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Abstract—Code coverage is successfully used to guide white
box test design and evaluate the respective test completeness.
However, simple overall coverage ratios are often not precise
enough to effectively help when a (regression) test suite needs to
be reassessed and evolved after software change. We present an
approach for test suite assessment and improvement that utilizes
code coverage information, but on a more detailed level and adds
further evaluation aspects derived from the coverage. The main
use of the method is to aid various test suite evolution situations
such as removal, refactoring and extension of test cases as a
result of code change or test suite efficiency enhancement. We
define various metrics to express different properties of test suites
beyond simple code coverage ratios, and present the assessment
and improvement process as an iterative application of different
improvement goals and more specific sub-activities. The method
is demonstrated by applying it to improve the tests of one of our
experimental systems.

Keywords—code coverage, regression testing, test suite quality,
test suite refactoring, test suite evolution, white box testing metrics

I. INTRODUCTION

The attainable code coverage of regression test suites is
often used as the main adequacy criterion, because it is
associated with the defect detection capability of the test
suite [1], [2]. Code coverage is therefore a traditional base
for white-box test design in any life cycle model [3], [4], [5].

Studies showed that the correlation between high coverage
and defect detection is not always present or is at least not
evident [6], [7], but there are further risks as well in gaining
confidence in a test suite based solely on high code coverage.
In this work, we present our approach for test suite evaluation
that goes beyond simple code coverage ratios, and address in
particular the following aspects as well:

• High code coverage may have negative side-effects on
the redundancy and similarity of test cases, making it
more difficult to distinguish between specific roles of
the test cases by what code parts they excercise.

• Different levels of code coverage criteria are typically
used such as function, statement or branch coverage.
However, in many situations a more detailed coverage
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is unnecessary (e.g. if a function is never invoked it is
needless to work with its statement-level coverage).

• An overall coverage associated completely with a
system or a module is often not precise enough to
provide actionable information on coverage related to
specific groups of functionality or code parts.

• Code coverage is only an indicator, and it is often
difficult to see how it should be actually used to guide
the test suite improvement process.

Reflecting on these issues, we developed a method for a
systematic assessment and improvement of test suites (named
Test Suite Assessment and Improvement Method – TAIME),
which is based on various additional computations made on
what we call detailed coverage information. It is essentially a
binary coverage matrix, where rows represent individual test
cases while columns correspond to program elements such
as statements or functions according to the chosen level of
granularity. Both the test cases and the program elements are
decomposed into coherent logical groups, which correspond to
different functional units in the system. This way, various anal-
yses can be performed on the coverage matrix – in addition to
identifying low coverage areas –, such as identifying coverage
patterns that indicate low coherence within functional units.

In TAIME, we use these analyses to identify potential
improvement points in the test suite, for instance, which test
cases are candidates for removal or refactoring or where
additional tests are needed. The core of the method is to iterate
around different improvement goals, code coverage granularity
levels and the functional units. The primary use of the method
is to aid various situations where a system’s regression test
suite needs maintenance such as reflecting to code changes,
test suite refactoring to enhance efficiency, and similar (without
continuous maintenance, a test suite will eventually lose its
main value – the defect detection capability [8]).

In this paper, we motivate our work by an industrial
example we worked with earlier (Section II), then the details
of the method are given in Section III, including the overall
process, the metrics used for the assessment and several
practical use cases. We demonstrate the methods’ actual use
through the systematic analysis and improvement of one of our
own software modules (Section IV). We conclude the paper
by discussing related work (Section V) and perspectives. Most
importantly, we welcome feedback from the industry about
potentials of the method and most prospective enhancement
areas.



II. MOTIVATION AND GOALS

Regression test suites often become as large and complex as
the software itself due to continuous software evolution. If the
regression test suite does not undergo continuous maintenance,
e.g. by the addition of new test cases and update or removal
of outdated ones, it will eventually lose its basic value, defect
detection potential [8]. This is especially true in the case of
software project life cycles following agile principles. In agile,
frequent modifications to the code base must be followed
by updating regression tests, including their review, selection,
retirement, update of test data and test environments [5].
Such continuous changes to the regression test suite will
eventually cause significant challanges to the projects due
to the lack of systematic methods and tools to aid in this
process. Which tests are potentially redundant? How we could
improve the efficiency of the tests? What areas of the test suite
need extension the most? Etc. But firstly: what is the overall
quality of the test suite beyond its coverage? We observed that
questions like these are common among testers, developers and
managers in various industrial projects.

In previous projects, we worked on various enhancements
to WebKit, a large industrially supported open source web-
browser layout engine [9]. It has about 2.2 million lines of
code and a large test suite of about 27 thousand test cases.
In particular, we worked on the analysis and improvement of
this test suite (e.g. in [10]) but we soon realized that it is hard
to comprehend and evaulate it without suitable methods and
tools.

We first introduced the concept of functional units and how
the test suite can be decomposed into such groups to be able to
use more fine-grained analysis. The term will be used to refer
to a part of the system which can be functionally separated
from the others, and is a coherent set of pairs of associated
test groups and code groups. A test group is a subset of test
cases used to test the given functionality, and members of the
code group are the respective parts of the implementation. (In
general, our method does not require that the test and code
groups are non-overlapping.)

Next, we developed a supporting toolset (called SoDA)
with optimized data structures and algorithms suitable to han-
dle such industrial large and complex systems as WebKit [11],
[12]. With the help of WebKit developers, we determined
procedure level functional units (composed of functions and
methods) along with the associated test groups and measured
detailed code coverage information for the test suite. Table I
shows how different test groups are covering different code
groups in this system. The numbers in the cells of this table
represent the code coverage ratios the test cases of a given test
group attain with respect to the given code group (or to the
whole system as indicated in the first row and column).

We call this visualization a ‘heat-map’ because in it, the
intensity of the red background of a cell is proportional to the
ratio of the cell value and the column maximum. As expected,
the test cases of a functional unit typically cover mostly their
respective code groups (in the diagonal), but it is not always
that evident. Using this visualization we were able to pin point
potential problems where the overall coverage is too low or
which functional units are less coherent.

TABLE I. COVERAGE METRIC VALUES AND HEAT-MAP FOR TEST
GROUPS IN FUNCTIONAL UNITS
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WebKit .53 .56 .61 .59 .67 .67 .65 .47 .50 .72

canvas .16 .46 .26 .24 .07 .19 .00 .30 .03 .45

css .24 .13 .51 .33 .25 .36 .00 .32 .11 .62

dom .33 .17 .38 .52 .34 .51 .12 .35 .08 .57

editing .23 .02 .31 .38 .66 .35 .01 .31 .06 .59

html5lib .29 .12 .37 .43 .46 .52 .13 .34 .20 .63

http .33 .23 .41 .42 .25 .41 .65 .39 .14 .57

js .33 .16 .37 .47 .51 .44 .15 .44 .11 .63

svg .26 .01 .38 .35 .17 .21 .01 .31 .50 .56

tables .18 .00 .29 .30 .16 .31 .00 .26 .02 .62

In the present work, we continue this line of research by
providing a method to systematically assess regression test
suites with the goal to find improvement points and eventually
guide the improvement process (we call it TAIME – Test
Suite Assessment and Improvement Method). We will shortly
explain what other metrics can be used beyond coverage
ratios and the visualization presented above, and how specific
improvement goals can be incorporated in the TAIME process.

In particular, our goals with this paper are:

1) We give a general and systematic method for regres-
sion test suite assessment and improvement based on
detailed code coverage information.

2) We demonstrate the approach by actually applying it
to improve our SoDA library.

3) We discuss the possibilities of the industrial applica-
tion of the approach. We already made the first step in
this direction by assessing WebKit as shown above.

III. TAIME APPROACH

A. Method

Following the principles of the Goal-Question-Metric
(GQM) paradigm [13], in TAIME the assessment and im-
provement process is centred around goals. By just computing
various metrics we would not be able decide where the im-
provement efforts should be spent. Instead, we first determine
our goal (such as increasing coverage or identifying redun-
dancy), then we perform measurements and improvements, and
continue with the next goal, if required.

The overall process of the approach can be seen in Fig-
ure 1. The outer loop is driven by a goal which defines the
improvement in the given iteration of the specific use case. The
middle loop is a technical one and it deals with the granularity
level of the measurement. Measuring on coarse granularity is
usually easier than measuring on finer levels, and is often a
good idea to start with coarse granularity if the decisions can
be made based on it (e.g. if low coverage is identified on a
high level it is meaningless to investigate lower levels until
higher level coverage has not been improved).

Next, the code and test groups are determined (or reused,
if the information is still valid since the last update of the
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Fig. 1. Overview of the TAIME approach

groups). The process of determining the groups depends on
the system under investigation and other factors; the TAIME
approach does not prescribe any particular method in this
step. It may follow some existing structuring of the system
or may require additional manual or automatic analysis. In
our WebKit and SoDA experiments we first performed an
automatic decomposition based on physical file structures
which was then manually refined.

The innermost loop of the process includes the measure-
ment and modification of the tests. We execute the test suite
and measure the different coverage-based metrics (see next
section) and evaluate the results. Depending on the evaluation,
we might leave the inner iteration, or we can change the test
suite in which case we might need to update the code and
test groups as well before re-executing and measuring the test
suite. Note, that re-execution of the test suite is not required if
such changes are made that do not affect the actual coverage
information. For example, if the change includes only test case
deletion, re-execution can be ommitted as coverage data for
the remaining test cases will not change, but re-calculation of
some metrics will be necessary.

B. Metrics

As part of the TAIME process, a set of basic and derived
metrics may be computed from the detailed coverage informa-
tion gained upon test suite execution. Note, that different kinds
of metrics can be used in the approach as long as they may be
derived from the detailed coverage information. Also, TAIME
does not prescribe any particular method for computing the
coverage; usually it can be done by existing tools. All metrics
we use are defined for a pair of a test group T and a code group
P . Here, T is a subset of all test cases of the test suite, while
P contains program code elements according to the given
granularity level, such as statements or procedures. The two
basic metrics we used are the traditional code coverage ratio
and the so-called partition metric which we defined in previous
work in the context of fault localization and test reduction [10].

The Coverage Metric (COV) refers to the traditional cov-
erage ratio on the chosen level of granularity. It is given as:

COV(T, P ) =
|{p ∈ P | p covered by T}|

|P |
.

Possible values of COV fall into [0, 1] (clearly, bigger values
are better).

The Partition Metric (PART) characterizes how well a set
of test cases can differentiate between the program elements
based on their coverage information. It is an important as-
pect for certain activities but especially for fault localization
whether we can make difference between program elements
based on the test cases covering them. Those program elements
that are indistinguishable (have the same coverage information)
belong to the same partition. For a given test group T and code
group P we denote such a partitioning with Π ⊆ P(P ). We
define πp ∈ Π for every p ∈ P , where

πp = {p′ ∈ P | p′ is covered by and only by the same
test cases from T as p}.

Having fault localization application in mind, |πp| − 1 will be
the number of code elements “similar” to p in the program,
hence to localize p in πp we would need at most |πp| − 1 ex-
aminations [10]. Based on this observation, PART is formalized
as follows:

PART(T, P ) = 1−
∑

p∈P (|πp| − 1)

|P | · (|P | − 1)
.

This metric takes a value from [0, 1] similarly to COV, bigger
meaning better.

In addition to these basic metrics, we experimented with
derived ones as well to quantize the efficiency and uniqueness
of the tests. The simplest measure for assessing efficiency is
Tests per Program elements (TPP), which shows how many test
cases have been created on average to test a set of program
elements (procedures, statements, etc.):

TPP(T, P ) =
|T |
|P |

.

To characterize the level of overlapping and cohesion of
functional units, we used two related metrics. They measure
the unique contribution of test groups to the coverage of a code
group compared to all other test cases in other test groups. Let
a test group be T ⊆ T , where T is the set of all test cases.
The Specialization metric (SPEC) shows how specialized a test
group is to a code group:

SPEC(T, P ) =
|{t ∈ T | t covers P}|
|{t ∈ T | t covers P}|

.

A small SPEC value shows that other test groups have the task
to test the code group, while a high value reflects that the given
test group is responsible for testing the code group. A related
metric is the Uniqueness metric (UNIQ), which measures what
portion of the covered elements are covered only (uniquely)
by a particular test group:

UNIQ(T, P ) =
|{p ∈ P | p covered only by T}|
|{p ∈ P | p covered by T}|

.

A small UNIQ value shows that the program elements of a
functional unit are covered by many test cases of other test
groups, while a high value indicates that the given test group
uniquely covers the code group, because there are few test
cases in other groups that cover the same program elements.



C. Use cases

The basic process from Figure 1 can be applied in several
practical scenarios, most notably:

• White-box test design. The method can be applied
during white-box test design which usually aims high
coverage of the tested code. We can start with fine
granularity and no test cases, and then add new test
cases to different functional units while continuously
monitoring the overall and group-level coverage. Since
we have coverage information for different groups
we can use this information to change test cases and
design new ones for different test groups.

• Change-oriented test suite evolution. In this case,
we already have an active test suite and the goal is
to maintain its quality (in terms of the metrics used)
by following software changes. We can detect and
examine changes in the test metric values on a chosen
granularity level after a software change, and decide
whether we need to modify the test suite if worsening
of some metric is observed.

• Assessment. The quality of the test suite needs to be
assessed periodically. In particular, any improvement
process should be started by an initial assessment.
Our primary goal in this case is to calculate different
metrics in a single measurement and detect any issues
that require further investigation. This could then serve
as the initial goal in the improvement phases, or just
to provide input for a more general software product
quality assessment.

• Refactoring a test suite. An assessment of the test
suite may indicate the presence of so-called test smells
– problematic areas among the test cases based on
“bad” metric values that require further investigation.
In a continuously evolving software, one may want
to refactor the test suite if much of test smells are
found and the overall quality of the test suite is seen
as problematic. We can start with a goal of eliminating
some of the test smells using coarse granularity level.
We then change (add, delete, modify) tests (possibly
modifying functional unit grouping as well) and mea-
sure the effect of the changes on the metric values
indicating the chosen test smell. Then we may refine
the granularity and group associations and restart the
inner iteration of the process. After reaching the goal
of the finest granularity level, we may choose another
goal and start the iteration over, this time continuously
checking all the previously addressed goals as well.
Note, that in the basic process we do not explicitely
define the model how the metric values should be
interpreted; what values are to be treated as “good”
or “bad”. Rather, it depends on the particular situation
and is usually assessed in a relative manner.

To implement the TAIME approach, any suitable tooling
may be used. Our library and toolset called SoDA and TAM
have been designed specifically to accomodate the proposed
approach, and is freely available as open source [11], [12].

IV. IMPROVEMENT OF SODA

To assess and improve the regression test suite of the SoDA
library itself, we followed the TAIME approach. In this section,
we describe how we instantiated the method in this use, and
demonstrate its benefits, which could serve as an example and
motivation.

SoDA (Software Development and Analysis framework)
is an open source library and toolset that aims to provide
researchers and practitioners a framework with which various
code coverage-based analyses can be performed in a unified
environment. It provides a set of efficient data structures, algo-
rithms and a graphical user interface called TAM, implemented
in C++. SoDA and TAM may be used, among others, to
implement the TAIME approach.

The library can be divided into two parts. The first defines
efficient data structures that stores coverage, test results, and
related information for different revisions of a system. The
other part implements various algorithms as plugins, which
use and manipulate the basic data structures.

SoDA includes a set of unit tests for testing its basic low-
level functionality. These tests serve as a regression test suite,
which is applied upon changing the library code. This test
suite was a good subject to demonstrate the TAIME approach
because its initial version was developed in a rather ad hoc
manner and we were not aware of how complete it was, and
what were its other quality properties. As the first step, we
defined the main functional units in the system and assessed the
quality of the test suite at procedure level granularity. Table II
shows the basic data about the library, and its 8 functional
units we identified. At the time of the first assessment (column
one), the library had 112 test casess and there was a functional
unit that did not have any tests associated to it. The second
column shows the final state after performing the TAIME
improvement.

TABLE II. GROUPS AND THEIR SIZES IN THE SODA LIBRARY

Func. unit Tests (before) Tests (after) Procedures Statements
cluster 1 10 36 263
data 86 89 213 1588

fl-technique 2 4 16 175
io 13 16 56 429

metric 3 18 60 549
prioritization 2 6 21 159

reader 4 13 35 431
reduction 0 8 33 414

other 1 1 145 331
SoDA 112 165 615 4339

A notable functional unit is other, which includes some
general utitlity code (e.g. exception classes), which is used
commonly in the library. This code group contains a number
of C++ template functions that are instantiated by the compiler,
and this is the reason why this group consists of many
procedures (145) but relatively few lines (331).

In the experiment, we applied the proposed method in three
phases which are shown in Figure 2.

After the initial assessment, we found that the library had
low COV, so we started with the primary goal to improve
this attribute of the test suite. While we were refactoring the
test suite, we also computed and recorded how other metrics
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Fig. 2. Application of TAIME for the improvement of test suite coverage and specialization using procedure and statement level analysis

changed. Throughout the improvement process, we changed
only the test suite, we did not modify the source code of the
library.

In Phase I, we worked on procedure level granularity. We
performed 7 improvement steps in this phase, concentrating on
a single functional unit in each step. The reader group had a
very high COV value (0.96), hence we did not make improve-
ments in this group. At the end of this phase, the number
of tests has been increased to 131 and the overall coverage
improved from 0.58 to 0.69. Figure 3 shows graphically the
effect of the improvement on the whole test suite; individual
group improvements are not indicated here. Specifically, in
the ’Phase I.’ section we can see that apart from the coverage,
PART also improved from 0.82 to 0.9.

The goal in Phase II. was to improve coverage on a lower
granularity level, i.e. statements (Table II lists the number
of statements in each unit). First, we assigned individual
statements to the functional units (simply as the corresponding
procedures). In this phase, we performed 28 improvement
steps. The process was the same: we improved only one group
at a time and did not modify the source code of the library.
We found that in many cases a unit with 100% coverage on
procedure level granularity could be further improved when
measuring coverage on a lower level. The overall improvement
of the system’s coverage and partition metrics are shown in the
‘Phase II.’ section of Figure 3 (during this phase we did not
measure the changes of the metrics at procedure level). A total
of 34 new tests were added to the test suite and 6 tests were
modified throughout this phase of the improvement process.
At the end of this phase we reached our goal of improving the
coverage, but unintentionally the partition metric improved as
well. We measured procedure level metrics at this point and
we found that COV improved to 0.74 (from 0.69), while PART
went up to 0.93 from 0.9.

During improving the coverage of the test groups in Phase

II., we also investigated how the changes made in this phase
affect the values of COV, PART, and TPP metrics. The state-
ment level metrics of the cluster unit showed an interesting
phenomenon, which can be seen in the ‘Phase II.’ section of
Figure 4. In the first 5 steps we worked on the cluster unit
only, and all of its metrics improved; in fact COV, PART and
TPP reached their highest values at this point. After the fifth
step, however, we started working on the improvement of other
units and we noticed that the SPEC metric of cluster started to
decrease. By the end of Phase II. it reached the original level it
had at the beginning of this phase. This indicated that because
other units are using code of the cluster unit, improving the
coverage of other units decreased the specialization of tests
related to cluster. We evaluated this finding as a ‘test smell’,
which should be corrected because unit tests should be focused
on the given unit and test its functionality alone, without being
influenced by other units.

These findings and considerations motivated us to further
improve the test suite, so we started a new phase, in which
our goal was to improve the SPEC metric of the unit tests of
the cluster group. In Phase III., we performed 10 improvement
steps, eliminating the usage of cluster procedures from other
test groups. Actually, two test groups depended on the cluster
code, namely the fl-technique and metric. This dependency
was introduced in the set up phase of the unit test where
the initial input data of the tests were prepared. The last
section in Figure 4 shows how the SPEC metric increased
during this phase, until it reached 1.0. We made sure that
the values of COV and PART metrics do not decrease during
this improvement, furthermore, the related UNIQ metric also
increased (in two steps) and reached its maximum at 1.0. This
metric raised from 0.64 to 0.67 when the usage of cluster code
were removed from the fl-technique test group and it reached
1.0 in the last step, when we removed the dependency of these
plugins from all of the tests of the metric unit. This is a good
example of how improvements in a test group with respect to



a particular metric might have side-effects on other units and
metrics.

Table III summarizes the changes of all of the investigated
metrics for the overall system as well as the individual func-
tional units. Values shown in boldface font mean an increase
in the metric value, while italic font indicates that the metric
became worse. The SPEC and UNIQ values of the data and io
units decreased after the three phases. These two units contain
the basic building blocks of the algorithms and as we added
more and more tests to the test suite, the program code of these
units were used more by other test groups, hence the metric
values decreased. Aside from these two cases, we observed
improvement in metric values both at procedure and statement
level for all of the units. As we can see however, there is still
room for improvement: for instance, we could set a new goal
to increase the SPEC value of the io group by adding more
specialized test cases and removing too general ones.

Fig. 3. Basic metric changes at procedure and statement level

Fig. 4. Improvement of cluster group in phases II. and III. with side-effects

V. RELATED WORK

Assessing test quality (as well as software quality) is not
an easy task. Researchers started to move towards test oriented
metrics only recently, which strengthens our motives to work
towards a more systematic evaluation method for testing. There

are many aspects and different criteria that can be consid-
ered [14] in test quality assessment. The main approach to
assess the adequacy of testing has long been the fault detection
capability of tests, which is traditionally predicted by coverage
metrics, though other approaches have been proposed as well
(e.g. the output uniqueness criteria defined by Alshahwan and
Harman [15]). Pinto et al. performed an extensive empirical
study on test suite evolution [8]. As a result, they proposed the
development of “intent-preserving” test repair techniques. A
similar process can be performed using our approach provided
that the “intents” can be expressed by different metrics.

A comprehensive survey of measures used in software
engineering by Gomez et al. [16] show that only a small
fraction of the metrics is directed towards testing. Chernak [17]
also stresses the importance of test suite evaluation as a basis
for improving the test process. The main message of the paper
is that objective measures should be defined and built into the
testing process to improve the overall quality of testing, but
the employed measures in this work are also defect-based.

Athanasiou et al. [18] give an overview on the state
of the art regarding the code-based quality criteria. They
state that different coverage values as well as static software
metrics (applied on test code) are utilized to assess test
quality; however they conclude that although some aspects
of test quality has been addressed, basically it remains an
open challenge. The authors provide a model for test quality
based on the software code maintainability model of Software
Improvement Group [19]. However, their approach (and similar
code-based approaches, e. g. [20]) cannot be applied on tests
that are not implemented in the programming language of
the systems, which is only typical for unit tests. Furthermore,
these approaches examine the structure of the test suite alone,
and not in connection with the code it is intended to test.
In our approach we combine structure and specification-based
information, utilize code coverage and point out additional
aspects that may contribute to the quality of a test suite.

Redundancy is another commonly used aspect for test suite
optimizations. Abreu et al. used code coverage to detect simi-
larity between tests or program code, and used this information
for program comprehension [21] and fault localization [22]
purposes. Our approach is different: instead of automatic
detection of similar items, we use the functional units as a
priori information and utilize code coverage to gain more in-
depth knowledge about the test suite and its relation to the
system under test.

In their paper, van Deursen et al. [23] defined test code
smells for unit tests, and used them for systematic refactoring
of test suites. Bavota et al. [24] have shown that most of these
smells have negative impact on test code comprehensibility.
Such test smells should be detected automatically, and it can be
done effectively using different metrics, as it has been studied
by van Rompaey et al. [25]. Although test code smells are
originally defined for test code, some of them can also be
interpreted on non-coded tests.

Apart from these related approaches we are not aware of
any documented systematic approach to assess and improve
test stuites based on the analysis of detailed coverage infor-
mation. Clearly, our approach can complement the mentioned
non coverage-based test suite quality measurement methods.



TABLE III. METRIC CHANGES SUMMARY

SoDA cluster data fl-technique io metric prioritization reader reduction
COV (procedure level) 0.58 → 0.74 0.33 → 0.89 0.82 → 0.83 0.83 → 1.00 0.88 → 0.89 0.50 → 0.83 0.67 → 1.00 0.96 → 0.97 0.00 → 0.88
COV (statement level) 0.56 → 0.69 0.16 → 0.82 0.68 → 0.69 0.78 → 0.80 0.49 → 0.49 0.41 → 0.68 0.59 → 0.79 0.74 → 0.78 0.00 → 0.77
PART (procedure level) 0.81 → 0.93 0.47 → 0.89 0.96 → 0.97 0.80 → 0.83 0.95 → 0.96 0.69 → 0.86 0.74 → 0.79 0.83 → 0.94 0.00 → 0.88
PART (statement level) 0.80 → 0.90 0.27 → 0.86 0.89 → 0.90 0.72 → 0.75 0.73 → 0.73 0.60 → 0.83 0.71 → 0.80 0.81 → 0.85 0.00 → 0,83
SPEC (procedure level) 1.00 → 1.00 0.17 → 1.00 0.87 → 0.59 1.00 → 1.00 0.35 → 0.20 1.00 → 1.00 1.00 → 1.00 1.00 → 1.00 0.00 → 1.00
SPEC (statement level) 1.00 → 1.00 0.16 → 1.00 0.76 → 0.61 1.00 → 1.00 0.12 → 0.09 1.00 → 1.00 1.00 → 1.00 1.00 → 1.00 0.00 → 1.00
UNIQ (procedure level) 1.00 → 1.00 0.00 → 1.00 0.57 → 0.47 1.00 → 1.00 0.37 → 0.28 1.00 → 1.00 1.00 → 1.00 1.00 → 1.00 0.00 → 1.00
UNIQ (statement level) 1.00 → 1.00 0.00 → 1.00 0.55 → 0.55 1.00 → 1.00 0.42 → 0.36 1.00 → 1.00 1.00 → 1.00 1.00 → 1.00 0.00 → 1.00
TPP (procedure level) 0.18 → 0.27 0.05 → 0.28 0.40 → 0.41 0.17 → 0.25 0.23 → 0.28 0.07 → 0.30 0.13 → 0.29 0.15 → 0.37 0.00 → 0.24
TPP (statement level) 0.03 → 0.04 0.00 → 0.04 0.05 → 0.06 0.01 → 0.02 0.03 → 0.03 0.00 → 0.03 0.01 → 0.03 0.00 → 0.01 0.00 → 0.02

VI. PERSPECTIVES

The presented approach for test suite assessment and im-
provement is part of our long term research oriented towards a
more general test suite quality and evolution framework. In the
code quality and evolution area there are numerous advanced
methods (such as refactoring tools, code quality assessment
tools, static defect checkers, etc.), but similar solutions are
largerly unexplored in the testing domain.

The small case study we presented on the improvement
of SoDA demonstrates the actual use of the method, but its
industrial application needs further verification and refinement.
We have different plans on how to improve TAIME, but
most importantly we plan to apply it to other projects and in
various test suite evolution scenarios. In particular, the actual
improvement of the WebKit test suite is among our plans, but
we are looking for projects where the method would be applied
in industrial setting. That said, we particularily welcome any
feedback from the industry on the future directions of our
efforts with TAIME.
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