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Abstract

File inclusion, conditional compilation and macro pro-
cessing has made the C/C++ preprocessor a powerful tool
for programmers. However, program code with lots of di-
rectives often causes difficulties in program understanding
and maintenance. The main source of the problem is the dif-
ference between the code that the programmer sees and the
preprocessed code that the compiler gets. To aid program
comprehension we designed a C/C++ preprocessor schema
(supplementing the Columbus Schema for C++) and imple-
mented a preprocessor which produces both preprocessed
files and schema instances. The instances of the schema
may be used to model: (1) preprocessor constructs in the
original source code, (2) the preprocessed compilation unit,
and (3) the transformations made by the preprocessor.
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1 Introduction

Although the C/C++ preprocessor and the C/C++ com-
piler are separate, their usage is linked together from the
start. The preprocessor has proven useful to programmers
for over two decades, but it has also a number of draw-
backs. The fundamental problem about preprocessing from
a program comprehension point of view is that the com-
piler gets the preprocessed code and not the original source
code that the programmer sees. In many cases the two
codes are markedly different (according to [3] 8.4% of
the source code they studied consists of preprocessor di-
rectives). These differences make program understanding
harder for programmers and analyzers, and they can cause
problems with program understanding tools. In the next
section we will provide a concrete example.

Several researchers have been working in this area. A

valuable contribution was made by Badros and Notkin [1],
their framework allowing the user to write Perl callback
functions to follow the work of the preprocessor (even in
conditionally excluded code). The Ghinsu tool (coordinate
mappings are used to describe macro calls [12]) and the
GUPRO program understanding environment (a fold graph
is constructed that contains information for visualizing di-
rective usages [10]) are also remarkable solutions, but con-
ditionally excluded code is not analyzed.

Supplementing the Columbus Schema for C++ [4] we
designed a preprocessor schema to deal with the prepro-
cessing in detail. To our knowledge it is the first publicly
available general-purpose preprocessor schema. We hope
that this work (like the Columbus Schema for C++) will
be utilized as a reference schema for other works. The
schema also describes conditionally excluded parts and may
be used to aid overall program comprehension and under-
standing code in real cases as well. Possible applications
include macro call-graph extraction, macro-expansion vi-
sualization, include hierarchy extraction and so on. The
Columbus tool [5, 6] has its own preprocessor which, be-
sides preprocessing, is able to generate instances of the
schema. Largely thanks to this the mapping of the language
elements to the original source code locations (e.g. where
macro expansions are used) is improved in Columbus.

To facilitate tool interoperability the generated schema
instances are also written in GXL format [7] so they can be
used in software analysis, comprehension and maintenance
tasks. Yet another application of the schema may be in code
quality assurance. Code containing preprocessor constructs
may be checked against constraints and rules (in general
code with relatively simple macro complexity is better).

In the next section we will discuss the program code and
preprocessor problem described above, which is introduced
via an example, and also present our preprocessor schema.
In Section 3 we give some example schema instances and
ways they might be employed. A discussion of relevant ar-
ticles and software tools are outlined in Section 4. Finally,
in Section 5, we draw some conclusions and mention some
ideas for possible future research.



2 The Columbus Schema for C/C++ Prepro-
cessing

Preprocessing is the first stage of compilation, and is,
in fact, totally separate from the compiler. Preprocessing
means applying a set of low-level textual conversions on the
source; the C and C++ language specifications ([8], [15])
have it in a separate section, and it is quite unrelated to the
language syntax. These text-based transformations are hard
to follow. This makes program understanding and mainte-
nance difficult. For reverse engineers the preprocessor is
similar to a black box. The connection between its input
and output is well-defined, but in concrete, real-life cases it
may be hard to see precisely what is going on.

The idea behind the preprocessing schema was moti-
vated by the Columbus Schema for C++ [4]. The schema is
an object-oriented model of preprocessor related language
elements and their relationships. Object instances of the
schema represent models of concrete source files, the re-
sulting compilation units and the transformations made by
the preprocessor. This will then establish a connection be-
tween the original code and the preprocessed code. During
the preprocessing of a C/C++ source our preprocessor tool
builds the schema instance of the compilation unit, which
represents both the source code and the preprocessing trans-
formations applied on it.

The preprocessed output of a given source code varies
due to the interactions of conditional directives and pre-
defined and command-line defined macros. We call these
code-variations configurations (code belonging to one par-
ticular run of the preprocessor with a particular set of input
macros). It is a far from trivial question of deciding how to
handle these configurations in an analyzer tool, lots of other
tools simply deal with the actual configuration.

To permit a wider range of information extraction we de-
fine two kinds of schema instances, with two ways of usage.
The first is the static instance which does not depend on a
given configuration (it will contain both true and false parts
of an #1f directive, etc.). The second is the dynamic in-
stance, which is associated with one particular configura-
tion, where conditional blocks ignored by the preprocessor
are also omitted from the instance.

2.1 Motivating example

As an example for the preprocessor black box, let us con-
sider the following code fragment of math .h taken from
the Unix standard library.

#if defined __USE_MISC || defined __USE_ISOC99

#ifdef ___STDC___
# define __ MATH_PRECNAME (name, r) name##f##r
#else

# define __ MATH_PRECNAME (name,r) name/**/f/**/r
#endif

#include <bits/mathcalls.h>

#undef _ MATH_PRECNAME

One could start the investigation of this code as fol-
lows. The definition of the _MATH_PRECNAME macro
depends on the __STDC__ macro. bits/mathcalls.h
is included and __MATH_PRECNAME is immediately un-
defined after that but, surprisingly, if we open the file
bits/mathcalls.h in the source we can not find the
text __MATH_PRECNAME. There are some questions raised
by this code. Is the macro _ MATH_PRECNAME used be-
tween the #define and #undef directives, or is this def-
inition unnecessary here? Does the compiler really get this
piece of code? If it does, which one of the two definitions
is active? After some text searches in the standard inclusion
directory, we find that _MATH_PRECNAME is present only
in two headers. One of them is math . h where it is part of
a definition of another macro: the code fragment below is
in math . h but comes before the previous code.

#define __ MATHDECL_1 (type, function,suffix, args)
extern type ___MATH_PRECNAME (function, suffix)
args ___THROW

At this point we have to check whether or not this newly
defined macro is presentinbits/mathcalls.h,and we
find that it is. But the following question still remains.
There are two #1 £ directives which come before the def-
initions of __MATH_PRECNAME. Is it possible that the com-
piler never gets this code? To answer this, we have to ex-
amine other macros to determine whether they are defined
here, and what their values are. In general we can say that,
to understand the code, the job of a preprocessor must be
simulated by the programmer. Using our schema makes the
whole procedure easier and a schema instance allows us to
directly answer this and similar questions.

The outline of the dynamic schema instance of the ex-
ample is shown in Figure 1 (only the relevant attributes are
shown). As can be seen, math.h contains the definition
of _MATHDECL_1 (node 10 in the figure). This defini-
tion is used at least once in mathcalls.h (28), which
can be checked by navigating through the FuncDefineRef
object (40). _MATHDECL_-1 contains an invocation of the
_MATH_PRECNAME macro (15), this invocation is con-
nected (41) with its definition in math.h (22). It can also
be seen in the figure that the first #1 £ condition (18) is en-
abled (evaluated to true), and also the #1 fdef of _STDC__
(20) was true, so the first definition of __ MATH_PRECNAME
was active (22).

Now the questions listed at the beginning of this
section can be answered in the following way. The
_MATH_PRECNAME macro was used before it became un-
defined (so the definition is, of course, necessary), and the



contains (6)

contains (1) contains (4)

contains (5)

contains (3) contains (7) contains 8)  contains (9) contains (10)

contains (2)
dependsOn
dependsOn dependsOn

10 :FuncDefine 18 :If
name = __MATHDECL_1 enabled = true

20 :lfdef 22 :FuncDefine 23 Else
enabled = true name = __MATH_PRECNAME enabled = false

25 :Include

dependsOn
hasParameter(..)

/ hasReplacement(_.) hasC i hasC

hapReplacement(...)

15 :Directiveld
name =__MATH_PRECNAME

refersToDefinition

40 :FuncDefineRef

refersToNext

refersTold

hasArgument(...)

\ \ hasReplacement( )
19 :DirectiveText 21 Directiveld
name =... name =__ STDC__

refersToDefinition

41 :FuncDefineRef

belongsTo:

belongsTo: )
- hasFileName includes

26 Text 27 :File
name = h> name = h

AN

contains (2) contains (3)

contains (1)

281d
name =_ MATHDECL 1

refersTold

hasArgument(...)

Figure 1. math.h: example dynamic schema instance

compiler gets this code fragment with the first definition.
This is because the macro call (15) can be reached starting
from Include node 25, which comes before Undef node 29.

As you might imagine from the example above there are
a number of typical questions about the preprocessing task.
For example: Where is the active definition of a macro? Is
this file really included? Does the compiler get these lines
after preprocessing? There are configuration independent
problems as well, such as where all the different definitions
of a macro can be found. Our aim with the present paper is
to find a way of answering these questions and similar ones.

2.2 The structure of the schema

The schema is presented using the UML Class Diagram
notation [13]. Both static and dynamic instances are de-
scribed by the schema.

The UML Class Diagram of the preprocessor schema is
given in Figure 2. The class Base is the abstract base class of
all classes in the schema. Each element that appears in the
source file has a position, so (except for File, DefineRef and
FuncDefineRef) all classes are descendants of Positioned.

The root of an instance is a File object. A File object
contains any number of ordered Element objects. Element is
the abstract base class of elements contained in File. From
the preprocessor’s point of view a file consists of elements
which can be either preprocessor directives or other text el-
ements, so there are two specialized classes from Element:
Directive and Text, the first also being an abstract one. Ex-
cept for the text contained by directives, all textual elements
in the file are represented by the class 7ext. The only parts of

the source text of interest to the preprocessor are the identi-
fiers (subclass Id), which are separate objects in an instance,
because they may be macro calls. Otherwise the length and
contents of text elements in one 7ext object is not deter-
mined by the schema, but by the strategy of instance build-
ing (it can be a preprocessing token or a longer sequence of
characters).

Directives

Specialized classes of Directive correspond to the directive
types. Most directives have various textual elements (like
macro replacement) that are ordered lists of DirectiveText
objects. The directives and their relations will now be de-
scribed.

The Include directive includes a whole source file into
the position of the directive. An Include object includes
a new File object, which is the root object of all elements
of the included source file (this part is also completely ex-
panded, and it may also contain further included files). The
hasFileName relation between Include and DirectiveText
connects the filename with the include directive. There are
two different types of aggregations between Include and
File in the static and dynamic cases (see the constraint in
Figure 2). In the dynamic case when a file is included
several times in a compilation unit they require separate
File objects with the whole subgraph, because there can be
macro definitions between the different include directives
(or in the included file) which can influence the included
file bodies even in one configuration. In this case the re-
lation is a composition. In the static case the file which
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is included several times has the same content because the
static instance is configuration-independent so the one File
object is shared among different Includes. To describe com-
mand line forced includes (this means that the file given in
command line is included before the first line of source file)
the class Include has an attribute called isExternal. For an
example on the include directive see Figure 3 in Section 3.

Null directive represents a hashmark followed by a new-
line, it does nothing and its class has no relations.

Conditional directives represent code blocks controlled
by the conditional code inclusion (commonly known as
conditional compilation [8]). Conditional is the abstract
base class of conditional directives which determine con-
ditional blocks. Conditionals If, Ifdef, Ifndef are derived
from the IfGroup abstract class. The conditional inclusion
is controlled by special expressions called integral constant
expressions [8]. These expressions must be evaluated in the
preprocessing phase of the compilation. The result of the
evaluation is an integer which is treated as a boolean value.
They typically contain constants, macros and a special oper-
ator Defined. Operator Defined has one operand and evalu-
ates to 1 if the operand is defined as a macro name, and to 0
if not. Only IfGroup and Elif can have constant expressions.
The conditional block is a list of sequential elements begin-
ning with an If, Ifdef, Ifadef or Elif and ending before the
matching Elif or Else or Endif pair of previous directives
(conditional directives can be nested). Each Conditional
object has a conditional block, which is linked to the direc-
tive using the relation dependsOn, because these elements
depend on it. (There may be additional conditionals or in-
cluded files in a block.) Considering an If-Elif-Else-Endif
sequence, the code of a conditional block is included into
the preprocessed output file only if this block is the first in
the sequence which has a conditional expression with value
true. In this case the enabled attribute of the Conditional
object is true, otherwise false (this attribute is relevant only
in dynamic instances). To identify members of these con-
ditional sequences the belongsTo relation is defined, so that
Elif, Else and Endif objects can reference the appropriate If
(or Ifdef, Ifndef) object.

Different configurations are due to conditional blocks,
but a normal run of a preprocessor produces only a single
configuration (this is modelled with a dynamic schema in-
stance). For a software maintainer it is important to see
more (all) configurations. Static schema instances enable
all conditional blocks, and therefore at the same time in-
formation can be gathered from more configurations. For
examples see Figures 4 and 5 in Sections 3.1 and 3.2, re-
spectively.

An Error directive produces an error message and its us-
age is usually combined with conditional directives. It has
DirectiveText elements after the directive name which are
written out as error message of the preprocessor.

The Line directive has two tasks: it generates line infor-
mation for the compiler and it redefines the __LINE__ and
the __F ILE__standard C/C++ macros. Line has a line num-
ber and optionally a file name.

A Pragma directive is an implementation-defined con-
trol sequence for the preprocessor or the compiler (for ex-
ample to disable warnings or prevent multiple header in-
clusions). It has directive-texts which may contain macro
invocations.

The Define directive is used to define preprocessor
macros. Classes Define and FuncDefine will be described
in the next subsection.

The Undef directive makes a previously defined macro
undefined. It references only the corresponding Define ob-
ject. One definition can be undefined zero or more times
(only the first is accepted, the Undef directives which try to
undefine not defined macronames are simply ignored). The
relation in the schema permits one Undef directive to ref-
erence multiple definitions, although in one configuration
only zero or one definition can be referenced. Multiple re-
lations are allowed only in the static case where all possible
definitions (in different configurations) can be accessed (see
constraint in Figure 2). Undef also has an attribute called
isExternal for the command line undefinitions of built-in
predefined macros.

Macros

Macro definitions are represented by classes Define for sim-
ple, and FuncDefine for function-like macros. Define has a
name attribute, and replacement text which is to replace the
macroname at the place of a macro call (this text is called
a replacement list, and consists of DirectiveText objects).
Definitions of function-like macros have zero or more or-
dered parameters. The formal parameter list is represented
by objects of class Parameter (the opening and closing
parentheses and the commas separating the formal parame-
ters are not present in the schema).

All textual elements inside directives are represented by
class DirectiveText (the text is stored in the name attribute).
Identifiers have to be objects of class Directiveld. Every
macro replacement list may contain further macronames
(Directiveld) and may also contain Concat operators (¥4).
The Concat operator concatenates the preceding and the fol-
lowing tokens into one new token.

The replacement list of function-like macros has some
more specialities. In the list a Directiveld object may refer
to one Parameter object, this Directiveld will be replaced
with the corresponding argument during a macro call. In
this kind of replacement list if the Concat operator concate-
nates a parameter then the parameter is substituted before
concatenation, and further macro expansions can be made
only after concatenation. The list may also contain Stringize
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Figure 3. Dynamic (a) and static (b) schema instance of the example of include directive

operators (¥). A Stringize operator must be followed by a
Directiveld which is a parameter name, and during the re-
placement the operator creates a string literal from the ac-
tual argument. The two replacement list operators are spe-
cialized from DirectiveText because during preprocessing
both produce new text from the arguments.

Macro invocations are represented by DefineRef objects.
A DefineRef object refers to an Id (in simple text) or Di-
rectiveld (in the text of directives) and links it with its defi-
nition by referring to the appropriate Define object (objects
of DefineRef do not represent any concrete source code el-
ement, they are helper objects). One macro definition can
be used (referred to) zero or more times. Invocation of a
function-like macro (FuncDefineRef) has arguments which
are objects of class Argument. Arguments are texts that are
separated by commas. According to the place of the call
an argument consists of one or more 7ext or DirectiveText
objects, or their Ids because the argument may contain fur-
ther calls. Parameter substitution takes place after every
macro in the argument list has been expanded but before
other macros in the replacement list have been expanded.

The usage of DefineRef objects is different in the static
and in the dynamic cases. In the static case a macro call (Id
or Directiveld) can refer to several definitions at the same
time (relation refersTold), and this way all possible defini-
tions can be tracked, which can be important for a main-
tainer. In the dynamic case a macro name (Id) can be linked
only with its active definition (multiplicity is 0..1 in dy-
namic case, see constraint in Figure 2). At a given point in
a source file the active definition of a macro is backward the
first Define directive which has no matching Undef direc-
tive (the included source files are also taken into account).
The macro names in the replacement list of a macro can
contain further macros (Directiveld). This identifier may be

connected with more definitions even in the dynamic case.
In the following example there are two expansions of macro
A (lines 3 and 6). In the two cases different definitions of B
will be active: in the first case the definition in line 1, and
in the second case the definition in line 5.

1 #define B 3

2 #define A k*B

3 A ==> k*3
4 #undef B

5 #define B 5

6 A ==> k*5

This difficulty with nested macro invocations necessi-
tated the introduction of the DefineRef class and its refer-
sToNext relation. When the replacement list or any argu-
ment contains further macro calls the full expansion of a
macro requires more DefineRef objects, which are linked
to each other with the refersToNext relation. As it can be
seen in the previous example, macro calls in a replacement
list cannot be evaluated at the point of definition (macro
call B in the replacement list of macro A). Once the macro
expansion is started with an identifier, a list of DefineRef
objects describes the first and the subsequent, generated
macro calls. Each DefineRef object may refer to the next
DefineRef, and each may be referred by zero or one object
(the first has zero references). When a function-like macro
is called, DefineRef objects for macro calls in arguments
are included into the list before the further macro calls in
the replacement list. The macro representation is further
explained with an example in the following section.

3 Examples

In this section some examples are presented on how
some commonly used preprocessor features can be mod-
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elled using our schema. Details on static and dynamic in-
stances are given.

Dynamic instances represent exactly one configuration,
while static instances let us see the overall code without any
specific information about a concrete configuration. We will
illustrate this difference with an example of file inclusion.
In static instances an included file name always produces
the same File object, and each include directive refers to it.
In dynamic instances every include has a different macro
context and has its own File object, as mentioned in the de-
scription of Include directive in the previous section.

The dynamic and the static instance of the example code
below can be seen in Figure 3.

#include "config.h"
#define MACRO

#include "support.h"

support.h:

#include "config.h"

The same file (config.h) is included twice, but in the
second case it is via another included file. In the dynamic
case the File object is directly contained (composition) by
an Include object (11-13, 15-19, 20-22). In this example
there are two File objects for config.h (13 and 22), this
being caused by the different dynamic context of the two

cases (e. g. macro definition 14 or the usual header protec-
tion construct Ifndef—Define—contents—Endif)). On the other
hand, static instances contain all conditional blocks regard-
less of the conditional expressions and contain all possible
macro definitions and macro calls so the two Include direc-
tives of config.h (11, 20) share the same object (13).

3.1 Example for static instances

To learn more about static instances let us see the exam-
ple below (see Figure 4 as well).

support_unix.h:
#undef LEVEL
#define LEVEL 3

support_win32.h:
#undef LEVEL
#define LEVEL 4

#define LEVEL 1

#ifdef unix

#include "support_unix.h"
#elif defined WIN32
#include "support_win32"
#endif

if (LEVEL>2) ...

The macro LEVEL is defined to be 1 by default (10),
and there are two configurations: one for Unix and one for
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Windows. Both include supporting headers and redefine the
macro LEVEL (21 and 28). After the directives the macro
is called in a C if-statement. The macro call is connected
through DefineRef nodes (40, 41, 42) with all the three pos-
sible definitions (10, 21, 28; using a pessimistic approach
of the configurations). Definitions are also gathered from
included files. In general, for a macro definition all possi-
ble macro calls can be seen and vice-versa, as well as, all
possible definitions of a macro invocation (in all configura-
tions). Similar to macro calls the Undef directives can refer
to several definitions and one definition may be referred to
by several Undef objects.

The details of static instances are not so well defined as
those of dynamic ones. The strategy of building instances
determines the final level of usability. In the previous exam-
ple the Undef object 27 references two definitions (10 and
21). This is an example of a simple but safe building strat-
egy. In fact, the reference to definition (21) is not possible.
It will never be present in any configuration because Undef
(27) and Define (21) are always in different configurations.
An optimized building strategy should filter these types of
relations out. In the future we will focus on implementing
more intelligent strategies for building static instances.

3.2 Example for dynamic instances

A dynamic instance is an accurate description of a con-
figuration. It is more precise than the static one: the Undef
directive, say, points to exactly one position, and the actual
macro calls can be followed.

The most interesting part of a dynamic instance is the
macro expansion which makes use of a list of DefineRef
objects. To see this, consider the following example code
and its dynamic instance in Figure 5.

#define BASE 200

#define ERR(type,place) ErrorMsg (type, BASE+place)
#ifndef BASE

#define K 1

#else

#define K 2

#endif

ERR (K, 1) ; ==> ErrorMsg(2,200+1i);

The macro BASE is defined to 200 (11). The function
macro ERR (14) has two parameters (t ype and place; 15,
16), and its replacement text contains a function call using
the two macro parameters. The Directivelds (19, 23) refer
to the corresponding Parameter objects. In the code it can
be seen that using conditional compilation the macro K is
defined to 1 or 2 depending on wether the macro BASE is
defined. The dynamic instance contains only the enabled
conditional block (27), so the definition of K to 1 is not
present in the instance. Apart from the enabled block, the
disabled directives are also stored in the instance together
with their constant expressions, but without their blocks.
Storing these constant expressions is useful. For instance,
in the example the Else part is enabled, but to see why, we
have to look at the constant expression (with a macro; 26,
45, 11) belonging to the Ifndef directive, which is not en-



abled. The relation belongsTo helps us find the matching
conditional directives.

At the end of the example the macro ERR is called (31,
40) with K (33, 41) and i (35, 42) as arguments. The full
macro expansion contains the objects 40, 43 and 44 in the
list. DefineRef 43 links the first argument (macro call K)
with its definition in the conditional block, so the actual
argument will be 2 after substitution. The third DefineRef
object (44) shows that, at the point of macro call ERR, the
identifier BASE in the replacement list is a defined macro
name. It is possible that later in the code the BASE may
be redefined and the macro ERR is called. Then that call
requires a new DefineRef object pointing to the new defi-
nition. Using the DefineRef and Argument objects the final
result of the macro invocation can be easily got from a dy-
namic instance.

3.3 How to get information out of the instances

In general, information extraction requires graph walks
in the generated schema instances. In the following we will
present some typical applications.

Extraction of the preprocessed file from a dynamic in-
stance requires the following actions during the walk. Text
elements not depending on directives are simply written out
to the output. The directives are not written out but instead
all their effects are applied. This means that only the en-
abled conditional blocks are written out and the include di-
rectives are replaced with subgraphs. In addition, the macro
substitutions are done by walking through each correspond-
ing DefineRef object (at the same time argument substitu-
tion is performed and the required operators are applied).

Analyzing intermediate states of preprocessing helps us
to better understand how the preprocessor works in a given
situation. For instance the levels of macro expansions and
whether the included subgraphs are placed instead of the
include directives mean different intermediate states. To in-
vestigate nested macro calls and the levels of the substitu-
tion we can go through the list of DefineRef objects step-
by-step (relation refersToNext), exchange the Ids with the
appropriate replacement texts and substitute the parameters
if needed. This technique is very similar to the folding ap-
proach in [10].

The include hierarchy of the compilation unit can be ob-
tained from the static instance by simply traversing all the
edges between the File and Include objects, starting from
the File object of the input file.

As a last example we will show how the conditions un-
der which a specific code line can get through the condi-
tional compilation can be retrieved. Starting from the point
of interest in the static instance, one should walk through
the dependsOn and belongsTo relations up to the root File
object. The result is the appropriate combination of the con-

stant expressions of the traversed Conditional objects.

4 Related work

In the past decade preprocessing has been a frequent
theme in the literature and this has led to the creation of
several useful tools.

In spite of their disadvantages, preprocessor directives
are still widely employed. Ernst, Badros and Notkin [3]
analyzed the frequency and nature of preprocessor use. In
their study they analyzed 26 commonly used Unix software
packages written in C with about 970,000 source lines alto-
gether (for example gcc, bash, emacs, gs, cvs, ...). Among
other things they found that preprocessor directives make up
the relatively high 8.4% of lines on average (varying from
4.5% to 22%).

A lot of related works deal only with some special as-
pects of preprocessing. Spencer and Collyer [14] investi-
gated the use of conditional directives for separating codes
running on different platforms. Their opinion is that the
wide use of conditionals is “harmful” and should be avoided
as much as possible. Well-organized code should be used
instead. Krone and Snelting [9] analyzed the complex con-
figuration structures created with directives and produced
a graphical output of them. Latendresse [11] created a tool
for finding the conditions needed for a particular source line
to get through the conditional compilation. Vittek in [16]
overviewed problems in refactoring in connection with the
preprocessor. His Refactoring Browser makes automated
modifications on a C source code. An interesting idea in
this work is to deal with macros as special include-files (the
macro body is “included”), but the handling of ## opera-
tors is unsolvable in some cases. To handle the problem of
configurations, this tool relies on user input.

There are some studies that approach the preprocessing
problem in a more general way. Badros and Notkin [1] con-
structed a framework which executes user defined Perl call-
back functions when an action of interest occurs during the
preprocessing and parsing (after preprocessing they build an
AST to deal with some C language-level constructs like call
graphs). To do the preprocessing the authors modified and
embedded the GNU C preprocessor library. As an example
they wrote functions to describe macro expansions and also
generated Emacs Lisp source to visualize them. With the
help of hooks the conditionally excluded lines can be ana-
lyzed. However, one has to write custom code for each kind
of use and this requires a good knowledge of some details
of the tool’s implementation.

In [10] Kullbach and Riediger worked along similar lines
to us. They divided the code into foldable and non-foldable
segments, which are visualized in the GUPRO [2] source
code browser. Using this tool the important parts of the code
can be seen much more clearly because the programmer can



hide and show (fold/unfold) the segments. The fold/unfold
structure is used to describe the preprocessor transforma-
tions (folded/unfolded state means the code before/after a
preprocessor action). The structure is good for visualization
and the user can also define custom folds. Since all transfor-
mations (macro calls, conditionals, etc.) are described using
the same structure, this may be inconvenient for some other
preprocessor related purposes. Yet another difference to our
work is that GUPRO deals only with one configuration.

As part of the Ghinsu program slicing tool, Livadas and
Small developed a special preprocessor [12]. They iden-
tified five mappings between the original and the prepro-
cessed code. Their preprocessor inserts special lines into
the preprocessed file to support Ghinsu’s source code high-
lighting methods. Mappings for macro definitions and in-
vocations are described in detail in their paper, but work
on conditionally excluded code (i. e. configuration indepen-
dence) had not yet been investigated.

In the present work we aimed to create the kind of
schema that is able to include as much information as pos-
sible. The generated schema instances are not just for sup-
porting our Columbus tool or for simply supplementing the
Columbus Schema for C++; it is not limited to any spe-
cial purpose. Because the preprocessor can create static and
dynamic instances, the schema is useful for modelling the
preprocessor constructs and their actual usage in a configu-
ration.

5 Conclusions and further work

In this work we introduced the Columbus Schema
for C/C++ Preprocessing. It supplements the Columbus
Schema for C++, but can be employed separately as well.
We have shown through various examples that different
kinds of program analysis, comprehension and mainte-
nance problems can be overcome by using instances of
our schema. This is possible because we create dynamic
and static instances by investigating the source code in a
configuration dependent or independent way. The use of
a standard notation and technology (UML, GXL) allows
other reverse engineering tools to use the extracted infor-
mation (for example source browsers, visualizers and code-
understanding tools), so it relieves researchers of the burden
of having to write preprocessors for different purposes and
allows them to concentrate on their own concrete research
topic.

For future research we plan to develop better methods
for generating static schema instances which, say, provide
a more accurate determination of possible define references
of a macro usage. We have also started the work on design-
ing a compact link between the Columbus Schema for C++
and the Columbus Schema for C/C++ Preprocessing.
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