistent with one of our
result, that is, the more tests cover the faulty method, the more
sensitive the fault localization method is to flaky tests.

VIII. CONCLUSION

In this work we have examined how the flakiness of test
cases affect the performance of fault localization algorithms.
We first defined the flakiness-ratio metric to express the flaki-
ness of a test case, and modified the computation of the base
φep , φef , φnp , φnf numbers required by the examined fault
localization formulas in a way that they remain compatible
for non-flaky tests but can handle flakiness.

We conducted an experiment in which we simulated flaky
tests for a program with 28 faulty versions, and checked how

34



different flakiness-ratio values affect the three FL algorithms.
We found that one algorithm (Tarantula) is more sensitive
to high flakiness of individual test cases than the other two
(Ochiai and DStar), i. e. it produces worse ranks relative to the
original ones than the other algorithms at the same flakiness-
ratio.

We also examined how some features and properties of the
program versions and the tests affect the behavior of these
algorithms in case of flakiness. We found that the number of
faulty methods, the number of failing test cases, the number
of passing tests that cover the faulty methods, and the original
outcome of the flaky test can all be used for classification
where (at least some of) the algorithms produce distinct
behavior in case of flaky tests.

It can be a future work to examine the absolute ranks
produced by these algorithms in flaky situations, as it might
happen that even if the flaky rank is the double of the original
one for an algorithm at a certain flakiness-ratio, it is still better
than the flaky rank produced by an other algorithm, which is
much closer to its original rank. Another possible future work
is to manually examine the flaky results of individual bugs in
details, as the same algorithm can produce divergent results
for different bugs. It is also an interesting question how more
flaky tests at the same time influence the performance of the
FL algorithms. Finally, more attributes of the tests and test
executions could be examined whether they have some effect
on the flakiness.

ACKNOWLEDGMENTS

This work was partially supported by the EU-funded Hungar-
ian national grant GINOP-2.3.2-15-2016-00037 titled “Internet
of Living Things” and by grant TUDFO/47138-1/2019-ITM of
the Ministry for Innovation and Technology, Hungary.

REFERENCES

[1] J. Jiang, Y. Xiong, H. Zhang, Q. Gao, and X. Chen, “Shaping program
repair space with existing patches and similar code,” in 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2018, pp. 298–309.

[2] D. Yang, Y. Qi, and X. Mao, “An empirical study on the usage of
fault localization in automated program repair,” in IEEE International
Conference on Software Maintenance and Evolution, 2017, pp. 504–508.

[3] D. Zou, J. Liang, Y. Xiong, M. D. Ernst, and L. Zhang, “An empirical
study of fault localization families and their combinations,” IEEE
Transactions on Software Engineering, pp. 1–1, 2019.

[4] W. Eric Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on
software fault localization,” IEEE Transactions on Software Engineering,
vol. 42, pp. 1–1, 08 2016.

[5] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on
software fault localization,” IEEE Transactions on Software Engineering,
vol. 42, no. 8, pp. 707–740, 2016.

[6] H. A. de Souza, M. L. Chaim, and F. Kon, “Spectrum-based software
fault localization: A survey of techniques, advances, and challenges,”
arXiv preprint arXiv:1607.04347, 2016.

[7] J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Marinov,
“Deflaker: Automatically detecting flaky tests,” in 2018 IEEE/ACM 40th
International Conference on Software Engineering (ICSE), May 2018,
pp. 433–444.

[8] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical analysis
of flaky tests,” in Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2014, pp. 643–653.

[9] A. Vahabzadeh, A. M. Fard, and A. Mesbah, “An empirical study of
bugs in test code,” in 2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME), Sep. 2015, pp. 101–110.

[10] J. A. Jones and M. J. Harrold, “Empirical evaluation of the tarantula
automatic fault-localization technique,” in Proceedings of the 20th
IEEE/ACM International Conference on Automated Software Engineer-
ing, ser. ASE ’05. New York, NY, USA: ACM, 2005, pp. 273–282.

[11] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J. van Gemund, “A practical
evaluation of spectrum-based fault localization,” Journal of Systems and
Software, vol. 82, no. 11, pp. 1780 – 1792, 2009, sI: TAIC PART 2007
and MUTATION 2007.

[12] W. E. Wong, V. Debroy, R. Gao, and Y. Li, “The dstar method for
effective software fault localization,” IEEE Transactions on Reliability,
vol. 63, no. 1, pp. 290–308, 2014.

[13] W. Lam, P. Godefroid, S. Nath, A. Santhiar, and S. Thummalapenta,
“Root causing flaky tests in a large-scale industrial setting,” in Proceed-
ings of the 28th ACM SIGSOFT International Symposium on Software
Testing and Analysis, ser. ISSTA 2019. New York, NY, USA: ACM,
2019, pp. 101–111.

[14] A. Shi, J. Bell, and D. Marinov, “Mitigating the effects of flaky
tests on mutation testing,” in Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ser. ISSTA
2019. New York, NY, USA: ACM, 2019, pp. 112–122.

[15] M. Cordy, R. Rwemalika, M. Papadakis, and M. Harman, “Flakime:
Laboratory-controlled test flakiness impact assessment. a case study on
mutation testing and program repair,” 2019.

[16] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing
faults to enable controlled testing studies for java programs,” in Pro-
ceedings of the 2014 International Symposium on Software Testing and
Analysis, ser. ISSTA 2014. New York, NY, USA: ACM, 2014, pp.
437–440.

[17] X. Xie, T. Y. Chen, F.-C. Kuo, and B. Xu, “A theoretical analysis of
the risk evaluation formulas for spectrum-based fault localization,” ACM
Trans. Softw. Eng. Methodol., vol. 22, no. 4, pp. 31:1–31:40, Oct. 2013.

[18] J. Sohn and S. Yoo, “Fluccs: Using code and change metrics to
improve fault localization,” in Proceedings of the 26th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ser. ISSTA
2017. New York, NY, USA: ACM, 2017, pp. 273–283.

[19] W. E. Wong, V. Debroy, R. Gao, and Y. Li, “The dstar method for
effective software fault localization,” IEEE Transactions on Reliability,
vol. 63, no. 1, pp. 290–308, March 2014.

[20] X. Xie, T. Y. Chen, F.-C. Kuo, and B. Xu, “A theoretical analysis
of the risk evaluation formulas for spectrum-based fault localization,”
ACM Transactions on Software Engineering and Methodology (TOSEM),
vol. 22, no. 4, p. 31, 2013.

[21] S. Pearson, J. Campos, R. Just, G. Fraser, R. Abreu, M. D. Ernst,
D. Pang, and B. Keller, “Evaluating and improving fault localization,”
in Proceedings of the 39th International Conference on Software Engi-
neering, ser. ICSE ’17. Piscataway, NJ, USA: IEEE Press, 2017, pp.
609–620.

[22] W. E. Wong, V. Debroy, Y. Li, and R. Gao, “Software fault localization
using dstar (d*),” in 2012 IEEE Sixth International Conference on
Software Security and Reliability, 2012, pp. 21–30.

[23] R. Abreu, P. Zoeteweij, and A. J. c. Van Gemund, “An evaluation of sim-
ilarity coefficients for software fault localization,” in 2006 12th Pacific
Rim International Symposium on Dependable Computing (PRDC’06),
Dec 2006, pp. 39–46.

[24] R. Abreu, P. Zoeteweij, and A. J. C. v. Gemund, “Spectrum-based
multiple fault localization,” in Proceedings of the 2009 IEEE/ACM
International Conference on Automated Software Engineering, ser. ASE
’09. IEEE Computer Society, 2009, pp. 88–99.

[25] L. Naish, H. J. Lee, and K. Ramamohanarao, “A model for spectra-based
software diagnosis,” ACM Trans. Softw. Eng. Methodol., vol. 20, no. 3,
Aug. 2011.

[26] F. Palomba and A. Zaidman, “Does refactoring of test smells induce
fixing flaky tests?” in 2017 IEEE International Conference on Software
Maintenance and Evolution (ICSME), Sep. 2017, pp. 1–12.

[27] F. Palomba and A. Zaidman, “The smell of fear: on the relation between
test smells and flaky tests,” Empirical Software Engineering, vol. 24,
no. 5, pp. 2907–2946, Oct 2019.

35


