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“Computers are good at following
instructions, but not at reading your mind.”

— Donald E. Knuth

Introduction

The booklet summarizes the results of the author of the thesis entitled “Source Code Analysis and
Slicing for Program Comprehension.” The dissertation concentrates on the topic of source code
analysis in software reverse engineering. The author developed methods, technologies and tools to
aid program comprehension.

It is a well-known phrase that computers are powerful, but not very clever. In order to follow our
orders we need to develop software for them. Software development basically means “explaining” the
abstract views of the developer and imagined functionality of the software to the computer, that is
to provide it in a form that can be executed by it: this form is nothing else but the machine code.
Between these two extremes and throughout the software life cycle we derive different models at
different levels of abstraction, which all describe the same software system. Among these models
the source code is the one that represents the final link between man and the machine, since it is
written by the programmers based on higher level models and is translated by the compiler—in an
automatic way—to machine code. So the higher level programming language needs to be understood
by the machine (the compiler, to be more precise). For the latter the size and complexity of the
source code does not cause any problems, only the available resources act as limits. It is also true
that the compiler does not comprehend the program, it only performs the required transformations
mechanically. On the other hand, there are numerous reasons for human comprehension of the source:
to understand the way it works, what it does, or perhaps draw conclusions about aspects of it. Program
comprehension is not an easy task, especially when we consider the possible complexity and size of
the problem. Furthermore, the code is often unknown to the person involved: it may be the work of
other programmers or the rationale behind a programmer’s own code may be forgotten over time.

The need for program comprehension can arise in many situations throughout the software life
cycle, perhaps beginning with debugging, which is needed as soon as the source is first created,
but also later in the verification phase. Furthermore, in the phase of evolution when, for software
maintenance, the only reliable source of information is the source code itself. This is due to the fact
that nowadays software systems are rapidly changing, the market and the evolving new technologies
always demanding another version. The new versions are often created from the existing systems by
evolution, which in most cases results in a rapid development and, in consequence, the higher level
models are incomplete, out of accord with the code, or simply unexisting. These problems implied
the discipline of reengineering within software engineering. The first step in this process is always the
reverse engineering of existing systems, when—based on the available models—we try to identify a
system’s components and their interrelationships, and create representations of the system in another
form or at a higher level of abstraction [4]. This process most of the times is performed by analyzing
the source code of the system.

Based on the previous it is obvious that there is a real need for software tools that can aid program
comprehension, because many tasks of the comprehension process are mechanical and with the help
of tools they can be made simpler and faster. Similar to the compiler, which can produce different
representations of the program needed for achieving its goal, different code analyzer tools can also be
developed that are capable of creating other kinds of representations of the code. The real advantage
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is that by analyzing the source code, creating various models of it and by answering other questions
about the code the software can be presented in a more suitable form for human processing.

Tool-supported program comprehension has several problems. One such is the set of facts extracted
from the system, the way of their representation and storage, and the exchange of the data with other
tools. The set of extracted facts is commonly referred to as the model of the software system, while
the structure of the data within is called the schema. The basis for successful data exchange among
tools is a common schema and physical format. Another basic element of a comprehension tool is the
analyzer, which extracts the facts by parsing and analyzing the source code and by deriving different
relationships from it. After this, the tools themselves can be of help in many ways for program
comprehension, for which one example is program slicing. When slicing a program we provide only a
subset of it to be investigated, by which we reduce the size of the problem that must be dealt with.

We addressed the above-mentioned set of problems when we started to develop and do research
within a framework consisting of basic technologies and a set of tools, whose several basic elements are
already operational, internationally accepted and are used in real environments. The current results of
this long-term research and development are a general reverse engineering framework called Columbus
[6, 7, 8, 9], and the supporting technologies and tools. Currently we are dealing with the C/C++
languages, since these are among the most widespread ones and they are around long enough to
induce the need for reengineering and comprehension of existing systems written in these languages.
Some concrete results of our development are a general analyzer and schema for C/C++ and other
tools based on source code analysis such as our dynamic slicing tool [2, 3, 12]. In our toolset for
performing the experiments we have some external tools as well, whose fields we do not want to deal
with currently. These are, for example, the different software visualization tools and a static slicer.

The author elaborated two important aspects of the program comprehension framework (see
Figure 1). The first one is the basis of all analysis tasks, a general C/C++ analyzer front end. It
produces models of the software according to a well-defined schema, and it provides the kind of
features that an analyzer of a compiler does not need to address as special requirements for the task
of comprehension. The other result is a special code analysis tool, a dynamic program slicer, which has
a variety of applications. The tool implements two efficient dynamic slicing algorithms that represent
novel techniques and, compared to previous solutions, are significantly more efficient. Furthermore,
implementation peculiarities are provided for a real programming language (C) in much more detail
than anywhere previously available.

The results of the dissertation are grouped into four points, of which the first one deals with the
first topic and three with the second. This summary is then also composed of two parts, having at
the end of each part a summary of the corresponding results.
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I C/C++ Source Code Analysis and Model Creation

I.1 Difficulties with the Analysis of C/C++

The C++ programming language is considered to be one of the most complex, mainly because it
combines the low level programming possibilities (like direct memory access and pointer arithmetic)
with high level paradigms (object-orientedness and generic programming).1 This is of course an
advantage from the programming-technology point of view, however it also causes the C/C++ to
be very hard to analyze. The difficulty arises from the complex syntax full of ambiguities and a vast
number of further semantic rules and other regulations that comprise the language.

Processing source code has basically two goals. The first is to compile it into an executable program
using a compiler, and the other is our topic, code analysis. The latter is performed in achieving a
number of goals in the fields of software maintenance, reverse engineering, documentation, program
understanding and validation. A common property of the two processings is that a component is
needed which analyzes the source code according to the syntactic and certain semantic rules of the
language and creates its representation at a higher level of abstraction for further processing. This
module is commonly referred to as the front end. The representation produced by the front end of a
compiler is the abstract syntax tree and the data derived from it, which will be used to produce the
machine code. Similarly, in the second case we also need to produce a higher level model of some
kind, but in most cases it needs to be different from the one used by the compiler. Consequently,
in a general purpose source code analyzer aimed at program comprehension and maintenance a
special front end needs to be employed that bears special characteristics. Front ends of analyzers are
commonly referred to as fact extractors.

Apart from recognizing the language correctly, a general purpose analyzer front end needs to fulfill
a number of requirements that the compiler front end does not need to address. For this reason the
technologies used by compilers are not suitable for our needs. In [9] we published a list of requirements,
from which we overview the most important ones below:

• Completeness. Because of generality the parser needs to perform a complete analysis of the
source, and the so-called “fuzzy” parsing technique is not enough, although it is used by many
fact extractors but they are then capable of only a partial representation of the language.

• Level of detail. The parsers and models used by the compilers typically leave out details such as
punctuations, parentheses, comments and redundant declarations. However, in many applica-
tions with fact extraction original, source-complete representation is required, so the front end
needs to collect practically all available information from the source code.

• Connectivity. The internal representation produced from the source code will be utilized in
arbitrary applications, so it is advisable to provide the possibility for easy connection with the
remaining parts of the analyzer.

• Fault tolerance. A general front end needs to be capable of extracting as much information
as possible from even incomplete or erroneous (uncompilable) code. Hence it needs to possess
better fault tolerance capabilities compared to a compiler.

• Analysis speed. The analysis speed is less critical in the case of a general analyzer than for
a compiler, since the latter is executed more frequently during the development. However, an

1The C++ practically includes the C language (its procedural predecessor), so in the following these two will
be treated jointly.
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analyzer used for the purpose of maintenance needs to process a large amount of source code
at a stretch, so the speed issue cannot be neglected completely.

• Preprocessing. Obviously, the preprocessing needs to be performed in the case of a C/C++
front end (such as expanding the macros and processing include files). Besides this, preprocessor
related facts need to be collected (to produce, for example, an include-hierarchy output).

• Language dialects. The C and C++ languages have many dialects, mainly because of language
extensions defined by the compilers. Since we cannot afford to bind a general front end to
a specific compiler, it needs to handle the major dialects. Furthermore, for the handling of
unknown dialects an extendibility mechanism is desirable regarding the recognized language.

• User interface. The most general usability of a front end can be achieved if it can operate also
in command-line mode, since in that case it can be invoked from any tool. Furthermore, most
real software systems that need to be analyzed are equipped with some kind of a build system,
into which the easiest integration is through a command-line operated front end.

Before we developed the front end we examined the available solutions for the same purpose.
Some of them are based on compilers, so these are not suitable for general use. Next, those analyzers
that are part of integrated development environments or other general program comprehension tools
often extract only partial information from the source code or they do not provide suitable interfaces
to promote data exchange. Hence we developed a general front end for C/C++.

I.2 The C/C++ Analyzer Front End

Due to the complexity of the languages the parsing cannot be solved using efficient parsing technolo-
gies (LL(1) or LALR(1)). Furthermore, a complete front end needs to handle the representation of
the analyzed source and to provide it in a suitable form for the remaining parts of the analyzer tools.
Finally, it also needs to meet the above-mentioned functional and non-functional requirements.

We solved the completeness of the analysis and the sufficient level of details by utilizing two tools in
our front end. Similar to the C/C++ compilers, a separate preprocessor is responsible for preprocessing
the source, one that also collects the required preprocessor-related facts. The preprocessed code is
further processed by the main language analyzer that also prepares the corresponding model. The
preprocessor creates the preprocessed source (the .i file or an internal data stream) according to the
language rules, the output being the same as that created by the compiler. In addition, it creates
the model according to the preprocessor schema, which can be used for other analyses. We published
this schema in [20] containing all the detailed information about the low level details of the source
code, such as information about the tokens and other preprocessing information like about macros
and their substitutions. The preprocessor operates using a similar technology as we present shortly
for the language analyzer, so we will not provide these details here. In the next phase the language
analyzer processes the preprocessed source and creates the appropriate language model. The two
models together comprise all the information extracted from the original source code. In the present
work we deal with the C/C++ language analyzer that comprises of the syntactic parser and the
suitable mechanism for creating the model.

The analyzer is a command-line program that promotes its most general application. The input of
the program is a complete preprocessed translation unit that will be processed by the syntactic parser
by checking it against the syntax. The internal representation is built up in parallel with the parsing in
a syntax-driven fashion. This means that as the parser processes a language element it also executes
the so-called syntactic actions. The actions will practically comprise an interface to the parser, which
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defines the operations according to the syntax. By the realization of the interface the operations
called by the parser can be used to perform the “useful work,” to build up the internal representation
in our case, that is the source code model. The model is an Abstract Syntax Graph or ASG, that
complies with the schema defined by our framework. The ASG corresponds to the abstract syntax
tree extended with various relations among the nodes, like the resolved name references, but we do
not perform deeper analyses on the graph such as flowgraph computation. The ASG also supports the
parser, since for the correct parsing of C++ we need to store various structured information about the
symbols. For example, the meaning of the individual identifiers needs to be recorded, which follows
from the context (type, variable, etc.), as the syntactically ambiguous situations of the parsing can
be resolved only with this kind of information. This information is acquired from the partial ASG that
is just being built. The model is also written into a file, which will provide the basic connectivity for
the remaining parts of the analyzers, furthermore an application programming interface (API) is also
provided for processing the model.

The structure of the parser is traditional: the input text is first tokenized, that is we perform
the lexical analysis on it, which will produce the token-stream for the syntactic parser as its input.
The lexical analysis can be relatively easily managed using deterministic finite-state automata, since
we can provide the corresponding language definition using regular expressions. The lexical analyzer
performs some other low level processings as well, such as recognizing the comments, white-spaces
and so on. Since the C++ language is not easy to parse, several techniques are proposed in the
literature for that purpose, but almost none of them is pure parsing strategy. The result is generally
some hand-written parser extended with a number of solutions to aid the basic parsing strategy.
Some researchers even suggest using very expensive technologies for handling the complexity of the
language, like some methods developed for natural language processing.

The technology employed in our parser is top-down (which is also suggested by the creators of the
language and is used by many compilers as well) based on strong LL(k) with k = 2. The algorithm is
based on recursive descent procedures, where each procedure corresponds to a rule of the grammar.
A procedure’s body corresponds to the alternatives of the rule, in which the selection of the right
alternative is assured by the strong LL(k) condition. A nonterminal on the right-hand side means
calling the corresponding procedure, while a terminal means advancing in the input, according to the
order of the symbols in the rule (leftmost derivation). The parser is automatically generated from
a grammar description using the PCCTS system [17] that generates the C++ source code of both
the lexical and the syntactic parser. PCCTS supports the so-called predicated LL(k) parsing that
is a very powerful technique for resolving parsing ambiguities (see [16]). Basically, the method is to
use the so-called syntactic and semantic predicates, which will provide the direction of parsing at
those alternatives where the strong LL(k) condition does not hold and because of this the grammar
is ambiguous. Using the syntactic predicates we get practically infinite lookahead, while with the
semantic predicates the semantic information about the next several symbols in the input can be
used to resolve the ambiguities.

For creating the source code model (ASG) syntactic action interface mentioned above is used. The
top-down parsing employed with recursive descent procedures provides a logical way of to guiding the
building process. For this we use a mechanism, where during the execution of the recursive procedures
we execute an action at each relevant point, and the implementation of the action will actually
perform the building task. Actions are typically put at the beginning and end of the alternatives,
and surrounding the procedure calls that correspond to the nonterminals on the right-hand sides. By
taking advantage of object-orientedness, the actions provide a possibility for an even more general
use of the parser, apart from the creation of the ASG. The interface provides a component-level reuse
of it in a specialized tool with even more possibilities.
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The built-up model corresponds to the Columbus schema, which evolved into its current, stabile
form in parallel to the parser [5, 11]. During the building process a number of helping structures
and algorithms are used, since the calling order of the actions by the parser is fixed, which is not
always directly appropriate for the building. Furthermore, due to the recursively nested structure of
the language at many places we need to use different stacks to store the built-up entities. Another
relatively complex solution was needed for the resolution of names, that is to find the right entity
referred by a name. For example, in the case of function calls this includes the determination of types
of arguments incorporating the standard conversions, constant propagation and overload resolution.
Apart from these, there are a number of auxiliary processings that the builder needs to perform, which
we will not elaborate in detail here.

To meet the requirements overviewed above we employed a number of special solutions in the
C/C++ front end. For high fault tolerance we built into the parser a mechanism mainly based on
heuristics that is activated in the case of a syntax error. When that occurs after the error-message the
parser tries to recover itself and continue the parsing at a suitable point afterwards. The essence of the
solution is that in case of an error we skip several tokens on the input up to a token corresponding to
some significant language element, such as a semicolon, which terminates declarations and statements.
In parallel to this the parser will continue the analysis just at the according rule. To improve the analysis
speed we provide a so-called precompiled headers technique, in which the commonly used header files
that contain a large amount of common code are pre-analyzed and the so built up models are later
used by the analyses of subsequent translation units. The C++ parser accepts the language defined
by the standard and the model is also built up accordingly. Besides this, the parser supports the
dialects of the Microsoft, Borland and GNU g++ compilers, furthermore, there is a possibility of
extending the recognized language in a certain amount by giving a list of some pre-defined symbols
to the parser.

The front end provides some other features to promote program comprehension as well. Such is
the instantiation of C++ templates at source code level, about which more information can be found
in [10].

The usefulness of the front end has been proved in several cases with real size systems. The analysis
speed and the memory consumed are both suitable for very large systems as well. For example, in [9]
we showed that the memory consumption is nearly linear with the size of the program (by considering
e. g. the number of classes). Furthermore, the analysis time is comparable to the compiler’s. In the
mentioned experiment we investigated real size systems consisting of up to 5,000 classes.

The analyzer front end is the basis of all analysis tasks, including the simpler fact extractors which,
for example, create a formatted documentation of the code, but other more complex algorithms as
well, like the computation of dataflow information. However, for the successful analysis of a complete
software system a number of other components are needed as well. In our case these are provided
by the Columbus framework [6, 9], which gives some important features like project handling, model
merging and filtering. The Columbus system is not bound to any programming language, currently
the C++ front end is invoked as a command-line program. The current Columbus system provides
several useful processings for C++ as well. There are formats corresponding to the schema, like
XML-based models, a UML static structure (class) model and exchange formats defined by other
tools. Apart from this, Columbus can produce further derived outputs as well that serve some special
goal, like the computation of metrics, recognition of design patterns and source code auditing. The
Columbus system and its outputs are used in several academic cooperations of ours. Until now we
have registered more than 600 academic users worldwide.

Independent of the Columbus system, the front end can be used in numerous other applications
as well; in practically any field where there is a need for analyzing C++ code. Using the interface of
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syntactic actions there are even more possibilities of the parser’s reuse. Using this kind of extension,
so far we have experimented with different source code instrumentation applications (here the original
code is extended with such instructions that perform some additional tasks at runtime, preserving the
original behavior as well). For example, we employ instrumentation in the dynamic slicing application
to produce the execution trace. Dynamic slicing is the topic of the second part of the present work.

The place of the front end within our program comprehension framework is shown in Figure 1.OutputformatsC++schema
C/C++front endColumbusframework DynamicslicerOtherapplication External toolsproject handling,model merging,filtering, etc. Outputformats

Figure 1: The C/C++ front end within the program comprehension framework.

I.3 Summary of Results of Part I.

The author has achieved the following results regarding C/C++ source code analysis and model
creation:

I/1. C/C++ Source Code Analysis and Model Creation. The author developed the necessary tech-
nologies and implemented an analyzer front end that meets the special requirements for a
general purpose analyzer. Furthermore, the tool creates a model of the source code according
to a well-defined schema and provides interfaces for easy extendibility. Among others, we used
novel solutions for tackling fault tolerance, speed of parsing and language dialects.

Results found in related publications We introduced the C++ schema in [5] according
to which the model is created by the front end (the schema is not, but the building technology
is the result of the author). In [9] we published the requirements for a general C++ front end.
Furthermore we described the analyzer with its main features and provided some measurement
results. These are the author’s achievements. The preprocessor and the preprocessor schema
was published in [20] along with some example models (the preprocessing schema is not the
result of the author). The model creation strategy employed in the preprocessor is based on the
technology used by the C++ analyzer, which is the author’s own work.
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II Dynamic Program Slicing

II.1 Program Slicing

The notion of program slicing and the slices have been defined in many different ways in the literature,
but the basic idea is always the same: to attempt to reduce the size of the problem by achieving to
investigate only those parts of the program to be analyzed that are relevant from a specific point
of view. Program slicing [18, 21] is a program analysis technique proposed for many software- and
reverse engineering fields including verification, maintenance, reengineering, program comprehension
and debugging. Generally speaking, a slice of a program is its subset comprising of those instructions
that directly or indirectly influenced or may influence the values of given variable occurrences at a given
program point (this is known as the slicing criterion). The process of determining the subprogram is
called program slicing.2 The so reduced program will evaluate the involved variables equivalently at the
given occurrence. In fact, some slicing algorithms actually compute executable programs, while others
can produce arbitrary subprograms. However, executable slices are required only by some applications,
but for these it should be said that these slices are less precise.

If we determine the subprogram such that it involves the relations for any possible execution
then it is referred to as static slicing, whereas if only one specific execution is addressed then it is
dynamic slicing. A dynamic slicing criterion also includes the parameters of a concrete execution of
the program (a test-case with a set of program inputs) and a specific occurrence of the instruction
involved during the execution (since an instruction may appear several times in the execution the
different occurrences will be referred to as actions, which include the instruction and its serial number
in the execution as well). The sequence of actions corresponding to the execution for a given test-case
is called the execution trace, which includes some other information about the execution as well. In
Figure 2 an example is given to illustrate the difference between the static and the dynamic slice (the
former includes the whole program).

Over time a number of slicing methods have been developed. The majority of the practical methods
compute the slices based on various dependences (control and data) among the program elements
(variables, instructions, addresses, predicates, etc.). The literature is elaborate about the details of
static slicing methods. For example, the work by Horwitz et. al. [13] served as the basis for a number
of subsequent implementations and enhancements, whose basis is the program dependence graph –
the PDG. However, relatively few publications appeared that deal with the practical sides of dynamic
slicing and provide detailed algorithms. The fact that it is hard to find practically used algorithms can
mean that the published methods are not suitable for handling real size programs.

The existing dynamic slicing algorithms employ different approaches. The first dynamic slicing
algorithm was given by Korel and Laski that produced executable slices [15]. As it is known, executable
slices are generally significantly larger than those that deal with the dependences only (according to
Venkatesh’s measurements the ratio is about 2–3 times [19]), however in our work we do not require
this property, so we are working with a lot more precise slices. One of the most significant dynamic
slicing algorithms was proposed by Agrawal and Horgan [1], based on which several enhanced methods
were also published later [14, 22]. The basic method is based on the dependences among actions that
are jointly represented using a dynamic dependence graph or DDG. The nodes of the graph correspond
to the actions, while the edges represent the data and control dependences among them. To compute
the dynamic slice based on the DDG is then simple: starting with the action from the criterion we
traverse the graph and the instructions at all the reachable nodes will comprise the slice. The biggest

2This is the common understanding of slicing, which is also known as backward slicing. In contrast, a forward
slice consists of those instructions that are dependent on a given program point. In the present work we deal only
with backward slicing.
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#include <stdio.h> #include <stdio.h>
int n, a, i, s; int n, a, i, s;
void main() void main()
{ {

1. scanf("%d", &n); 1. scanf("%d", &n);
2. scanf("%d", &a); 2. scanf("%d", &a);
3. i = 1; 3. i = 1;
4. s = 1; 4. s = 1;
5. if (a > 0) 5. if (a > 0)
6. s = 0; 6. s = 0;
7. while (i <= n) { 7. while (i <= n) {
8. if (a > 0) 8. if (a > 0)
9. s += 2; 9. s += 2;

else else
10. s *= 2; 10. s *= 2;
11. i++; 11. i++;

} }
12. printf("%d", s); 12. printf("%d", s);

} }

Figure 2: Static and dynamic slice for the criterion (〈a = 0, n = 2〉, 1215, {s})

drawback of this method is that the graph can be very large since it has as many nodes as there
are actions in the execution, while the number of edges is determined by the dynamic dependences
that arise. The result is a graph of a practically unmanageable size in the general case. Besides this
problem, the methods published are not given with sufficient detail regarding the analysis of real
programming languages; they do not elaborate on the handling of numerous significant problems.

II.2 Efficient Dynamic Slicing Algorithms
Our approach to computing dynamic slices differs from the previous methods in several respects.
The algorithms can be efficiently implemented, hence they can be used for the analysis of real size
programs. This can also be attributed to the fact that the amount of data that needs to be maintained
by the algorithms was kept to the minimum using simple data structures. We give two algorithms that
are based on dynamic dependences. The first is global, meaning that it computes all dynamic slices for
a given execution, that is it does not use a slicing criterion (the global algorithm was first published
in [12], which was followed by its extension to C programs in [3]). The second algorithm is demand
driven, which means that it computes a single dynamic slice based on a single request (the criterion).
Both algorithms compute the same slices as the traditional dynamic dependence graph-based method,
but it is very important to note that we use a very different approach. The algorithms have their
advantages and drawbacks and therefore their application fields also differ. First we overview the
basic principles of the algorithms and then we take a look at the necessary extensions for slicing C
programs.

Computing the dependences among program elements is the basis of the algorithms. In both
methods we follow the dynamically occurring data and control dependences among the statement
occurrences (actions). In the case of the static dependence-based method all possible dependences
need to be taken into account (see for example Horwitz et. al. [13]), and for that purpose the program
dependence graph (PDG) needs to be constructed. Whereas in the dynamic case when a specific
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execution is concerned, only the actually realized (dynamic) dependences need to be investigated.
A control dependence between actions means the dependence on the action that was executed last
among the (statically) potential dependences. Next, the realized data dependences are determined
based on the last definition point of the variables. Based on this we do not need a complete static
or dynamic dependence graph. Instead we compute a much simpler static structure that will be used
by both algorithms in computing the slices.

The algorithms share a common static analysis phase, during which the so-called D/U program
representation is built (definition-use). A statement of a program has the following D/U representa-
tion: i. d : U , where d is the variable that gets defined in instruction i, while the U set contains
the variables that are used to compute the value of d at i. The representation captures the data
dependences in such a way that it considers only the names of the defined and used variables, i. e. the
relations between the actual occurrences need not be stored. Furthermore, the control dependences
can be treated in the same way as the data dependences using this representation. The traditional
methods did not employ such a generalization. The control dependences are represented by the so-
called predicate variables, which are virtual variables corresponding to the direct control dependences
among the instructions. After this the two algorithms compute the dynamic slice(s) using the D/U
representation and the execution trace. Because of its simplicity, this data structure and its use do
not introduce significant overheads.

The global algorithm starts processing the trace with the first executed instruction, and at each
step it computes the dependence set corresponding to the defined variable at the actual instruction.
For this it uses the most recently computed dependence sets of the used variables at the instruction
and their last definition instruction (see [3, 12]). This way all dynamic slices corresponding to the
defined variables at all instruction occurrences are attained and provided at the output (only the
actually effective sets are stored in the memory). This algorithm is suitable for applications where all
slices need to be computed with one pass through the execution trace. The number of iterations of the
algorithm equals the length of the execution. In addition to this, the average computational complexity
is determined by the average size of the dependence sets, which are generally in correspondence with
the program size (this is practically the average slice size). The space requirements are determined as
the product of the number and size of the sets: the first value is the number of all defined variables,
while the second is the average slice size. It can be seen that the space requirement is significantly
better than that of the graph-based method. The algorithm is shown in Figure 3. Here, DynDep

denotes the corresponding dependence sets, while LS is the last definition instruction. Furthermore,
ij is an action with the statement number and the execution step, while d is used to denote the
defined variable in the corresponding instruction and U for the use set at that point.

The demand driven algorithm processes the trace each time for all individual slicing requests
starting with the action of the criterion and traces back the dependences towards the very first
action. The algorithm scans the dynamic dependences and keeps those actions not yet processed in a
worklist. When it removes an action from the worklist it investigates all variables from the use set of
the removed action and extends the worklist with the last definition action of those variables before
the actual execution step. When all dependences have been processed and the worklist becomes
empty the algorithm terminates by providing the slice with the instructions visited during the run.
For the efficient functioning of the algorithm the trace needs to be stored in a special form that
groups the actions according to the variables defined in them. This is represented by the so-called
EHT (execution history) table, whose rows are constituted of the actions with the corresponding
defined variables. This is needed because in every iteration of the algorithm an arbitrary definition
action corresponding to the variables could be needed, which means that there is a need for searching
among the execution steps backwards. The number of iterations of the algorithm varies, it is minimum
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program GlobalAlgorithm(P,x)

input: P : a program
x : a program input

output: dynamic slices for all (x, ij , U(i)) criterions

begin
Store execution trace
for j = 1 to number of steps

i := statement executed at the jth step
DynDep(d(i)) :=

⋃
uk∈U(i)(DynDep(uk) ∪ {LS(uk)})

LS(d(i)) := i

Output DynDep(d(i)) as the dynamic slice for criterion (x, ij , U(i))

endfor
end

Figure 3: Global algorithm

the number of instructions in the slice computed, but in the worst case it can be as much as the
length of the execution. However, in the average case it will be correlated with the size of the slice.
Beyond this the computational complexity is determined by the lookup operations in EHT , which
is logarithmic with the number of steps executed. As for the space requirements, not counting the
storage of the table (it can be kept on the disk), it is not significant since only the worklist needs to
be maintained in the memory.

Comparing the two algorithms we may say that the global algorithm should be used when many
slices need to be computed at once, for example in the applications of the union or decomposition
slices. For a demand driven computation of a slice both methods can be used. If the storage of
the execution history in the table form is not feasible then the global algorithm should be chosen.
For individual tasks generally the demand driven algorithm is the better choice because of its better
computational and space requirements. However, for very long executions this algorithm is suitable
only if the storage of EHT and the lookup in it can be managed in an efficient way. Finally, if many
slices are to be computed by executing the demand driven algorithm individually, above a certain
number of the required slices the total cost will be better using the global algorithm.

In order to apply the algorithms to C programs several special problems needed to be solved
and extend the algorithms with these. However, these extensions do not influence significantly the
complexities. In our approach the execution trace is created by executing an instrumented version of
the original program that will create all the necessary information about the execution. The instru-
mentation and the static analysis is performed using our C/C++ front end with the above-mentioned
interfaces. This means that the extended D/U representation is derived from the ASG, while the
instrumented code is created by reusing the action interface (in such a way that we access the
recognized tokens and write them back supplemented with the instrumentation instructions).

We summarize the most important extensions for slicing C programs in the following points:

• Probably the most important extension is how we treat the different scalar variables, pointer and
composite objects in a uniform way. This is done by performing all computations on memory
locations, which has the advantage that the handling of the mentioned program elements will
be significantly simplified since all dynamic information is available about the actual states of
the objects of the current execution (as opposed to the static case where all possibilities need to
be investigated). First we transform everything to memory addresses: we use the actual address
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taken by the scalars, and the concrete values of pointers and array- and structure-elements,
furthermore we also transform the variables in the criterion to memory addresses. After this the
algorithms use these addresses as the “variables.”

• The D/U program representation needs to be extended in several aspects, but these extensions
do not influence the complexity. One such is that we introduce several other virtual variables
for handling pointer indirections and accesses of structure fields, and for example for handling
function calls as well. To handle pointers and other memory indirections (array-elements and
structure fields) we use the so-called dereference variables that are used symbolically in the
static D/U. These will be resolved to real addresses during the processing of the trace.

• A significant extension is the handling of arbitrary control dependences. More precisely, because
of the unstructured control transfers (like the goto statement) in C a complete control depen-
dence graph needs to be built, and based on it we create the appropriate predicate variables of
the D/U representation. In the static case a statement can depend on more than one predicate,
but in a concrete execution only one dependence will be realized. This is handled by the slicing
algorithms by considering the last executed predicate among the potential dependences.

• Some further details are the handling of library functions by pre-created D/U structures, com-
mon handling of more compilation units and the mapping of physical program line numbers to
logical statement numbers.

Apart from the extensions above, the demand driven algorithm deserves some further attention,
since in this case another auxiliary structure needs to be maintained. This is the so-called AHT , the
address history table, which stores in a compact form the actually taken addresses by the scalar and
dereference variables throughout the execution. It is used during processing the execution to look up
the address taken by an arbitrary variable at an arbitrary execution step.

The most important factor that influences the conceptual complexity of the algorithms is the
fact that we are working with memory locations instead of simple (statically known) variables. This
has the consequence that the number of all such used variables will be known at runtime only,
which will be determined by the number of different memory locations used by the program. The
result is that we need to use some more expensive data structures and algorithms at some points of
the implementation. However, according to our measurements the number of different addresses is
generally not significant compared to the size of the program and the static number of variables, and
it is untypical for these values to be dependent on the length of the execution, hence this does not
introduce unmanageable extra costs.

We performed a series of extensive measurements with the algorithms, and with the results we
support our theoretical reasonings about the complexities of the algorithms. Namely, the measured
execution time and memory consumption of the algorithms are much better than the complexities
determined for the worst cases, they are better by several orders of magnitude. Furthermore, with
both algorithms all significant factors are correlated with the program size or the number of different
memory locations used by the program, rather than the number of instructions executed. We did not
directly measure the performance and memory consumption, since the current prototype, unoptimized
implementation would not represent real results. Instead we measured different parameters of the
computations performed by the algorithms during execution (like internal data structures and numbers
of steps), with the help of special routines built into the implementation. We used five small and
medium size programs for the measurements that included the investigation of the sizes of the
program representation, the slice sizes and the computational and space requirements of the two
algorithms. We confirmed that the demand driven algorithm is generally faster in computing one slice
not counting the building of the tables.

12



II.3 Applications of Dynamic Slicing

The most important application of dynamic slices is in debugging. For this we provided an extension for
computing the so-called relevant slices, which provide more reliable results for certain code constructs
than the traditional dynamic slices [12]. The problem is that in some cases the dynamic slice does not
include certain instructions that actually did not affect the variables of the criterion, but they could
have had effects on those variables had they been evaluated differently (we say that the variables
are potentially dependent on the given instructions). We should mention that in this case we need
to count with some static dependence information as well, since the investigation of all possible
evaluations of the instructions is static processing.

However, the application range of dynamic slicing is much wider, for instance using our global
algorithm many slices can be computed efficiently, so many maintenance and testing tasks can be
aided. As a concrete application we elaborated on the method for computing the union slices, where
the union of dynamic slices is determined for different executions of the program [2]. Using the union
slice we can approximate the so-called realizable slice that exists only in theory and it represents the
union of the dynamic slices for all possible executions of the program. The realizable slice is smaller
than the static slice, but in practice it can only be approximated using the union slices computed with
different test-cases. The union slice is bigger than any individual dynamic slice but is significantly
smaller than the static slice, hence it is more precise. We support this by our measurements, where
we found that the difference between the static and the realizable slice can be significant. The results
of our experiments showed that the dynamic slices are generally small (about 5% of the program),
while the static slices are much larger (more than 70% of the program on average). At the same
time, the growth rate of union slices significantly declines after only a small number of representative
executions added, and this tendency seems to be unchanging, from which we draw the conclusion
that the relevant slice has been well approximated (see Figure 4). In addition, the size of the union
slice will be significantly smaller than the one of the static slice, according to our measurements it is
about 15% of the program. The effect is that union slices can be used in many applications instead
of the static slice. As an example, for solving a certain problem in software maintenance we can start
our investigations with a union slice computed for a well-chosen set of test-cases, and because the
subset of the program will be significantly smaller we will probably perform the task more efficiently.

II.4 Summary of Results of Part II.

The author has achieved the following results regarding dynamic program slicing:

II/1. Global Dynamic Slicing Algorithm for C. We developed a global dynamic slicing algorithm,
whose extension for real procedural languages (C, here) was given by the author. The algorithm
determines all dynamic slices for a given execution of the program. The method includes the
detailed solution for the interprocedural computation, arbitrary control transfers, dependences
of all kinds of data, the collection of runtime, dynamic information about the execution of the
program, and so on. To derive the static information the C/C++ front end given here is used.
The efficiency of the algorithm was verified by complexity studies and detailed measurements.

Results found in related publications The basic global dynamic slicing algorithm was first
published in [12], which is not the result of the author. The elaboration of the method, the
design of the prototype and the measurements are the work of the author. In [3] we describe
the details for slicing C programs, whose elaboration is the result of the author. The paper
was considered to be the best paper of the conference, the European Conference on Software
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Figure 4: The growth of the union slices for an example program. The horizontal axis represents
the addition of the test-cases, while the vertical one is the size of the union slice in number of
instructions. The curves correspond to different criterions, the thick one being their average.

Maintenance, which is the biggest European, and one of the most significant international
software maintenance conferences.

II/2. Demand Driven Dynamic Slicing Algorithm for C. The author elaborated a demand driven dy-
namic slicing algorithm and provided the details for slicing real procedural languages (C, here).
The method uses the same static information but the processing of the execution is done dif-
ferently and it computes one slice based on a single request. The efficiency of the algorithm
was also verified by complexity studies and detailed measurements.

A paper describing the method is being prepared at the time of writing.

II/3. Applications of Dynamic Slicing. Among the numerous applications of dynamic slicing, the rel-
evant slices are used for debugging, whose details were elaborated by the author. Another
application is the use of union slices for software maintenance, this technique being the work
of the author. Extensive measurements were also used to support the grounds of union slices.

Results found in related publications We published the computation of relevant slices
in [12], in which the basic algorithm is not the result of the author. The elaboration of the
method, the design of the prototype and the measurements are the work of the author. In [2]
we published the motivation and the technology for the computation of union slices. These,
along with the measurements and their evaluation are all the author’s work.
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