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Abstract—Software product lines achieve much shorter time
to market by system level reuse and code variability. A possible
way to achieve this flexibility is to use generic components,
including the core system, in different products in alternative
configurations. The focus of testing efforts for such complex and
highly variable systems often shifts from testing specific products
to assessing the overall quality of the core system or potential
new configurations. As a complementary approach to feature
models and related combinatorial testing methods optimizing for
feature coverage, we apply a source code oriented analysis of
variability. We present two algorithms that optimize for high
coverage of the common code base in terms of C++ preprocessor-
based configurations with a limited set of actual configurations
selected for testing. The methods have been evaluated on iGO
Navigation, a large industrial system with typical configuration
support for product lines, hence we believe the approach can be
generalized to other systems as well.

Keywords—Variability, Preprocessor, Configurations, Software
Product Line, White box testing

I. INTRODUCTION

Software product lines are an efficient approach for achiev-
ing system level reuse [24]. Instead of separately developing
distinct products for similar needs, in software product lines,
a common code base contains the implementation of the core
competence of the vendor, while actual features offered to
customers are served by a customization layer on top of this
core system. This setup results in increased overall complexity
compared to standalone projects, but allows much shorter time
to market by reusing components of previous projects.

In the C++ domain, projects may differ in their target
platform, for example, where platform can mean both com-
pilation environment or target operating system. Supporting
various compilers on various platforms, both 32 and 64 bit
and similar variations, using basically the same source code,
this variability can be implemented by branching the code
with preprocessor directives where needed. Besides specify-
ing the target environment, functional differences are often
configurable with preprocessor parameters as well: enabling
or disabling (sub)modules, changing fundamental types (e.g.
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character type of strings or precision of arithmetics) or choos-
ing between alternative strategies [18]. This preprocessor-level
variability is a common technique in software libraries and
software product lines [5], like the Linux Kernel [20].

Challenges for testing such highly configurable product
lines are numerous, but they are mostly related to the vast num-
ber of possible SUT-s in the test process. This is particularily
an issue at integration- and system testing levels, and could
affect various test types including functional, non-functional,
regression, maintenance, etc. An example situation is the
following. Each concrete product uses a certain configuration
of preprocessor parameters in the common core code. As
part of the QA process, each product – and therefore the
corresponding product configurations of the core code – are
tested. This, however, does not help answering the following
question: What is the risk of enabling feature F in product
P ? If F has not been used recently in a product, then the
untested code of feature F suddenly becomes part of product
P . On the other hand, if F is used in many products, the same
core functionality is tested multiple times, individually for
each product. Hence, product lines need targeted test strategies
to handle variability [7], [25]. An optimal solution to this
problem would be to test each and every configuration upon
releasing any product (with a possibly updated list of enabled
features). But, in many cases, this is unrealistic due to the
prohibitively large number of possible configurations; hence,
various selective retesting strategies are followed [19].

Product-line testing strategies based on feature models
typically aim at producing high coverage in terms of features,
which is, in a way, a black box approach [21]. However, it
is usually not verified what is the effect of such strategies on
the portion of the code base eventually included in testing. In
this article, we offer a complementary approach, in which we
select the configurations for testing on a white box-basis: by
how much of the whole code base is included in the limited
set of configurations. This way, we will be able to reduce the
risk of untested features in any selected product.

We present two algorithms that automatically find con-
figurations by maximizing preprocessor-level code coverage
in C++-based projects. By extending the testing process with
these optimal-coverage configurations, the amount of untested
code drops significantly with moderate testing overhead. The
algorithms can help reorganize test configurations so that the
same functionalities are not tested unreasonably many times,



but originally undertested components receive enough focus
in exchange. We also present the results of our experiments
performed on iGO Navigation, a highly configurable and large
scale system from the automotive and navigation domain.

The paper is organized as follows. Section II specifies our
exact research goals, and describes the basic notions used in
preprocessor-based variability analysis. Section III presents the
two aforementioned algorithms, while Section IV shares the
results of our experiments on the iGO Navigation system. We
evaluate the results in Section V, and discuss related work in
Section VI. Section VII concludes the paper.

II. MOTIVATION AND APPROACH

Our effort to develop a configuration search algorithm was
motivated by testing challenges in the iGO Navigation product
of NNG LLC [11], a large scale proprietary automotive system.
The core system is written in C++ and is widely used in a vast
amount of products from mobile to line-fit navigation, mainly
in automotive projects with key brands. It has been developed
for more than 10 years, and its size is more than 1.9M lines of
code. The configuration of this system is very similar to that of
the Linux kernel, where the set of built-in kernel functionalities
are selected with preprocessor switches [29]. Many of the
features can be modules, enabling run time load/unload. The
navigation core is a library containing numerous different
functionalities (such as address search, route calculation, map
visualization, etc.), with both static (preprocessor-based) and
run time variability management.

A specific iGO Navigation product configuration deter-
mines preprocessor switches to enable/disable different func-
tionalities according to the target system environment and
product design decisions. Besides these, there are preprocessor
definitions that describe the target operating environment in
detail, called platform properties. Module implementations
use these platform properties to optimize their structure and
execution for the actual needs. Over the years, challenges
of high variability have been addressed in various ways.
The system employs test automation solutions, however the
thorough testing of one configuration still requires significant
effort. In this environment, a relatively quick but extensive test
would greatly increase the efficiency of testing efforts.

The main aim of our work was to devise a risk-based
strategy in which the limited testing capacity for testing this
system could be wisely used. This means, using minimal
effort finding the most important configurations to test. We
emphasize that although the method has been verified on this
particular system, it is general enough to be applicable on other
systems as well.

Finding the appropriate set of configurations and the search
criteria in this project turned out to be difficult. Most of
the previous approaches utilize the so called Feature Model
(FM) approach [3], which represents all the possible products
of SPL by declaring the constraints and relations between
features. Usually the number of possible configurations grows
exponentially with the number of features in the given FM
leading to millions of possible products to deal with. Therefore,
there was a need for methods which can automatically reduce
the number of products that need to be tested. For example,
generic combinatorial testing methods have been adapted to

support SPL testing: the equivalent of combinatorial testing in
the SPL environment is to use SAT solvers to generate products
to test pairwise, or t-wise combinations of features [10].

While the FM approach provides a clean SPL representa-
tion, FM-based testing solutions have some limitations. First,
feature models are very high level, specification oriented logi-
cal representations, which are not always well-documented or
usable for the mentioned testing scenarios. The combinatorial
testing approach needs the calculation of all t-wise sets, which
is known to be NP-complete, so working with higher complex-
ities (t ≥ 3) is quite ineffective [13]. Furthermore, despite the
popularity of pairwise testing in general, there are opinions that
it is a poorly understood and ineffective technique [2]. Finally,
the FM approach generally uses binary variables, where SAT
solvers work efficiently, but these solutions cannot deal with
complex variables as in our case.

Hence, we propose a complementary method which, in-
stead of the black box-like approach of feature models, is code-
oriented, i.e. white-box. The basic idea of the method is that
in order to keep the overall code quality high with reasonable
testing effort, we minimize the number of tested configurations
while the source code covered by these configurations is kept
as high as possible. Here, on ‘covered source code lines’ we
mean physical code lines that belong to a given configuration
(so, we do not deal with code coverage resulting from actually
executing the test). In the following sections we provide details
of the proposed general algorithms and how they have been
implemented to work with the iGO Navigation system.

III. SEARCH ALGORITHMS

A. Basic Concepts and Approach

In this section we seek for answers to the following
problem: find N configurations that cover as much code
as possible. Our base notions in this research are variables
and configurations. We call variables all preprocessor macros
appearing in conditional directives. A configuration is a set
of variables with concrete values, where the value may be
undefined as well. We call configuration variables prepro-
cessor macros that are taking part in configuring the system;
these are separated from other type of macros. We use a block-
based model of the source code. Each (conditional) block
starts with a preprocessor condition and contains all source
code lines until a new conditional directive (#if, #else,
#elif or #endif), or until the end of the file is reached.
The content of the block is a black box from our point of view,
only two important block properties are used: block condition
(also called presence condition [15]) and block size measured
in lines of code.

Considering conditional compilation, the notion of cover-
age is the following: a configuration covers a source code
line if it satisfies the presence condition of the block con-
taining the given line. Thus the total coverage of a given
configuration can be determined by evaluating conditions of
all blocks and computing the sum of block sizes of cov-
ered blocks. Note that we consider that block conditions
contain not only the actual conditional expression of the
local conditional directive, but all conditions accumulated
which led to the actual condition from the beginning of the
source file. For example, the nested block in the following



code snippet has defined(B) as its local condition and
(¬ defined(A) ∨ (defined(A) ∧ A < 5)) ∧ defined(B)
as its accumulated global condition.
#if A >= 5
...

#else
...
#if defined B
...

#endif
#endif

We approach the problem via conditional blocks and in-
dividual configuration variables from two viewpoints in the
following two ways:

a) Block-based approach: considering block condi-
tions, we assign values to variables to cover largest blocks,
and iteratively compose an output configuration.

b) Variable-based approach: we search the variable
space and assign values to selected variables to increase
coverage, and iteratively compose an output configuration.

We implemented one block-based and one variable-based
algorithm. We expected long running time for the algorithms
because of the complexity of the problem. Thus we designed
greedy algorithms that make locally best decisions. Both
algorithms work on pre-filtered blocks for speed optimization
purposes. There are blocks with constant true or false
conditions, these blocks are filtered out. There are blocks that
contain #error directives (so called error blocks), which
have to be avoided in configuration search, so they are also
filtered out. Pre-filtering is done once at the beginning of the
search process and requires one check for each block con-
dition. Besides applying the error block filter, the algorithms
regularly check error block conditions to skip any candidate
configuration that covers any error blocks.

B. Block-based Algorithm

In this method each output configuration is composed iter-
atively. The pseudocode of the algorithm is listed in Figure 1.
This greedy algorithm tries to cover the largest possible block
in each iteration. It maintains a candidate configuration that
contains the variable–value pairs already fixed. The condition
of the largest uncovered block is examined and possible values
of its variables are tried until candidate configuration extended
with the new variable–value pairs (extended candidate) covers
the given block. If the extended candidate does not cover any
error blocks, then it is used as the new candidate and the set
of covered blocks is updated.

When no new blocks can be covered, the candidate config-
uration is written to the output. The algorithm continues with
composing a new configuration from the scratch, while main-
taining the set of covered blocks from all previous iterations.

This algorithm heavily depends on the distribution of
block sizes, since in each iteration the largest covered block
determines the direction of the search.

C. Variable-based Algorithm

The variable-based algorithm selects appropriate variables
to cover as much code as possible in a greedy manner. The

Input: N . Number of output configurations
Input: S . Set of code blocks
Output: C . List of N output configurations

1: algorithm BLOCK-BASED ALGORITHM
2: i← 0
3: BLK ← SORT(FILTER(S, desc_by_size))
4: COV ← ∅
5: while i < N do
6: X ← empty configuration
7: for all bmax ∈ BLK \ COV do
8: for all (v1, x1) . . . (vn, xn) :

vi ∈ COND(bmax), xi ∈ VAL(vi) do
9: X′ ← X ∪ (v1, x1) . . . (vn, xn)

10: if (X′ satisfies bmax) ∧ (X′ does not satisfy any error
conditions) then

11: X ← X′

12: COV ← COV ∪ {c ∈ BLK : c covered by X′}
13: break
14: end if
15: end for
16: end for
17: Ci ← X
18: i← i+ 1
19: end while

Figure 1. Block-based configuration search algorithm

pseudocode can be observed in Figure 2. Similarly to the
block-based one, this algorithm composes the output configu-
rations iteratively. In each iteration the algorithm tries to extend
the candidate configuration by one variable–value pair. To find
the best pair, the algorithm computes all possible extensions
of the candidate configuration and chooses one pair with the
highest code coverage. If the extended candidate does not cover
any error blocks, then it is used as the new candidate and the
set of covered blocks is updated.

When no more valid extensions can be found, the candidate
configuration is written to the output. The algorithm continues
with composing a new configuration from scratch, while main-
taining the set of covered blocks from all previous iterations.

IV. EXPERIMENTS

A. Variability Properties of the iGO Navigation System

The iGO Navigation system has more than 60 active
configurations that have been released and still maintained. The
developers implemented a proprietary variability analyzer tool
to perform the static analysis of preprocessor conditions. Most
important features of the analyzer are that (1) block conditions
can be simplified using heuristics; and (2) configurations and
block conditions can be evaluated to query whether a block
is part of a given configuration. The analyzer first produces
a variability model with blocks and their conditions, which is
then processed by the search algorithms via the analyzer API.

The iGO Navigation variability model contains 46,810
blocks, while in the conditions 1,200 configuration variables
are used. The search algorithms filter out three type of blocks
at the beginning (constant true, false and error blocks). Con-
ditions of the remaining blocks contain both configuration
variables and other variables. Since we use only configuration
variables, from the coverage point of view three types of con-
ditions can be distinguished. Configuration conditions contain
only configuration variables, thus it is expected to cover these
blocks. Mixed conditions contain both types of variables, so
coverage is possible only if the condition can be satisfied



Input: N . Number of output configurations
Input: V . Set of configuration variables
Input: S . Set of code blocks
Output: C . List of N output configurations

1: algorithm VARIABLE-BASED ALGORITHM
2: i← 0
3: BLK ← FILTER(S)
4: COV ← ∅
5: while i < N do
6: X ← empty configuration
7: while V \ VAR(X) 6= ∅ do
8: Xmax ← X
9: COVmax ← COV

10: for all (vi, xi) : vi ∈ V \ VAR(X), xi ∈ VAL(v) do
11: X′ ← X ∪ (vi, xi)
12: if X′ does not satisfy any error conditions then
13: COVX′ ← COV ∪ {b ∈ BLK : b covered by X′}
14: if |COVX′ | > |COVmax| then
15: Xmax ← X′

16: COVmax ← COVX′

17: end if
18: end if
19: end for
20: if |COVmax \ COV | > 0 then
21: X ← Xmax

22: COV ← COVmax

23: else
24: break
25: end if
26: end while
27: Ci ← X
28: i← i+ 1
29: end while

Figure 2. Variable-based configuration search algorithm

using configuration variables (for example there is a fortunately
placed logical or in the condition). Other conditions contain
only non-configuration variables, so these cannot be covered
by our algorithms. The distribution of condition types in the
system can be seen in Table I.

Table I. SYSTEM SIZE – DIVIDED INTO CONDITION TYPES

Condition type Blocks LOC
Filtered condition (T, F, #error) 11,847 682,300
Configuration condition 22,067 920,926
Mixed condition 10,085 271,710
Other condition 2,811 50,064
Total 46,810 1,925,000

Regarding the block sizes, the majority (46,184 blocks,
98.7%) of the blocks are below 500 LOC, while the most fre-
quent block size with 12,931 occurrences is 2. The minimum
and maximum block sizes are 1 and 10,428 LOC respectively,
and the average is 41 LOC.

B. Experiments with 10 Configurations

First set of experiments were performed with N = 10,
since 10 configurations may be reasonable to test and we
also expected to see coverage trends in 10 iterations. In
Figures 3 and 4 coverage of all 10 configurations can be
observed along the x axis in the order they were produced
by the block-based and variable algorithms respectively. The
y axis shows lines of code values. In these diagrams the dashed
lines of Total LOC and Config LOC have constant values as
they represent system properties serving as baselines. Total
LOC denotes the total lines of code belonging to blocks with
configuration and mixed conditions. This level of coverage

cannot be reached, because mixed conditions cannot be fully
covered by configuration variables. Config LOC denotes the
total lines of code contained by blocks with configuration
condition, which level of coverage is addressed in our research.

The other three lines show actual coverage values in each
iteration. Delta coverage LOC denotes the coverage added by
the given configuration compared to the coverage provided by
all previous configurations. Total coverage LOC line shows the
overall coverage achieved by all configurations including the
actual one. Config coverage LOC means the overall coverage
considering only blocks with configuration condition.
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Figure 3. Coverage results of the block-based algorithm (lines of code)

Figure 3 shows that the first configuration of the block-
based algorithm covers 74% of Config LOC itself (see green
dashed and solid lines). From that point the coverage still
increases, but after the fifth configuration we see modest
increase only. Config coverage does not reach Config LOC
in this experiment. Counting all 10 configurations, the Config
coverage value is still 98.73% of Config LOC. However, this is
far above than what we expected. On the other hand, interesting
is to observe the parallel curve of Total coverage and Config
coverage lines. In the fifth iteration the Total coverage exceeds
the Config LOC values, since the algorithm covers several
mixed blocks as well.
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Figure 4. Coverage results of the variable-based algorithm (lines of code)

Results of the variable-based algorithm are presented in a
similar diagram in Figure 4. The first configuration produces
even slightly better coverage than the first one of the block-
based algorithm. Unfortunately the coverage increase in the



subsequent configuration is too small. Starting from the 4th
configuration, the algorithm does not cover any new source
code lines. Thus the Config coverage result of this algorithm
remains at the 75.56% level.

The total running time of the tool consists of the time
spent by the variability analyzer tool and the search algorithm.
The analyzer produced the variability model in ∼5 hours.
However, this model is used for other purposes as well, as
such we consider it available for configuration search. The
runtime performance of the algorithms was between 22 and 26
minutes, which is acceptable, since testing (and even building)
10 configurations takes much more time, so to find good
configurations is far profitable.

C. Experiment with 50 Configurations

Given the acceptable search time for 10 configurations, in
the second phase the block-based algorithm was performed
to find N = 50 configurations. The variable based algorithm
stopped to increase coverage after 3 configurations, so it was
omitted from this experiment.

After the initial 10 configurations, only small parts of the
code are covered in each step by the block-based algorithm.
Figure 5 shows that Config coverage slowly approaches the
Config LOC line (green solid and dashed lines). What we
cannot observe in the diagram: after the 24th configuration
in each step less than 100 (sometimes only 2-3) additional
source code lines are covered. The total search time in this
larger experiment was about 124 minutes, which means that
we experienced roughly linear behaviour.
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Figure 5. Coverage results of the block-based algorithm (LOC, N = 50)

V. EVALUATION

A. Evaluation of Results

The block-based algorithm performed better in our exper-
iments. Its average search time was below the time of the
variable-based algorithm. Both algorithms run in an acceptable
time frame, so more complex heuristics could be used in future
versions. The first configurations found by the block-based
algorithm cover slightly less lines of code than the ones found
by the variable-based algorithm. On the other hand, the block-
based algorithm is not limited to 3 configurations. Comparing
the results after 10 configurations the 75.56% coverage by the
variable based algorithm is not acceptable, while the 98.73%

coverage of the block-based algorithm is a solid result which
makes the search algorithm applicable to use in practice.

The advantage of the block-based algorithm is that in each
step it looks for a combination of more than one variables at a
time (as many variables as the block condition contains). On
the contrary, the variable-based algorithm tries to find the best
variable in each step. To find the best variable, it evaluates
all free variables by computing possible coverages. This is
the reason for the longer running time, unfortunately is seems
that for the subject system this search does not pay off. To
overcome this one variable at a time limitation we propose a
solution in the next section. On the other hand, the advantage
of this algorithm is its variable-based logic, that may help
to avoid local maxima, which traps the other algorithm that
greedily consumes largest blocks.

Besides the promising coverage results, we need to know
whether we produce good configurations. For a resulting con-
figuration it is not expected to be similar to an already released
configuration of the product. Instead, the expectation is that
the produced configurations have to be built successfully to
enable testing. The development policy of the company forces
the use of error conditions to exclude invalid configurations
that produce build time or runtime errors. Developers create
a conditional block for unsupported combinations of variables
and their values. The body of these blocks contains an #error
directive to prevent successful build. Hence testing build results
is outside of the responsibility of the algorithms, they rely
on well placed #error directives, giving the responsibility
back to the developers. We expect that by improving the error
markers the convergence to 100% coverage will be slower, but
the quality of the produced configurations will be better.

B. Plans for Improvement

An important outcome of this research is the list of future
ideas/actions to achieve much better results. We identified two
major issues during the experiments: improvement needed for
variable-based algorithm and resulting configurations need to
be validated. The first issue is the one-variable problem with
the variable-based algorithm. One way of improvement is to
guess for more variables and values at a time. However, in
this case the exhaustive search for best coverage gain in each
step is becoming less feasible. Another way we propose is to
develop a hybrid algorithm, which starts with a variable-based
variant, and at the point when the variable-based search has
no new results we switch to the block-based algorithm.

To improve the quality of the configurations we rely on
error conditions. We plan to enhance the use of error markers
in the code and check our algorithms on the changed program.
To achieve better error markers we plan to use automatic
configuration build tests in a controlled way. During the
controlled build tests the configuration space is traversed and
selected configurations are tried to build the code. In case
of build failure the configuration is reported to developers to
handle the issue and insert #error directive if necessary.

There are two less crucial but still desired ideas for future
work. One direction is to further improve simplifier heuristics
of the analyser to increase performance. The second direction
is enabled by the fair running time of greedy algorithms:
we plan to develop search algorithms that are not limited to



finding local maxima. In fact even 24 hours running time or
an iterative, long running algorithm is acceptable if we gain
on testing efforts.

C. Generalizability and Threats to Validity

We identified several threats that can affect the validity of
our results. Our subject system uses typical preprocessor-based
variability solutions. In addition, it holds the properties of a
typical industrial SPL, the problems raised by the iGO Naviga-
tion system may be representative among preprocessor-based
SPLs. On the other hand, iGO Navigation is a proprietary
software of one concrete domain, since we cannot conclude
that similar results can be achieved on systems with different
variability policies.

Although our approach and the proposed algorithms are
generally applicable, there are two restrictions introduced
by iGO Navigation developers to decrease the complexity
of preprocessor-based variability solution. First, configuration
variables may not be function-like macros. There are several
examples of such macros in large projects (like the GCC
compiler). This issue can be addressed in the analyzer, and
by introducing project-specific helper variables. Second, the
domain of these variables is restricted to integer values only.
In practice, most variables have only enabled and disabled
states, only some of them may have more values. Since
this restriction applies only to configuration variables, this
integer-restricted model is a limitation only when configuration
variables implement some kind of metaprogramming at the
preprocessor level, which usage is rare in our experience. On
the other hand, the usual approach utilizing feature models
is more restricted using binary variables only. In addition,
this limitation is due to optimization heuristics, which can be
extended to handle a more general case as well. Another threat
is that resulted configurations are not yet tested as the number
of error blocks need to be increased. After the use of error
markers is improved throughout the code, we plan re-run the
experiment and measure the testing capabilities of resulting
configurations.

VI. RELATED WORK

The C/C++ preprocessor enhances the C and C++ lan-
guages by lightweight meta-programming capabilities. It is
widely assumed that the variability mechanism of the prepro-
cessor tool is used quite frequently in the implementation of
large variable software systems from different domains such
as operating systems, database systems, or compilers [18]. But
using preprocessor directives is not the only way of handling
variability. We refer to the paper of Thüm et al. [30] for an
in depth survey on variability solutions. The interested reader
is also referred to the recent survey on search based software
engineering for SPLs by Harman et al. [9].

Testing software product lines also requires special strate-
gies that take care of variability properties of these systems.
For an overview we refer to the works of Neto et al. [21] and
Engström et al. [7]. Several researchers tackling the problems
of SPL testing rely on classical approaches, e.g. feature models
and t-wise testing [12]. However, t-wise testing of SPLs is a
difficult task, hence constraint solving methods have been put
to use. Perrouin et al. [23] proposed a solution based on a SAT

solver. Oster et al. [22] improved the predictability of similar
approaches by transforming the feature model and using CIT
algorithms. As a recent result, SPLCAT [12] looks promising
because it can handle larger FMs, its performance can be
seen in the experiments conducted on the Linux kernel. An
optimization of SPLCAT has been proposed by Johansen et
al. [13], it performs well on FMs of all sizes but regarding
t-wise testing it is limited to t = 3. Due to the computational
complexity of t-wise testing some of the available solutions
have weaknesses in terms of performance. Usually, the most
prevalent issues are the following: scalability, flexibility, pre-
dictability of the generated solutions, restrictions of SAT
solvers, and handling of large sized FMs and higher level
of interactions during t-wise testing. Therefore, researchers
are constantly aiming for different solutions, for example,
prioritization or search-based heuristics. Henard et al. [10]
proposed a combinatorial testing approach which is able to
handle feature models with larger sizes. It utilizes flexible
prioritization models based on a t-wise maximizing fitness
model. It is also features a scalable search-based technique
to generate products from the given FM.

Tartler et al. [29] presented an approach for determining
the smallest set of configurations that can achieve almost
full code coverage. The presented work is the most similar
approach to ours. A naive and a greedy algorithm is proposed
to find high coverage configurations in the Linux kernel.
The algorithms are based on similar pirnciples to ours like
preprocessor variables and conditional blocks. However, they
have some limitations compared to our method, namely, they
uses only binary variables (passed to the SAT solver), the
granularity is at the block level, and there is no distinction
between blocks based on their size. This approach is on the
mid way between the feature models and our source code line
level approach. A common outcome of their and our work
could be a proposal of hybrid algorithms in future.

Kästner et al. developed a variability analyzer used for min-
ing features [14], which is a promising direction of filling the
gap between preprocessor configurations and feature models.
Krone and Snelting [16] analysed the complex configuration
structures created with directives and produced a graphical
output of them. Concept lattices were used to help in reengi-
neering configurations [27]. Latendresse [17] proposed a solu-
tion for finding the conditions required for a particular source
line to get through the conditional compilation. This approach
promises efficient symbolic evaluation algorithm with linear
time complexity. The C-CLR tools are Eclipse plugins that
provide source code views on user selected configurations [26].
The Sunifdef command line tool [28] attempts to eliminate
or simplify conditional directives based on defined macro
values. There are several other related ideas implemented
to ease the understanding and handling preprocessor-based
configurations. Baxter and Mehlich introduced a method for
removing unnecessary conditional directives based on rewrite
rules [4]. The Columbus preprocessor schema [31] defines both
dynamic and static representation of directives. The latter could
be used for variability analysis as well. Additional techniques
to help handling configurations include IDE integration of
analysis [6], background coloring of conditional [8], program
slicing adopted on preprocessor macros [32], [33] or refactor-
ing conditionals into aspects [1].



VII. CONCLUSIONS

In this paper we addressed an important issue of testing and
maintaining software product lines, namely, how to produce
a small number of configurations with high coverage of the
code base. We presented two types of algorithms for the task
and evaluated them on the iGO Navigation system, a large
industrial project featuring a preprocessor-based variability
solution with 1200 configuration variables. We found that the
runtime performance of these greedy algorithms is acceptable,
and that in the case of a block-based algorithm the 10 resulting
configurations cover 98,73% of configurable source code lines.
During the experiments we identified concrete improvement
possibilities in our algorithms. Main future direction of our
work is to improve the quality of the results through enhanced
error conditions.

REFERENCES

[1] B. Adams, W. De Meuter, H. Tromp, and A. E. Hassan. Can we refactor
conditional compilation into aspects? In AOSD ’09: Proceedings of
the 8th ACM international conference on Aspect-oriented software
development, pages 243–254, New York, NY, USA, 2009. ACM.

[2] J. Bach and P. J. Schroeder. Pairwise testing - a best practice that
isn’t. In In Proceedings of the 22nd Pacific Northwest Software Quality
Conference, pages 180–196, 2004.

[3] D. Batory. Feature models, grammars, and propositional formulas. In
H. Obbink and K. Pohl, editors, Software Product Lines, volume 3714
of Lecture Notes in Computer Science, pages 7–20. Springer Berlin
Heidelberg, 2005.

[4] I. D. Baxter and M. Mehlich. Preprocessor conditional removal by
simple partial evaluation. In WCRE ’01: Proceedings of the Eighth
Working Conference on Reverse Engineering (WCRE’01), page 281,
Washington, DC, USA, 2001. IEEE Computer Society.

[5] P. Clements and L. Northrop. Software Product Lines: Practices and
Patterns. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2001.

[6] R. Dévai, L. Vidács, R. Ferenc, and T. Gyimóthy. Service layer for IDE
integration of C/C++ preprocessor related analysis. In Computational
Science and Its Applications - ICCSA 2014, volume 8583 of Lecture
Notes in Computer Science, pages 402–417. Springer International
Publishing, Jun 2014.

[7] E. Engström and P. Runeson. Software product line testing–a systematic
mapping study. Information and Software Technology, 53(1):2–13,
2011.

[8] J. Feigenspan, C. Kästner, S. Apel, J. Liebig, M. Schulze, R. Dachselt,
M. Papendieck, T. Leich, and G. Saake. Do background colors
improve program comprehension in the #ifdef hell? Empirical Software
Engineering, 18(4):699–745, 2013.

[9] M. Harman, Y. Jia, J. Krinke, W. B. Langdon, J. Petke, and Y. Zhang.
Search based software engineering for software product line engineer-
ing: A survey and directions for future work. In Proceedings of the 18th
International Software Product Line Conference - Volume 1, SPLC ’14,
pages 5–18, New York, NY, USA, 2014. ACM.

[10] C. Henard, M. Papadakis, G. Perrouin, J. Klein, P. Heymans, and
Y. Le Traon. Bypassing the combinatorial explosion: Using similarity
to generate and prioritize t-wise test configurations for software product
lines. IEEE Trans. Softw. Eng., 40(7):650–670, July 2014.

[11] Homepage of NNG LLC. http://www.nng.com/, 2015.
[12] M. F. Johansen, O. Haugen, and F. Fleurey. Properties of realistic

feature models make combinatorial testing of product lines feasible.
In Proceedings of the 14th International Conference on Model Driven
Engineering Languages and Systems, MODELS’11, pages 638–652,
Berlin, Heidelberg, 2011. Springer-Verlag.

[13] M. F. Johansen, O. Haugen, and F. Fleurey. An algorithm for generating
t-wise covering arrays from large feature models. In Proceedings of the
16th International Software Product Line Conference - Volume 1, SPLC
’12, pages 46–55, New York, NY, USA, 2012. ACM.

[14] C. Kästner, A. Dreiling, and K. Ostermann. Variability mining:
Consistent semiautomatic detection of product-line features. IEEE
Transactions on Software Engineering, 40(1):67–82, 2014.

[15] A. Kenner, C. Kästner, S. Haase, and T. Leich. Typechef: Toward type
checking #ifdef variability in C. In Proceedings of the 2Nd International
Workshop on Feature-Oriented Software Development, FOSD ’10, pages
25–32, New York, NY, USA, 2010. ACM.

[16] M. Krone and G. Snelting. On the inference of configuration structures
from source code. In Proceedings of ICSE 1994, 16th International
Conference on Software Engineering, pages 49–57. IEEE Computer
Society, 1994.

[17] M. Latendresse. Fast symbolic evaluation of C/C++ preprocessing using
conditional values. In Proceedings of the Seventh European Conference
on Software Maintenance and Reengineering (CSMR 2003), pages 170–
179. IEEE Computer Society, March 2003.

[18] J. Liebig, S. Apel, C. Lengauer, C. Kästner, and M. Schulze. An
analysis of the variability in forty preprocessor-based software product
lines. In Proceedings of the 32nd International Conference on Software
Engineering (ICSE), pages 105–114, New York, NY, 5 2010. ACM.

[19] S. Lity, M. Lochau, I. Schaefer, and U. Goltz. Delta-oriented model-
based spl regression testing. In Proceedings of the Third Interna-
tional Workshop on Product LinE Approaches in Software Engineering,
PLEASE ’12, pages 53–56, Piscataway, NJ, USA, 2012. IEEE Press.

[20] R. Lotufo, S. She, T. Berger, K. Czarnecki, and A. Wźsowski. Evolution
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