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Abstract

Owing to its relative simplicity and wide range of appli-
cations, static slices are specifically proposed for software
maintenance and program understanding. Unfortunately, in
many cases static slices are overly conservative and there-
fore too large to supply useful information to the software
maintainer. Dynamic slicing methods can produce more
precise results, but only for one test case. In this paper we
introduce the concept of union slices (the union of dynamic
slices for many test cases) and suggest using a combina-
tion of static and union slices. This way the size of program
parts that need to be investigated can be reduced by con-
centrating on the most important parts first. We performed
a series of experiments with our experimental implementa-
tion on three medium size C programs. Our initial results
suggest that union slices are in most cases far smaller than
the static slices, and that the growth rate of union slices (by
adding more test cases) significantly declines after several
representative executions of the program.
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1 Introduction

Although one cannot say that they are the ultimate solu-
tion for industrial software maintenance and reengineering
tasks, program slicing methods [22, 25] have been inten-
sively studied in recent decades, and many impressive meth-
ods and applications have been proposed by researchers
with various objectives in mind, including maintenance,
reverse engineering, testing, debugging (see, for example,
[2, 3, 21, 26]).

A backward slice consists of all statements and predi-
cates that might affect a set of variables at a specific pro-
gram point (the slicing criterion) [25]. In contrast, forward

slices are used to determine those parts of a program that
could be affected by a change at a specific program point.
A slice may be an executable program or a subset of the pro-
gram code. Furthermore, a slicing algorithm can be classi-
fied according to whether it only uses statically available
information (static slicing) or computes those statements
which influence the value of a variable occurrence for a spe-
cific program input (dynamic slicing).

1.1 Static vs. dynamic slices

Owing to its relative simplicity and wide range of ap-
plications, static slices have been specifically proposed for
maintenance and program understanding [6, 9, 15, 21]. By
computing various dependences concerning the flow of data
and control, one is able to use static slices to observe only
parts of the program that may be relevant from one specific
point of view. Unfortunately, in many cases the static slices
are overly conservative and hence too large to supply useful
information.

Dynamic slicing methods (e.g. [1, 18]) can produce a
precise result for one test case, which can be quite useful for
some applications such as debugging. On the other hand, in
many other applications one test case is not enough to in-
vestigate, more global information may be needed about the
program. Dynamic slices are simply unsafe if one is inter-
ested in more than one specific test case. This can be aided
by computing different slices for different test cases, but to
cover all possibilities is difficult, if not impossible. Other
problems arise of practical nature, such as the production of
the necessary dynamic data and the fact that the computa-
tion may require large memory space (cf. recent methods
such as the one published in [1]).

1.2 Precise vs. realizable vs. union slices

In this paper we propose a compromise solution for pro-
gram maintenance tasks where the static slices are unac-
ceptable because of their lack of precision and dynamic
methods are unfeasible because of the lack of resources



needed to conduct lots of test cases. We introduce the notion
of union slices for the computation of the union of dynamic
slices for many test cases. It is based on previous results
where we introduced an efficient method for the computa-
tion of dynamic slices in real life situations [4]. We rec-
ommend the use of a combination of static and union slices
to determine the responsible program parts with less effort.
This means that the size of program parts that need to be
investigated can be reduced by concentrating on the most
important parts first. The basic idea for this comes from
the fact that while the static slices are safe but large, union
slices are smaller but, alas, unsafe (i.e. they do not contain
all possible dependences).

The concept of union slices is fairly obvious as the union
of dynamic slices for a (finite) set of test cases. However,
if we computed the union of dynamic slices for all possible
executions, we would obtain a theoretical slice of the pro-
gram that contains all realizable dependences. Therefore,
we will refer to this slice as the realizable slice. (Note, that
this slice does not need to be executable, but for many ap-
plications in program maintenance it is not a requirement
anyway.)

Researchers often use the concept of precise slices as
well, which is “a slice in which no statement can be re-
moved without changing the outcome at the criterion.” Al-
though in many cases the slices themselves are equal, there
is a significant difference between these two (theoretical)
slice concepts. Namely, the realizable slice is based on
practically computable dynamic slices, which are in turn
obtained from realizable (data- and control-) dependences
among the program elements. On the other hand, the pre-
cise slice is a minimal slice with respect to the outcome
of some computed variable, which is not practically com-
putable due to the undecidability of the equivalence of two
(syntactically different) computations (statements or func-
tions). In other words, while the precise slice addresses
the semantic relationships between the program elements,
the realizable slice uses only the syntactic information. To
illustrate this conceptual difference, consider a very sim-
ple program that consists of the sole assignment statement
“x=x;” for some variable x. Probably all currently avail-
able practical slicing algorithms will take into consideration
the data dependence of variable x from itself (unless the al-
gorithm is able to perform some further semantic analysis)
and therefore the static, all dynamic ones and consequently
the realizable slices will be constituted by the whole pro-
gram. On the other hand, the precise slice will not include
the statement, because it does not change the value of x (at
least in all traditional notions of assignment and the seman-
tics behind it).

No doubt the precise slice is minimal and therefore can
be smaller than the realizable slice, but then the latter can
be approximated by practical means. If we consider the

static slice as an upper bound of the realizable slice (we can
do so because every realized dependence in some dynamic
slice must have been captured by the static slice as well),
the union slice can be seen on the other hand, as the lower
bound for it (see Figure 1). The most apparent advantage
of the combined application of the static and union slices is
when they coincide, because in this case the realizable slice
is surely found. However, according to our experiences, this
is probable to occur only in case of small programs (at most
few hundred lines of code). Even with medium size pro-
grams (as those in our experiments) the union slices are sig-
nificantly smaller than the static slices (10–50%). Never-
theless, in these cases the combined use of static and union
slices can still be of great help for solving a software main-
tenance or testing problem.

Figure 1. Approximation of the realizable slice

1.3 How union slices can help in maintenance?

Generally, the use of different slicing methods is aimed
at finding a portion of the program that needs to be investi-
gated in order to solve a specific problem (e.g. to determine
how a change at a certain program point affects the remain-
ing parts of the program). Despite the fact that the static
slices provide smaller set of data to be investigated by the
software maintainer than the whole program, this reduction
will be too small to provide real help because of the limited
resources to perform a maintenance problem. In almost ev-
ery practical situation the limited resources will mean a real
problem because the static slices will be too large to be able
to cope with. Further, the static slicing methods do not pro-
vide any kind of information about those parts of the slices
that may be the most important with respect to the initial
problem, i.e. what parts of the program need to be defi-
nitely investigated because they represent the real depen-
dences? Due of this, it can easily happen that the resources
are wasted on the investigation of such parts of the program
that really do not carry realizable dependences. The appli-
cation of the union slices tackles exactly this problem by
explicitly pointing to those parts of the program that need



to be investigated, because they became parts of the slice
implicated by a certain test case. This way, the resources
for the maintenance task can be used effectively. Of course,
there can be some situations where fully safe solutions are
inevitable for a certain problem. In these cases the investi-
gation of the program parts representing the difference be-
tween the static and the union slices need to be performed
as well.

To investigate how union slices are related to the corre-
sponding static slices and to monitor the growing tendencies
of the union of dynamic slices, we implemented our algo-
rithms in a tool for the computation of union slices for real
C programs. In order to compare static slices and union
slices, we performed various experiments for three medium
size programs. We defined several slicing criteria using a
classification of the slice variables and performed a variety
of executions for these programs. Our initial results suggest
that union slices are in most cases far smaller than static
slices, and what is even more important is that the growth
rate of the union slices (by adding more test cases) signifi-
cantly declines after several representative executions of the
program under investigation. Hence, we are certain that the
use of the combination of static and union slices can be use-
ful in software maintenance and program understanding.

The paper is organized as follows. In the next section
we introduce the basic conceptual algorithm for the compu-
tation of dynamic slices and we formulate the method for
computing the union slices. Our implementation is also de-
scribed in this section. In Section 3 we present and com-
ment on the actual results of our experiments. Section 4
discusses connections with other work, then in Section 5
we draw conclusions from our results and outline directions
for future research.

2 Forward computation of union slices

Before we describe the algorithm some basic definitions
need to be reviewed. We rely on [4] and [18] with some
minor modifications.

A feasible path that has actually been executed will be
referred to as an execution history and denoted by EH . The
execution history contains the instructions in the same order
as they have been executed. The execution history is basi-
cally a list of actions, which are denoted by ij , where i is
the serial number of the instruction executed at the jth step
(the execution position). The trace of the execution contains
the execution history supplemented with some other infor-
mation about the runtime behavior of the program, such as
the usage of memory locations. The trace will be needed by
our algorithm for slicing real C programs.

Next, we can define the dynamic slicing criterion as a
triple (x; ij ; V ) where x denotes the input, ij is an action
in the execution history, and V is the set of the variables for

which the dynamic dependences should be computed. The
notation (x; i; V ) will be used where the execution position
has no relevance, e.g. for static slices.

Since the slicing criterion for a dynamic slice is based
on a given input and an action, the resulting slice is as pre-
cise as possible1 for that specific execution of the program.
However, if we take into account more executions of the
program, we can approximate the realizable slice which is
the (theoretical) union of dynamic slices of all possible exe-
cutions. The realizable slice is at most as large as the static
one, but in most cases it is far more precise (in Section 1.2
we briefly discuss the connection between the realizable and
the precise slice). Unfortunately, the computation of the re-
alizable slice is very difficult, if not impossible. Of course,
the goodness of this approximation primarily depends on
how large portion of all possible inputs was successfully
covered.

By computing the simple union of the different dynamic
slices we can give a lower bound for the realizable slice,
while—as illustrated with Figure 1—the static slice can still
serve as an upper bound for it.

More formally, we define the union slices as follows.

2.1 Dynamic slices

We begin with the definition of a dynamic slice. A dy-
namic slice (DynSlice) of the program with respect to the
slicing criterion (x; ij ; V ) contains those statements that
influenced the values of the variables in V at the specific
action ij (which might possibly be the last occurrence be-
fore the program exited, in which case we use the notation
(x; i; V )). Note, that to get the dynamic slice for a specific
execution all the previous dynamic slices for i1 : : : ij�1 are
unnecessary. The most obvious application of the backward
dynamic slice is in debugging.

Our algorithm for the forward computation of dynamic
slices was first introduced in [11]. In [4] we showed that,
unlike previous solutions, our method can be applied to real-
size C programs because it is very efficient in terms of its
memory requirements. In the current paper we present this
algorithm in a simplified form. For clarity, we give only
the basic conceptual algorithm for simple statements. How-
ever, the presented algorithm needs to be extended in vari-
ous ways in order to be applicable to real C programs. The
details of this can be found in [4, 5, 8].

The computation of the dynamic slices is done in three
steps: (1) analyze the local static dependences (caused by
one statement) in the program and instrument the source
code, (2) execute the instrumented code to get the execution

1This does not necessarily mean that it is minimal in that no instruction
can be further removed in order to preserve the outcome at the slicing
criterion – this is probably undecidable.



trace and (3) apply the forward global algorithm to compute
the dynamic slices.

To compute the static dependences among program ele-
ments, we apply a program representation which considers
only the definition and the use of variables and, in addi-
tion, it considers direct control dependences. We refer to
this program representation as the D=U program represen-
tation. The D=U representation is the only statical data that
is needed by the algorithm. An instruction of a program has
a D=U expression as follows:

i: d : U;

where i is the serial number of the instruction and d is the
variable that gets a new value at the instruction in the case
of assignment statements. For an output statement or a
predicate d denotes a newly generated “output variable”–
or “predicate variable”–name of this output or predicate, re-
spectively. Let U = fu1; u2; :::; ung such that any uk 2 U

is either a variable that is used at i or a predicate-variable
from which the instruction i is (directly) control depen-
dent. Note that there is at most one predicate-variable in
each U . (If an entry statement is defined, there is exactly
one predicate-variable in each U .) Using the predicate vari-
ables a very simple algorithm can be constructed, because
the control dependences can be handled the same way as the
data dependences (see Figure 2).

program DynamicSlicer(P;x)
inputs: EH for program P with input x

D=U representation for P
outputs: DynSlice(x; ij; V ) sets for all ij actions with

the corresponding V sets as the used variables
at i

begin
Initialize LS and DynDep sets for all variables
for j = 1 to number of elements in EH

the current D=U element is ij : d : U
DynDep(d) =

S
uk2U

�
DynDep(uk) [ fLS(uk)g

�

LS(d) = i

Output DynSlice(x; ij; U) = DynDep(d)
endfor

end

Figure 2. The global forward algorithm

Using the D=U representation and the execution history,
the dynamic slices are computed as follows. We sequen-
tially process each instruction in the execution history start-
ing from the first one. Processing an instruction i: d : U ,
we derive a set DynDep(d) that contains all the statements
which affect d when instruction i has been executed. This
set is computed based on the used variables’ current depen-

dences. Applying the D=U program representation the ef-
fect of data and control dependences can be treated in the
same way. After an instruction has been executed and the
related DynDep set has been derived we determine the last
definition (serial number of the instruction) for the newly
assigned variable d denoted by LS(d). Put simply, the last
definition of variable d is the serial number of the instruc-
tion where d was defined last (considering the instruction
ij : d : U , LS(d) = i). Obviously, after processing the
instruction ij : d : U (at the execution position j) LS(d)
will be i for each subsequent execution until d is defined
next time. We also use LS(p) for predicates, which means
the last definition (evaluation) of predicate p. This compu-
tation order is strict, since when we determine DynDep(d)
we have to rememberLS(d) occurred at a former execution
position rather than at the jth step.

Assuming that we are running a program P on input
x, after the execution of ij : d : U , DynDep(d) will con-
tain exactly the statements involved in the dynamic slice for
the slicing criterion C = (x; ij ; U), i.e. DynSlice(C) =
DynDep(d). The formal algorithm for the computation of
all dynamic slices for a program P with input x is shown
in Figure 2. Note that the algorithm computes the dynamic
slices globally for all occurrences of every used variable at
all of the instructions, but for the union slices only the last
one is needed. Therefore, we also defineDynSlice(x; i; V )
(without the execution position index j) as the dynamic
slice for the last occurrence of instruction i in the execution
trace with input x.

Examples of the computation can be found in e.g. [4].

2.2 The Union slice

Now we can formally define the union slices as the union
of the dynamic slices for a variety of inputs. It is the fol-
lowing for a particular program P with different executions
using the inputs X = fx1;x2; : : : ;xng:

UnionSlice(X; i; V ) =
[

xk2X

DynSlice(xk; i; V )

Here, that specific DynSlice set is used which holds
the dynamic slice for the last occurrence of instruction i

in the execution trace. Note, that our approach is general
in that any other method for the computation of dynamic
slices could be applied instead of our dynamic slicer, but
our method proved to be very efficient in our experiments.

2.3 Implementation

We implemented the above described algorithm for the
computation of union slices for the C language. Note, that
this description of the algorithm reflects only the basic prin-
ciple; there are several details that needed to be solved for



a real programming language like C. We will not elaborate
on these details here as they can be found elsewhere (e.g.
[4, 8]).

The implementation consists of four tools for the compu-
tation, visualization and comparison of the various types of
slices, namely: a static analyzer, a dynamic slicer, a union-
izer and a visualizer (see Figure 3, where the overall setup
for our experiments is shown with the components of our
tool in the bold boxes).

Preprocessor

(external)

Static Slicer

(external)

Static Analyzer

& Instrumenter

Visualizer

Dynamic Slicer

Unionizer

.c .h .i .cpp

DynSlice

UnionSlice

StaticSlice

Coverage

Trace

Execute
static

info

Project + inputs

+ criterions

Statistics

Figure 3. Experimental tool setup

The dynamic slices are generated for the subject program
with one execution for a set of slicing criteria simultane-
ously, because our algorithm is global. Additional dynamic
slices are generated for all of the executions with different
inputs. To get these slices two tools are needed: (1) the sim-
ple static analyzer, which produces the static D=U depen-
dences and instruments the source code, and (2) the imple-
mentation of the dynamic slice algorithm, which computes
the slices based on the execution trace and the D=U depen-
dences computed previously. The execution trace is gained
by instrumenting the (preprocessed) source code with write-
out instructions (these are implemented in C++).

In the next step the resultant slices are processed by the
unionizer tool to produce the corresponding union slices,
and some statistics as well (note that our approach is gen-
eral in that any other tool for the computation of dynamic
slices could be applied instead of our dynamic slicer). Af-
terwards, the visualizer tool can be used to display all kinds
of slices in a synchronized way (i.e. the same source can be
displayed in several windows, the corresponding lines be-
ing indicated with different colors). The visualizer is also
capable of displaying other kinds of program slices such as
the static slice2 and the execution trace itself. A snapshot of
the visualizer can be seen in Figure 4. It can be seen that the
trace, the static slice and the union slice are all displayed in

2Static slices were computed using the external tool CodeSurfer [10].

parallel, thus allowing their simultaneous examination and
analysis.

Figure 4. The slice visualizer

3 Comparison of static and dynamic slices

As mentioned earlier, a major goal of this work was to
obtain empirical data on the relationships between the con-
ventional static slices and the union slices proposed by this
article using the same slicing criteria. Experimental demon-
stration was aimed of the fact that the static slices are in
many cases overly conservative, and that suitably obtained
union slices are more precise so a clever combination of the
two is preferable in many cases.

3.1 The test bed

For our experiments we used three medium size C pro-
grams. In the table below some details can be found about
these programs (“bzip” is a compression utility, “bc” is a
scientific calculator and “less” is a powerful text viewer).

prog lines extble files bytes func

bzip 4495 1595 1 130 458 73
bc 11555 3220 20 312 722 138
less 21489 5400 43 639 036 363

The first column shows the total number of program
lines, while the second one gives the number of nonempty
executable code lines (i.e. comments, declarations, etc. are
not counted). These programs are large enough to demon-
strate non-trivial slices, but are also modest in size to pro-
cess by the experimental tools in reasonable time. As al-
ready known, the dynamic slices are produced from the ex-
ecution traces that are gained by executing the instrumented



source code. Note, that the instrumented code runs signifi-
cantly slower, but this could be aided by instrumenting the
object code instead of the source code. Our assumptions
regarding the space and time requirements of the basic dy-
namic slice algorithm (Section 2.1) turned out to be gener-
ally true, with some deviations because of the special com-
putations for the C language. These are, namely, that the
algorithm time is proportional to the size of the execution
trace (number of instructions executed) and that the mem-
ory requirements are proportional to the number of different
memory locations used by the program under investigation.

In the test programs we selected several program points
that could serve as interesting slicing criteria. We used
154 criteria for bzip, 57 for bc and 50 criteria for less.
These program points were chosen in such a way that as
much portion of the program could be covered by all our
test slices altogether as possible. Another consideration
was to have the variables present in these criteria corre-
spond to different categories in order to be able to investi-
gate how does the kind of the criterion affect the slice size.
Therefore, we applied certain labels to each of the variables
(similarly to those proposed by Venkatesh in [24]): Local,
Global, Pointer dereference, Function parameter, Array in-
dex, Loop index, Return and Output.

In order to compute the union slices, we need several dif-
ferent executions of the same program. Fortunately, since
our algorithm is global, the slices for all of the criteria can
be computed simultaneously and there is no need to exe-
cute the algorithm for each execution and criterion sepa-
rately (see Section 2.1). We aimed at producing different
inputs for the programs in order to have relatively large pro-
gram coverage3 (less is an interactive program, so it needed
to be handled differently). In the following table the statis-
tics about the inputs and the coverage (with respect to the
number of nonempty executable lines) can be observed.

program criteria executions coverage

bzip 154 18 68%
bc 57 49 63%
less 50 14 45%

Coverage of 45–68% may not seem high enough, but one
should be aware of the fact that these test cases were created
and performed manually. To produce higher coverage a test
case generator could be used, but even then, full coverage
could not guarantee that the realizable slice would be en-
tirely approximated.

3.2 The results

For the experiments we computed the union slices for
the three programs with the different inputs as described in

3On program coverage we mean those instructions which have been
executed in at least one of the test cases.

Section 2. The data for all slicing criteria was computed si-
multaneously and stored in files. Recall, that our algorithm
is global, meaning that the dynamic slices can be computed
using only one pass through the execution history (see Fig-
ure 2).

In our first experiment we recorded the union slices
and their growth characteristics by combining the dynamic
slices. In Figure 5 these characteristics can be observed for
the three programs (the slice size is displayed in the num-
ber of instructions). On each diagram the growth of the
union slices can be seen for several typical criteria (not all
criteria are displayed for clarity) as the new dynamic slices
are unioned for new test cases (executions of the program).
The thick lines correspond to the average of all curves (not
only for the displayed ones). It can be clearly seen that the
growth slows down after only a few (3–15) executions. Of
course, it cannot be foreseen how would additional execu-
tions change the union slices, but the general tendency of
the approach towards the realizable slice can be recognized
as elaborated in Section 1.2.

In Figure 6 the average growth tendency for the three
programs can be seen using the same input as above. In
order to obtain this diagram we computed the simple aver-
age of growth curves of all of the slicing criteria separately
for the three programs (the same as for the diagrams in the
previous figure). These curves are displayed in a normal-
ized form relative to the maximum attained slice size. The
curves were also stretched horizontally, the full width de-
picting the total number of the executions. Interestingly, the
overall characteristics for the three different programs are
quite similar.
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Figure 6. Average growth of the union slices

We also investigated the sizes of the final union slices
compared to the program size and the static slices.4 A gen-

4In these comparison experiments we used lines of code instead of in-
structions in order to be able to compare the results of our tool with the
external static slicing tool.
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Figure 5. Growth of the union slices

eral picture of the results is presented in Figure 7, where the
total average values are shown. This figure shows the com-
parison of the program sizes (executable lines), the cover-
ages (as in the tables above), the average static slice sizes
and the average union slice sizes for the three programs dis-
played in lines of code. Actually, the average of the ratios of
the coverage, the static slice and the union slice with respect
to the program size were 59%, 72% and 15%, respectively.
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Figure 7. The average slice sizes

More detailed data regarding the slice sizes is shown in
Figures 8 and 9, where the distribution of the slice sizes is
represented in the form of a histogram, counting the occur-
rences of specific percentage values. The sizes have been
computed based on the number of program lines. The three
diagrams of Figure 8 show the distributions of the static
slice vs. program size (executable lines) and the union
slice vs. program size (executable lines), while the ratios
of union slices over static slices is shown in Figure 9. From
Figure 8 we can see that for the three programs the static
and union slice sizes show quite different characteristics,
but generally, the union slices are much smaller. The ex-
act difference can be seen in Figure 9: for bzip the union
slices are about half of the static slices, while for the other
two programs the difference is much greater. This is due to
the fact that for bc and less the static slice is almost always
nearly the whole program (it is not uncommon that such
big portion of the program is included in the static slice for

programs with high correlation among their elements). On
the other hand, the union slices are in all of the three cases
around 20–30% of the program size.

0%

5%

10%

15%

20%

0% 20% 40% 60% 80% 100%

union slice/static slice

p
er

ce
n

ta
g

e 
o

f 
sl

ic
es

bzip
bc
less

Figure 9. Distribution of union vs. static slice
ratios

Finally, we made some experiments to find out whether
the kind of the variable present in the slicing criterion has
any effect on the slice size (as investigated by Venkatesh in
[24] as well). In Figure 10 the distribution of union slice
sizes is shown for two of the variable categories as defined
at the beginning of this section (Local and Global). The data
was generated based on the same results as for the previous
diagrams for the program bzip. The other categories are not
shown because there is not much difference regarding the
distribution characteristics. Even in this case, the only ob-
servation is that in some cases the global variables produce
slightly larger union slices.

3.3 Conclusions from the results

Generally, the results from the previous figures support
our initial assumptions that we made at the beginning of this
paper. The most important conclusion is probably that the
union slices are much smaller than the static ones, although
the test cases were more-or-less representative and covering
pretty large parts of the programs (see Figures 7, 8 and 9).
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Figure 8. Distribution of slice sizes
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Figure 10. Union slices of two variable cate-
gories

Moreover, this difference between the static and the union
slices presumably will not be much smaller either by adding
much more new test cases. We can come to this conclusion
by observing the growth tendencies of the union slices in
Figures 5 and 6.

As the main drawbacks of using the union slices we can
mention the problem of managing to obtain many different
test cases and the practical problems with the instrumenta-
tion and the slowdown as its side effect.

4 Related work

Our basic method for the computation of the dynamic
slices (see Section 2.1) significantly differs from previous
approaches. Agrawal and Horgan’s algorithm [1] uses a
large internal representation called the Dynamic Depen-
dence Graph (DDG), whose size may be unbounded. We
showed in [4] that our algorithm is much more efficient in
terms of memory requirements and therefore it can be ap-
plied to real size programs. In [19] Korel and Yalamanchili
introduced a forward method for determining (executable)
dynamic program slices. In many cases these slices are less
accurate than those computed by our forward dynamic slic-
ing algorithm. (Executable dynamic slices may produce in-

accurate results in the presence of loops [22].) An excel-
lent comparison of various dynamic slicing methods can be
found, for example in [16] and [22].

The problem of reducing the portion of the program that
needs to be investigated (i.e. reducing the size of slices),
while retaining some of the advantages of static slicing (in
terms of slice generality) has been investigated by other re-
searchers as well. Conditioned slicing [7, 14] computes
a subset of the program which preserves the behavior of
the original program with respect to a slicing criterion for
a given set of execution paths. The main difference be-
tween conditioned slicing and our approach is that the for-
mer is primarily a static approach while trying to involve
some dynamic information (but without actually perform-
ing the executions). Furthermore, it undoubtedly bears sig-
nificant theoretical importance, but its practical applicabil-
ity is questionable for real-size programs. The same dif-
ferences apply to Amorphous program slicing [13], which
uses a general theoretical framework of program projec-
tions, with which equivalent but simpler program projec-
tions can be obtained, where the traditional static and con-
ditioned slices can be seen as special kinds of projections.

Combined use of the static and dynamic slicing methods
can be found in several papers, but they all have some dif-
ferent objectives than ours. A hybrid slicing method was
introduced in [23] to compute the quasi static slices where
the value of some input variables was fixed while other vari-
ables vary. Another example of a hybrid slicing method is
the work of Rilling et al. [20]. They introduced a frame-
work for the computation of both static and dynamic slices
based on the notion of removable blocks (as in [17] and
[19]). The objective of this work is again not to reduce the
size of the parts of the program to be investigated, but to
ease the computation of the dynamic slices by removing
certain parts of the program first using static slicing tech-
niques.

Significant resemblance between our approach and the
work of Hall can be identified in [12]. He introduced the no-
tion of simultaneous dynamic program slicing to extract ex-
ecutable program subsets (motivated by program subsetting
and redesign). The basic approach is to apply any kind of



dynamic slicing algorithm that meets certain criteria (one of
which is to be able to produce executable slices) and incre-
mentally build the simultaneous slice using a (rather slow)
iterative algorithm for all test cases. Hall was motivated by
the fact that simple unioning of the dynamic slices (what
exactly our approach is) cannot produce correct slices in
terms of executability on all the test cases. However, this is
not a problem in our case because our motivation was not to
create executable slices but only program parts that can be
utilized in a number of applications in the field of software
maintenance.

To our knowledge, there is no previous work that deals
with the comparison of static and dynamic slices, in a sim-
ilar way as we do in this paper. In fact, the dynamic slices
are undoubtedly much smaller than the static slices, but our
union slices can be more comparable to the static ones.

Venkatesh’s paper [24] is the only publication that deals
with the evaluation of dynamic slices, however no compar-
ison was made to static slices in this article either. The
author performed a large number of experiments to deter-
mine the typical size distribution of the dynamic slices and
to investigate different kinds of slicing criteria with differ-
ent kinds of variables. An experimental prototype tool was
used to perform the measurements. One of the basic obser-
vations in this work was that the slices generally show a bi-
modal distribution clustering at the two ends of the range of
slice sizes. We used a similar approach to display the dis-
tribution of the union slice sizes (the difference is that we
compared the slice size to the executable code lines while
Venkatesh made this comparison to the number of executed
instructions). We also observed the same characteristic for
the union slice distribution of program bc (Figure 8b).

5 Conclusion and future work

Static slicing methods have been proposed for mainte-
nance and program understanding because this way certain
parts of the program can be “sliced away” that are of no
interest with respect to the slicing criterion. However, be-
cause of their inherent static nature, the static slices are in
many cases overly conservative, which means that often too
large portions of the program under investigation become
parts of the slice, so no really useful information can be
given. While remaining safe, the precise slices could pro-
duce smaller slices (they are minimal, in fact), but unfortu-
nately they exist only theoretically.

Realizable slices (the union of dynamic slices of all pos-
sible test cases) are another alternative because they are
also smaller than the static ones but they are not minimal
(fortunately, the difference can arise only from some non-
realistic program constructs). Nevertheless, the computa-
tion of the realizable slices is in most cases also unfeasible
because it would require to investigate all possible execu-

tions of the program under investigation. Therefore, in this
article we follow the approach to approximate the realiz-
able slice “from below” (see Figure 1) by computing the dy-
namic slices for many executions and combining the result.
A union slice for a particular slicing criterion is computed
by unioning the dynamic slices for different executions of
the program.

As further explained in the introduction of this paper, we
also suggest using a combination of the static and union
slices for software maintenance. The software maintainer
could use her resources for the maintenance task more ef-
fectively, if the (large) static slice is not investigated com-
pletely, but only those parts of the program should be exam-
ined that became parts of the slice implicated by a certain
set of test cases (i.e. only the realizable dependences are
considered). The union slices provide exactly these parts.
In the introduction of this paper we elaborate more on this.

As a concrete application we could imagine the approx-
imation of decomposition slices [9] with the union of union
slices for all occurrences of a variable under investigation.
These decomposition slices are useful in making a change
to a piece of software without unwanted side effects. These
are based on static slices and therefore, the above mentioned
impreciseness could be aided by the use of union slices. In
this case also, the union decomposition slices could be used
first to determine the crucial part of the program for critical
test cases.

Program understanding based on slicing techniques [6]
can also benefit from the use of union slices because the
location of the safety critical code can be determined with
less effort using the union slices by computing them for the
most important test cases first.

We already implemented our approach for the computa-
tion of dynamic and union slices using our efficient algo-
rithm. The implementation is capable of handling real size
C programs. For the experiments we used three medium
size C programs and computed the union slices for different
slicing criteria and several representative executions of the
programs. Our initial results show that the growth of the
union slices by adding new test cases significantly slows
down after only a few representative executions and this
suggests that the union slices will not be too far from the
realizable (and precise) slice, while still being far smaller
than the static one.

In the future we plan to make a more robust implemen-
tation of the algorithms and to perform some measurements
on real, industrial applications with real case studies. For
this purpose we need to make the implementation more sta-
bile and improve the performance, especially regarding the
slowdown of the instrumented code. An important issue
with these real size applications will be to be able improve
the gained coverage by the use of a test case generator in-
stead of performing the test cases manually. Another on-



going work is to implement the algorithm for the C++ lan-
guage. However, this involves a number of technical is-
sues such as the more complicated handling of expressions.
Fortunately, the handling of polymorphic calls will not be
a problem, as it generally is for static slicing methods for
object oriented languages. This is because the static depen-
dences can be computed in a pessimistic way, and the con-
crete binding of the called method will be known anyway
based on the execution trace.
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