
Columbus – Reverse Engineering Tool and Schema for C++

Rudolf Ferenc1, Árpád Beszédes1, Mikko Tarkiainen2 and Tibor Gyimóthy1

1University of Szeged, Research Group on Artificial Intelligence
fferenc,beszedes,gyimig@cc.u-szeged.hu

2Nokia Research Center
mikko.t.tarkiainen@nokia.com

Abstract

One of the most critical issues in large-scale software
development and maintenance is the rapidly growing size
and complexity of software systems. As a result of this rapid
growth there is a need to better understand the relation-
ships between the different parts of a large software system.
In this paper we present a reverse engineering framework
called Columbus that is able to analyze large C++ projects,
and a schema for C++ that prescribes the form of the ex-
tracted data. The flexible architecture of the Columbus sys-
tem with a powerful C++ analyzer and schema makes it a
versatile and readily extendible toolset for reverse engineer-
ing. This tool is free for scientific and educational purposes
and we fervently hope that it will assist academic persons
in any research work related to C++ re- and reverse engi-
neering.

Keywords
Tool interoperability, standard exchange format, C++

schema, front end, ASG, Columbus/CAN, GXL

1 Introduction
One of the most critical issues in large-scale software de-

velopment and maintenance is the rapidly growing size and
complexity of software systems. As a result of this rapid
growth there is a need to understand the relationships be-
tween the different parts of a large system [1, 3]. The sub-
stantial amount of existing legacy code and/or high num-
ber of participants in code development also necessitates
the use of tools for reverse engineering [22]. Reverse en-
gineering is “the process of analyzing a subject system to
(a) identify the system’s components and their interrelation-
ships and (b) create representations of a system in another
form at a higher level of abstraction” [4]. We introduce a
tool that is able to analyze large C++ software systems and
to present the extracted information in a common specifica-
tion called the Columbus Schema for C++ [8]. This schema

describes the way the various language elements should be
represented and the relationships among these [11].

In recent years it has became increasingly apparent that,
in order to successfully perform a real-life software main-
tenance or reengineering task, a suitably assembled set of
tools is required (e.g. front ends and code-rewriters, met-
rics tools, documentation tools, visualization tools and even
compilers). In order to achieve interoperability among these
tools we need a common schema and a front end that gen-
erates data according to the schema. Based on previous
research [11, 19] we present some requirements, which
should be met when designing such a schema, front end and
framework to assist in the integration of the RE tools.

Requirements for a framework:

� Project handling. The source code of real-life software
systems is always divided into multiple files spread
across several directories, which can have different
build options, linking settings and interdependencies.
The way this information is handled is of great impor-
tance for a reverse engineering tool.

� Extendibility. Extendibility is needed to connect the
system with other tools. This can be done by furnish-
ing a well defined interface (API), which allows access
to the tool’s functionality.

� Filtering. Filtering is especially useful when extract-
ing large projects. The reverse engineered code can
produce huge amounts of extracted data, which is hard
to present in a way that provides useful information
to the user (the user is interested only in parts of the
whole system at a given time).

� Visualization. After the data extraction from the sub-
ject system has been performed, information should be
presented to the user in a usable form. The best way of
doing this is to represent the data in visual form, e.g.
in the form of diagrams, charts, or tables.

Requirements for a C++ front end:

� Correctness. The first and probably most important
requirement for a front end is that is should generate
correct information about the subject system.

� Completeness. The front end should be able to perform
a complete analysis of the system. So called “fuzzy”
parsers that extract only some higher level constructs
(e.g. classes and functions) can be also useful, but only
in a limited number of applications.

� Fault tolerance. It should have the ability to parse in-
complete and syntactically incorrect source code.

� Parsing speed. The front end should be as fast as pos-
sible because of the generally large amount of source
code.

� Preprocessing. The front end should be able to pre-
process the C++ source files (e.g. to process include
directives and to expand macros).

� Dialects. Unfortunately, C++ is a programming lan-
guage that has several dialects (e.g. GNU, Microsoft,
Borland). In order to be widely accepted, the front end
should be able to handle as many dialects as possible.

� Command line operation. Because real-world C++
systems are usually built using makefiles and com-
mand line tools, the front end should be also able to
operate in command line mode.

Requirements for a C++ schema:

� Level of detail. The schema should be able to represent
C++ elements at different levels of abstraction. In [11]
three levels of abstraction were defined: (1) Lexical
Structure, (2) Syntax, and (3) Semantics.

� Modularity/extendibility. The schema should be mod-
ular and easily extendible. This means that logically
different parts of the language should be described in
different modules of the schema description (e.g. type
representations, expressions) and that the interconnec-
tions between these packages should be as weak as
possible.

� Instance representation. It should be relatively
straightforward to create physical representations (e.g.
files) from a schema instance – an abstract syntax
graph – to facilitate data exchange (e.g. with GXL [14]
or RSF [20]).

� Dialects. Similar to the dialects requirement set for
front ends, when designing a schema special care
needs to be taken with the different C++ dialects. In
order to be widely applicable the schema should be
sufficiently general to handle these dialects.

In this paper we present the Columbus tool and Schema
for C++, which fulfill most of the above set requirements.
Moreover, this tool is free for scientific and educational pur-
poses and can be downloaded from FrontEndART’s home-
page [12], and we hope that we will assist academic persons
in any research work related to C++ re- and reverse engi-
neering. The framework relieves researchers of the burden
of having to write parsers for different purposes and allows
them to concentrate on their own concrete research topic.

In the next section we will describe the Columbus frame-
work in detail. In Section 3 we present the C++ front end
of Columbus called CAN. We then present the Columbus
Schema via an example in Section 4. Section 5 discusses
some tools and schemas having similar objectives as ours.
Finally, in Section 6 we draw some conclusions and outline
directions for future work.

2 Columbus Framework

Figure 1. The user interface of Columbus

Columbus [10] is a reverse engineering framework,
which has been developed in cooperation between the Re-
search Group on Artificial Intelligence in Szeged, the Soft-
ware Technology Laboratory of the Nokia Research Center
and FrontEndART Ltd. Columbus is able to analyze large
C/C++ projects and to extract data according to the Colum-
bus Schema (see Section 4).

The main motivation behind developing the Columbus
system was to create a tool which implements a general
framework for combining a number of reverse engineering
tasks, and to provide a common interface for them. Thus
Columbus is a framework which supports project handling,
data extraction, data representation, data storage and filter-
ing. All these basic tasks of the reverse engineering process

are accomplished by using the appropriate modules (plug-
ins) of the system. Some of these plug-ins are present as
basic parts of Columbus, and the system can be extended
to include other reverse engineering requirements as well.
By doing this we have obtained a versatile and an easily
extendible tool for reverse engineering.

Columbus is used in research projects in the Nokia Re-
search Center (e.g. for reverse engineering UML Class Dia-
grams for Nokia’s UML design environment TDE [26]) and
in the Maisa project of the Helsinki University for recog-
nizing standard Design Patterns in C++ programs [9].

Another example is the use of Columbus in the FAMOOS
project with the Crocodile metrics tool [23]. An important
application is the ongoing work on information exchange
between Columbus and the GUPRO tool, which uses GXL
as its input format [7]. A successful example of informa-
tion exchange with the rigi graph visualizer tool [20] is also
recently accomplished.

Figure 1 shows a typical snapshot of a Columbus session.

2.1 Overview of the Columbus System

Columbus

Framework

C++ Extractor plug-in

CPPML Exporter plug-in

RSF Exporter plug-in

C++ Linker plug-in

GXL Exporter plug-in

CAN

ExportCPP

CANLink

HTML Exporter plug-in

FAMIX XMI Exporter plug-in

MAISA Exporter plug-in

Figure 2. The structure of the framework

The basic operation of Columbus is performed via three
types of plug-ins (see Figure 2). These are the following:

� Extractor plug-ins (currently only for C/C++) – The
task of an extractor plug-in is to properly analyze a
given input source file and to create a file which con-
tains the extracted information.

� Linker plug-ins – The task of a linker plug-in is to build
up (in the memory) the complete merged internal rep-
resentation of the project. This process is carried out
based on the files created by the extractor plug-in. This
plug-in is also responsible for filtering the merged data
in order to produce a more clear-cut internal represen-
tation for exporting.

� Exporter plug-ins – The task of an exporter plug-in is
to export the internal representation, built up and fil-
tered by the linker plug-in, to a given output format.
The currently available exporters are for three XML
formats (CPPML, GXL and Famix XMI), RSF, HTML
and Maisa. UML XMI and VCG exports will be avail-
able soon as well.

Besides the delivered plug-ins the user can easily write
and add his/her own new plug-ins to the Columbus system
using the plug-in API.

2.2 The Extraction Process

C/C++

extractor

C/C++

extractor

Other

extractor

C/C++

linker

Other

linker

internal

repr. for

C/C++

1st C/C++

exporter

2nd C/C++

exporter

Other

exporter

1.cpp

2.i

1.other

Other

internal

repr.

target

file 1

target

file 2

target

file 3

object 2

object 3

object 1

STAGE 1 STAGE 2 STAGE 3

(extraction) (linking) (exporting)

Figure 3. The extraction process

The extraction process is based on a Columbus project.
A project stores the input files (and their settings: precom-
piled header, preprocessing, output directories, etc.) dis-
played in a tree-view, which represents a real software-
system. The project can simultaneously contain source files
of different programming languages.

The complete extraction process in Columbus can be
seen in Figure 3. The process is very similar to a compiler
system. The first stage of the extraction process is data ex-
traction. Columbus takes the input files one by one and
passes them to the appropriate extractor, which then creates
the corresponding internal representation file.

In the second stage the linker plug-in is automatically
invoked in order to link (merge together) the internal repre-
sentation files in the memory.

In the third stage after selecting the desired export format
the exporting is performed. Exporting is usually based on
a filtered internal representation. Filtering is discussed in
detail in Section 2.3.

All stages of the extraction process can be influenced by
setting various plug-in specific options. An important ad-
vantage of the Columbus system is that it can incrementally

perform all of the above-described steps, i.e. if the partial
results of the certain stages are available and the input of the
stage has not been altered, these results will not be regener-
ated.

2.3 Filtering

The reverse engineered code can produce huge amounts
of extracted data, which is hard to present in a way that can
offer useful information to the user (the user may be inter-
ested only in parts of the whole system at a given time). Dif-
ferent filtering methods in Columbus can help in the solving
of this problem.

There are three options for filtering:

� Filtering using C++ element categories, e.g. classes,
templates and enumerations. With this option all ele-
ments that do not belong to the selected categories will
be filtered out.

� Filtering by input source files. All C++ elements
that come from the input files which are not selected
are filtered out. In this way all elements that come
from system libraries, for instance, can be easily fil-
tered out if they are not included in the project (these
header files are not strictly part of the user’s project).
The remaining C++ elements can be individually se-
lected/deselected in the project tree-view.

� Filtering according to scopes. Different C++ elements
like classes or namespaces can be selected/deselected
individually in a tree-view browser that represents the
scoping structure of the project.

2.4 Exporting

After the extraction of the data is completed, and the de-
sired filter options are set, the data can be exported into var-
ious file formats. Some of these are general (e.g. CPPML
and GXL), while others are tool specific (e.g. Famix and
Maisa). Exporters are being continuously developed for
various tools, the currently available export formats are the
following:

CPPML. This export format permits the creation of an
XML document (called CPPML – C++ Markup Language)
that has a structure based on the Columbus Schema (see
Section 4). The exported document conforms to its Doc-
ument Type Definition, as described on FrontEndART’s
homepage [12].

GXL. With this exporter a GXL representation can be
created from the extracted information. GXL (Graph eX-
change Language) [14] is an XML-based graph-description
format. Since the Columbus Schema (see Section 4) basi-
cally defines a graph, this format is suitable for representing
this graph in a convenient way.

RSF – rigi. There are three types of graphs that can be
created via the rigi [20] exporter: (1) a graph based on the
Columbus Schema (see Section 4), (2) a call-graph and (3)
a UML Class Diagram-like graph. All of these use different
rigi domains which can be created with Columbus as well.
Figure 4 shows a class inheritance visualization in rigi.

Figure 4. Visualization within rigi

HTML documentation. This exporter can be used to
create a hypertext documentation of the extracted project
in HTML form. The generated documentation presents the
project in a browsable and user-friendly fashion. All the
necessary information is presented about the classes and
other elements in a structured way. Three types of browser
frames are also supplied, with which a project can be easily
navigated. These present the classes using (1) their names in
alphabetical order, (2) a scoping structure and (3) the inher-
itance relationship. Figure 5 shows a class documentation
in a browser.

Figure 5. Visualization within a browser

Famix XMI – CodeCrawler. With this exporter a
Famix [6] XMI representation of the extracted information
can be created. This format can be utilized with the Code-
Crawler tool for visualization and metric calculations (an
example is shown in Figure 6).

Figure 6. Visualization within CodeCrawler

Maisa. This exporter can be used to create an input file
for the Maisa tool. Maisa [9, 21] is a metrics tool that as-
sesses the quality of a software architecture. One of the
functionalities of Maisa is the mining of design patterns
from the input architecture.

Other. The UML XMI and VCG exporters are partially
implemented and will be available soon. Besides these for-
mats, arbitrary third-party plug-ins can be easily written and
added to the Columbus system.

2.5 Evaluation of the Columbus framework

In this section we will evaluate the Columbus tool ac-
cording to the requirements stated in the Introduction:

� Project handling. As already described in Section 2.2,
Columbus has powerful project handling features. It
stores the input source files and their settings, such
as the precompiled header, preprocessing options and
output directories. Visually, it is displayed in a tree-
view. In addition Columbus offers a limited capa-
bility for importing existing Microsoft Visual C++
project files. The project handling also has a defi-
ciency, namely supporting dependencies among mul-
tiple projects. It handles only one project at a time.

� Extendibility. Columbus is highly extendible due to
its plug-in architecture (see Section 2.1). The user can
easily write and add his/her own new plug-in to the
Columbus system using an easy-to-use plug-in API.

� Filtering. Columbus offers powerful filtering (see Sec-
tion 2.3). The default filtering already removes those
C++ elements that come from the standard libraries
and leaves only the user’s own classes in the filter.

� Visualization. Currently Columbus does no real visu-
alization (just a simple tree-view in the filter window
that lists the classes and namespaces in their scoping
structure). Instead it passes this job over to other tools
that have been integrated with Columbus (e.g. rigi [20]
and CodeCrawler [6]).

3 CAN – The C/C++ Analyzer

The parsing of the input source code is performed via
the C/C++ extractor plug-in of Columbus, which invokes a
separate program called CAN (C++ ANalyzer). CAN is a
command line application for analyzing C/C++ code. This
allows its integration into the user’s makefiles and other
configuration files, thus facilitating automated execution in
parallel with the regular software build process.

In essence, CAN accepts one complete translation unit
at a time (a preprocessed source file). For files that are not
preprocessed a preprocessor will be invoked. The actual re-
sults of CAN are the internal representation files, which are
the binary saves of the internal representations built up by
CAN during extraction. These files will be linked (merged
together) by CANLink, the command line linker for CAN.

CAN is able to instantiate templates at source level,
which is accomplished using a two-pass technique in pro-
gram analysis. The first pass only recognizes the language
constructs in connection with the templates (like a “fuzzy”
parser) and instantiates them. The second pass then per-
forms the complete analysis of the source code and creates
its internal representation.

The C++ language processed by the analyzer meets the
ISO/IEC standard of 1998 [15]. Moreover, this grammar
has been extended with the Microsoft extensions used in
Visual C++ and Borland extensions used in C++ Builder.

The information collected by CAN corresponds to the
Columbus Schema (see Section 4). CAN supports the
precompiled headers technique as well, which is widely
used by compiler systems in order to decrease compila-
tion time. This technique is efficient especially in case of
large projects. The parser is fault-tolerant (it has the abil-
ity to parse incomplete, syntactically incorrect source code),
which means that it can carry on with the analysis from the
next parsable statement after the error.

3.1 Experiments

In this section we demonstrate CAN’s extraction capa-
bilities. The experiments were performed on different C++
projects listed below:

� IBM Jikes compiler [16]. Using this project we inves-
tigated CAN’s capabilities for handling sophisticated
class hierarchies.

� Leda graph library [18]. This project was used to
demonstrate the front end’s capabilities for handling
sophisticated templates.

� StarOffice Writer [25]. This is a large C++ project that
consist of 9,449 source files (more than 1.7 million
lines of non-preprocessed code!). Using this project
we investigated CAN’s capabilities for handling real-
size, huge projects.

The following table contains the size information of the
projects:

Project infos No. of files Size LOC1

Jikes 77 3.5MB 94 611
Leda 508 2.9MB 116 752
Writer 9 449 66.5MB 1 764 574

The next table shows the measurement results of the ex-
traction (all tests were performed on an Intel PIII-800 ma-
chine with 384MB RAM running Windows 2000). It con-
tains the extraction time and the memory consumption.

Extraction Time2 Memory

Jikes 00:01:02 19MB
Leda 00:05:50 49MB
Writer 01:55:09 139MB

The table below shows the number of extracted items
from the test projects.

Statistics Classes Namespaces Funcs Attribs

Jikes 275 1 3 471 1 643
Leda 1 563 1 10 802 8 287
Writer 4 988 99 61 553 23 862

It can be seen that the memory consumption is approx-
imately linear with the complexity of the input (i.e. the
number of different C++ language elements like classes and
functions). Due to this fact and the successful extraction of
StarOffice Writer, we can say that the front end is able to
handle real-size, large projects.

3.2 Evaluation of the CAN front end

In this section we will evaluate the CAN front end based
on the requirements stated in the Introduction:

1Lines of non-preprocessed code.
2Time format: hh:mm:ss.

� Correctness. When evaluating a tool proving its cor-
rectness is probably the most difficult task of all. In
the case of a front end, correctness means that the ex-
tracted information entirely corresponds to the input.
In the case of a real-size, huge C++ project such a
comparison is practically unfeasible. The only way of
doing this is to take random samples from the output,
investigate the corresponding input and check if it is
in accordance with the samples taken. This method
found that the extracted information is mostly correct
(only some very complex templates caused problems
for the front end).

� Completeness. The front end performs a complete
analysis of the system, but is does not yet build up the
parts of the ASG for statements and expressions (it is
partially implemented and the next release will contain
it). However, the call graph of the system is already
present.

� Fault tolerance. CAN is able to parse incomplete and
syntactically incorrect source code (see Section 3).

� Parsing speed. According to the results shown in the
second table in Section 3.1, we can say that the ana-
lyzer is rather fast. It extracted StarOffice Writer in
less than two hours.

� Preprocessing. CAN does not yet perform any prepro-
cessing. However, for files that are not preprocessed, it
invokes an external preprocessor. The implementation
of a built-in preprocessor is in progress.

� Dialects. Apart from standard C++, CAN can handle
the Microsoft and the Borland dialects of C++.

� Command line operation. As already stated previ-
ously, CAN and CANLink are command line tools,
which can also be used without the framework, e.g.
in makefiles.

4 Columbus Schema for C++

Successful data exchange is crucial among reverse en-
gineering tools. This requires a common format, which is
applicable in various reverse engineering tools such as front
ends and metrics tools. A standard schema must be found.
In this paper we propose an exchange schema for the C++
language called the Columbus Schema for C++ [8].

The Columbus Schema captures the (preprocessed) C++
language at low detail (AST) and also contains higher-level
elements (e.g. semantics of types). The description of the
schema is given using UML Class Diagrams, which per-
mits its simple implementation and easy physical represen-
tation (e.g. using GXL). It is modular, thus it provides addi-

tional flexibility for any future extension/modification. The
schema is divided into six packages:

� base: The base package that contains the base classes
and data types for the remaining parts of the schema.

� struc: This package models the main program ele-
ments based on their scoping structure, such as objects,
functions and classes.

� type: The classes in this package are used to represent
the types of the elements in the struc, templ and expr
packages.

� templ: The package covers the representation of tem-
plate parameter and argument lists, and is used by the
struc and type packages.

� statm: The package contains classes modelling the
statements.

� expr: The classes in this package represent all kinds of
expressions.

A detailed description of the schema is given in our pre-
vious paper [8]. We will present it here through an example.

4.1 Example schema instance

We illustrate the use of our schema through an example
instance of it. We will employ an extended version of the
example in [11] (see Figure 7). The ASG for the example
is given in Figure 8. We use an UML Object Diagram-like
notation, where the object instances of the schema’s classes
are represented and the links that connect them clearly show
the instances of various association and aggregation rela-
tions. The ordered associations are represented by number-
ing the links. For the sake of clarity, we have simplified the
diagram by omitting some attributes, such as line numbers,
which are not necessary for the description.

The schema uses integers as unique identifiers for nodes,
so the key of the topmost node is “1.” The class of each
node is given to the right of the key number; for example,
the class of node 1 is struc::Namespace. The schema uses a
name attribute in some nodes to give the name of the source
item being represented; for example, the name attribute of
node 1 is “global namespace.”

We will use the example to explain how the template
class, the types, the object and functions are represented in
the ASG based on the Columbus schema.

The template class Array is represented by node 11. It
contains a template parameter list (node 12), which has two
children (the order is shown on the connecting edges) that
represent the two template parameters. The first one is a
type name T that is referred from two other nodes. The sec-
ond one is the non-type parameter (value) Size, which has a

type. This type is represented by TypeRep node 32. As it can
be clearly seen, the template representation is completely
separated from the basic scoping structure of the ASG. By
doing this, it can be easily replaced with another kind of
template description if required.

The template class Array has three children (ordered):
object arr (node 15); and functions get (node 16) and set
(node 23). The type of object arr is represented by TypeRep
node 34. The facts that function get is virtual and constant
are stored as attribute fields in node 16. The function has
one parameter with the name idx (node 17). The type of
this node is the same as the type of template parameter Size,
so it refers to the same TypeRep 32. In this way there will
be only one instance of each unique type representation and
it is straightforward to compare the types of two different
C++ elements. We will present the type representation of
function get in detail (node 38).

TypeRep 38 contains a TypeFormerFunc node (39),
which refers to the TypeRep of the function’s return type
(node 40) and the TypeRep of the parameter idx (node 32).
This is needed because the type of a function includes the
whole signature (return type and parameter types). The re-
turn type representation (node 40) stores the constant na-
ture of the return type and contains two type formers for
the type itself. The first one is a pointer (reference) for-
mer (TypeFormerPtr 41), which means that the return type
is a reference to a type. The second type former is a Type-
FormerType (node 42), which refers to template parameter
13. So the overall meaning of the type representation is a
reference to template parameter T. It can be seen that, sim-
ilar to the template representation, the type representation
is also completely separated from the rest of the ASG so it
can be easily modified or replaced with another approach of
describing types if needs be.

The body of function get is represented by node 18,
which is a block statement (statm::Block). This block
is rather simple, containing just one return statement
(statm::Return node 19) that represents its return value with
node 20. This return value is an array subscript expression
(expr::ArraySubscript) whose both left and right operands
are of the kind expr::Id, which simply refer to nodes arr
(15) and idx (17), respectively.

The representation of function set is similar to that men-
tioned earlier, so we will not elaborate on it here.

4.2 Evaluation of the Columbus Schema

In this section we will evaluate the Columbus Schema
according to the requirements stated in the Introduction:

� Level of detail. The schema does not fully represent the
lexical structure, but this is not a major drawback since
there are only few application types that make use of
it (e.g. pretty printing). The syntax and the semantics

template <class T, int Size>
class Array {

T arr[Size];
public:

virtual const T& get(int idx) const {
return arr[idx];

};
virtual void set(int idx, const T& val) {

arr[idx] = val;
}

};

This example implements a generic array which expects two parameters
(the type of the stored elements and the size of the array), and has two
public methods get and set.

Figure 7. Example

hasTypeRep

hasTypeRep

hasParameterTypeRep (1)

refersToType

refersToName

refersToName

refersToName

refersToName

refersToName

hasParameterTypeRep (1)

refersToName

arraySize

14: templ::ParameterNonType

name : Size

13: templ::ParameterType

name : T

11: struc::ClassTempl

name : Array

15: struc::Object

name : arr

accessibility : ackPrivate

contains (1)

16: struc::Function

name : get

constVolatile : cvkConst

isVirtual : true

accessibility : ackPublic

contains (2)

hasTypeRep

12: templ::ParameterList

hasParameterList

contains (2)contains (1)

hasTypeRep

17: struc::Parameter

name : idx

contains (1)

hasTypeRep

38: type::TypeRep

contains (1)

41: type::TypeFormerPtr

kind : reference

39: type::TypeFormerFunc

40: type::TypeRep

constVolatile : cvkConst

hasReturnTypeRep

42: type::TypeFormerType

contains (1) contains (2)

34: type::TypeRep

32: type::TypeRep

refersToType

refersToType

1: struc::Namespace

name : global namespace

contains (1)

33: type::TypeFormerType

37: type::TypeFormerType

contains (1)

35: type::TypeFormerArr

contains (1) contains (2)

36: expr::Id

23: struc::Function

name : set

constVolatile : cvkNone

isVirtual : true

accessibility : ackPublic

contains (3)

24: struc::Parameter

name : idx

contains (1)

25: struc::Parameter

name : val

contains (2)
18: statm::Block

hasBody

26: statm::Block

hasBody
contains (1)

19: statm::Return

hasReturnValue

20: expr::ArraySubscript

contains (left)

21: expr::Id

contains (right)

22: expr::Id

contains (1)

27: expr::Assignment

contains (left)

28: expr::ArraySubscript

contains (left) contains (right)

30: expr::Id29: expr::Id

contains (right)

31: expr::Id

43: type::TypeRep

44: type::TypeFormerFunc

hasReturnTypeRep

contains (1)

45: type::TypeRep

46: type::TypeFormerType

contains (1)

3: type:SimpleType

kind : stkVoid

refersToType

hasParameterTypeRep (2)

2: type::SimpleType

kind : stkInt

hasTypeRep

hasTypeRep

Figure 8. ASG for the example

of the subject system are represented in fine-grained
detail. However, higher level information such as data
dependencies are not provided.

� Modularity/extendibility. The schema is modular, it is
divided into six packages, and the connection between
them is very weak. This means that it is easily ex-
tendible (e.g. the type representation package can be
freely replaced if required).

� Instance representation. A schema instance (an ab-
stract syntax graph) of the Columbus Schema is a sim-
ple graph, so it can be easily represented in any desired
physical form. Some of these have already been imple-
mented (e.g. GXL [14] or RSF [20]).

� Dialects. The Columbus Schema contains an attribute
for storing non-standard C++ specifiers. Apart from
this, the modular structure of the schema allows its
easy extension to support arbitrary language dialects
and extensions.

5 Related Work

In this Section we will discuss three tools and two
schemas which have similar objectives to the Columbus tool
and Schema. We will consider these tools because similar
to Columbus, they are freely available for research and aca-
demic purposes.

5.1 Datrix and CPPX

Datrix. The Datrix team, a part of Bell Canada’s Quality
Engineering and Research group, implemented source code
assessment tools with the goal of evaluating the maintain-
ability and the evolability of software products [17]. Datrix
is an analyzer that extracts information from C/C++/Java
source code files according to the Datrix ASG Model [2].
Similar to CAN, it creates separate output files for individ-
ual compilation units. These output files can be in form
of TA (Tuple-Attribute Language) or VCG. For handling
C/C++ sources Datrix has also a preprocessor utility. Un-
fortunately the project at Bell Canada come to an end in
year 2000 before all planned tools could be implemented.
For example, the Datrix toolset lacks a linker for merging
the extracted ASG-s, so viewing the whole system at the
same time is not possible.

CPPX. CPPX [5] is a free, open source, general purpose
parser and fact extractor for C++ developed at the Univer-
sity of Waterloo. It relies on the preprocessing, parsing, and
semantic analysis of the GNU g++ compiler, and produces a
graph based on the Datrix fact model, in either GXL, TA, or
VCG format. Because it relies on the output of a real C++
compiler, it produces very precise data about the analyzed

system, but it has the drawback that it cannot handle other
C++ language dialects.

As we have already mentioned, both Datrix and CPPX
extract information according to the Datrix ASG Model. A
detailed description of the model is available in [2]. This is
a well written documentation, but – apart from a short ini-
tiative [13] – it lacks a real schema description (e.g. using
UML Class Diagrams). Another deficiency of this model
is that it tries to be language independent, thus it represents
C++ artifacts at a higher level than the Columbus Schema,
e.g. it has no distinct nodes for templates and template spe-
cializations – these are all simply generic types in Datrix.

Both the Datrix and CPPX toolsets consist of command
line utilities only, and lack a user interface for easy manage-
ability.

5.2 Source-Navigator

Red Hat Source-Navigator [24] is a code analysis and
comprehension tool that provides a graphic framework for
understanding and reengineering large software projects.
Source-Navigator parsers scan through source code, ex-
tracting information from existing C, C++, Java, COBOL
and other programs and then use this information to build
a project database. Source-Navigator graphical browsing
tools use this database to query symbols (such as functions
and global variables) and the relationships between them.

Similar to Columbus, in addition to the languages sup-
ported in the standard distribution, new parsers can be
added using the Software Development Kit (SDK). Source-
Navigator, like Columbus, supports project handling, data
extraction, data representation, data storage and filtering.
The project files are displayed in a simple file list, or ac-
cording to the physical tree structure on the disk. There
is no way of defining logical folders as one can in Colum-
bus. The user interface of Source-Navigator is more power-
ful than that of Columbus. However, Source-Navigator has
only simple textual outputs (lists); more complex outputs
like XML are not supported.

The C/C++ parser of Source-Navigator is a fuzzy parser,
which means that it extracts only information that it needs
for displaying various browser windows like class hierar-
chies or include graphs. It does not do preprocessing either.
Consequently, the parser is very fast, but it does not pro-
vide low-level, detailed information about the subject sys-
tem (i.e. it can be used only for architectural analyses).

Its database has a general format that is suitable for stor-
ing high-level information about projects written in differ-
ent programming languages. For this reason, it provides
no schema explicitly for C++ as Columbus does. However,
it provides an API for accessing the extracted information
that is stored in binary files that are similar to a relational
database.

Command line operation is absent in Source-Navigator,
so the front end can only be used within the user interface.

6 Conclusion and Future Work

In this paper we presented a schema for C++ and a re-
verse engineering tool that produces data based on it. It is
free for scientific and educational purposes, our intention
is to support academic persons in their research work. The
framework relieves researchers of the burden of having to
write parsers for different purposes and allows them to con-
centrate on their own concrete research topic.

The main advantage that this work offers is that it pro-
vides a modular common schema, a powerful front end that
produces data according to the schema and an extendible
framework which holds everything together. The frame-
work already supports several popular tools like rigi and
CodeCrawler, but it can be easily extended to support any
arbitrary tool as well.

In the future we plan to extend the framework with ad-
ditional export formats to support even more RE tools. We
also plan to add a new extractor for supporting the Java pro-
gramming language. This of course requires a schema for
Java as well. On the front end side we are seeking to finish
the implementation of adding expressions to the ASG. We
also plan to support further C++ dialects and to develop an
own preprocessor. Finally, we intend to publish the state-
ment and expression parts of our C++ schema in a forth-
coming paper.

References

[1] M. Armstrong and C. Trudeau. Evaluating Architectural Ex-
tractors. In Proceedings of WCRE’98, pages 30–39, Oct.
1998.

[2] Bell Canada Inc., Montréal, Canada. DATRIX – Abstract
semantic graph reference manual, version 1.4 edition, May
2000.

[3] B. Bellay and H. Gall. An Evaluation of Reverse Engineer-
ing Tool Capabilities. In Software Maintenance: Research
and Practice. 10., pages 305–331, Oct. 1998.

[4] E. J. Chikofsky and J. H. Cross II. Reverse Engineering and
Design Recovery: A Taxonomy. In IEEE Software 7, pages
13–17, Jan. 1990.

[5] T. R. Dean, A. J. Malton, and R. Holt. Union Schemas as
a Basis for a C++ Extractor. In Proceedings of WCRE’01,
pages 59–67, Oct. 2001.

[6] S. Demeyer, S. Ducasse, and M. Lanza. A Hybrid Reverse
Engineering Platform Combining Metrics and Program Vi-
sualization. In Proceedings of WCRE’99, 1999.

[7] J. Ebert, R. Gimnich, H. H. Stasch, and A. Winter. GUPRO
– Generische Umgebung zum Programmverstehen, 1998.

[8] R. Ferenc and Á. Beszédes. Data Exchange with the Colum-
bus Schema for C++. In Proceedings of CSMR 2002, pages
59–66, Mar. 2002.

[9] R. Ferenc, J. Gustafsson, L. Müller, and J. Paakki. Recog-
nizing Design Patterns in C++ programs with the integration
of Columbus and Maisa. In Proceedings of SPLST 2001,
pages 58–70. University of Szeged, June 2001.

[10] R. Ferenc, F. Magyar, Á. Beszédes, A. Kiss, and M. Tarki-
ainen. Columbus – Tool for Reverse Engineering Large Ob-
ject Oriented Software Systems. In Proceedings of SPLST
2001, pages 16–27. University of Szeged, June 2001.

[11] R. Ferenc, S. E. Sim, R. C. Holt, R. Koschke, and
T. Gyimóthy. Towards a Standard Schema for C/C++. In
Proceedings of WCRE’01, pages 49–58. IEEE Computer
Society, Oct. 2001.

[12] Homepage of FrontEndART Software Ltd.
http://www.frontendart.com.

[13] R. Holt, A. E. Hassan, B. Lagu, S. Lapierre, and C. Leduc.
E/R Schema for the Datrix C/C++/Java Exchange Format.
In Proceedings of WCRE’00, Nov. 2000.

[14] R. Holt, A. Winter, and A. Schürr. GXL: Towards a Standard
Exchange Format. In Proceedings of WCRE’00, pages 162–
171, Nov. 2000.

[15] International Standards Organization. Programming lan-
guages – C++, ISO/IEC 14882:1998(E) edition, 1998.

[16] IBM Jikes Project. http://oss.software.ibm.com
/developerworks/opensource/jikes.

[17] J. Mayrand and F. Coallier. System acquisition based on
product assessment. In Proceedings of ICSE’96, 1996.

[18] K. Mehlhorn and S. Naeher. Leda: A platform for combi-
natorial and geometric computing. In Cambridge University
Press, 1997.

[19] H. A. Müller. Criteria for Success of an Exchange Format.
In Workshop meeting, CASCON’98, Nov. 1998.

[20] H. A. Müller, K. Wong, and S. R. Tilley. Understanding
Software Systems Using Reverse Engineering Technology.
In Proceedings of ACFAS, 1994.

[21] J. Paakki, A. Karhinen, J. Gustafsson, L. Nenonen, and
A. Verkamo. Software metrics by architectural pattern min-
ing. In Proceedings of the International Conference on
Software: Theory and Practice (16th IFIP World Computer
Congress), pages 325–332, 2000.

[22] A. Quilici. Reverse Engineering of Legacy Systems: A Path
Toward Success. In Proceedings of ICSE’95, pages 333–
336, 1995.

[23] C. Riva, M. Przybilski, and K. Koskimies. Environment for
Software Assessment. In Proceedings of ECOOP’99, 1999.

[24] The Source-Navigator IDE Homepage.
http://sources.redhat.com/sourcenav.

[25] The StarOffice Homepage. http://www.sun.com
/software/star/staroffice.

[26] A. Taivalsaari and S. Vaaraniemi. TDE: Supporting Geo-
graphically Distributed Software Design with Shared, Col-
laborative Workspaces. In Proceedings of CAiSE’97, LNCS
1250, pages 389–408. Springer Verlag, 1997.

