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Abstract. File inclusion, conditional compilation and macro processing
has made the preprocessor a powerful tool for programmers. Preprocessor
directives are extensively used in C/C++ programs and have various
purposes. However, program code with lots of directives often causes
problems in program understanding and maintenance. The main source
of the problem is the difference between the code that the programmer
sees and the preprocessed code that the compiler is given. We designed
a Preprocessor Schema and implemented a preprocessor which produces
both preprocessed (. 1) files and schema instances. The Schema is general
purpose and its instances model both the whole preprocessed compilation
unit and the transformations made by the preprocessor. Therefore it
facilitates program comprehension and tool interoperability.
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1 Introduction

Although the C preprocessor and the C compiler are separate, their usage is
linked together from the start. The preprocessor has proven useful to program-
mers for over two decades, but it has also a number of drawbacks. The fun-
damental problem about preprocessing from a program comprehension point of
view is that the compiler gets the preprocessed code and not the original source
code that the programmer sees. In many cases the two codes are quite differ-
ent. These differences make program understanding harder for programmers and
analysers, and they can cause problems with program understanding tools. In
the next section we provide a concrete example.

Several researchers have been tackling this problem. The GHINSU tool (coor-
dinate mappings are used to describe macro calls [10]) and the GUPRO program
understanding environment (a fold graph is constructed that contains informa-
tion about directives [8]) are remarkable solutions, but their usage is limited to



certain domains. We designed a Preprocessor Schema to deal with the prepro-
cessing in detail, and made it available for other researchers to use. This is the
first publicly available general purpose preprocessor schema. We hope that this
extension to the Columbus Schema [3] will be utilised as a reference schema for
other works. Furthermore, we also implemented a preprocessor tool (CANPP)
which is able to generate instances of our schema. We also give examples on the
way the schema can be utilised, and concrete program understanding scenarios.

In the next section we will discuss the program code-preprocessor problem
mentioned above, which is introduced via an example. In Section 3 we furnish
our solution, the Preprocessor Schema and example schema instances and usage
scenarios. Related papers and software tools are outlined in Section 4. Finally,
in Section 5 we discuss our conclusions and suggestions for future work.

2 DMotivating example

Preprocessing is the first stage of compilation, and is in fact, totally separate from
the compiler. Preprocessing means a set of low-level textual conversions on the
source; the C and C++ language specification ([6], [16]) contains it in a separate
section, but it has no connection with the language syntax. These text-based,
unstructured transformations are hard to follow. This in turn makes program
understanding and maintenance more difficult. Due to these transformations,
the preprocessor is similar to a black box. The connection between its input
and output is well-defined, but in concrete, real-life cases it may be hard to see
precisely what is going on.

As an example, let us consider the following code fragment of math.h taken
from the Unix standard library.

#if defined __USE_MISC || defined __USE_IS0C99

define _Mdouble_ _Mfloat_

#

# ifdef __STDC__

# define __MATH_PRECNAME (name,r) name##f##r

# else

# define __MATH_PRECNAME(name,r) name/#*x/f/**/r
# endif

# include <bits/mathcalls.h>

# undef _Mdouble_

# undef __MATH_PRECNAME

The definition of the __MATH_PRECNAME macro depends on the __STDC__ macro.
Then the file bits/mathcalls.h is included and after that this macro is unde-
fined immediately. Surprisingly, if we open the file bits/mathcalls.h we can-
not find this macro! There are some questions raised by this code. Is the macro
__MATH PRECNAME called between the define and undef directives? Is it a bug
here? Does the compiler really get this piece of code? If it does, which one of



the two definitions is active? After some text searches in the standard inclusion
directory, we find that __MATH_PRECNAME is present only in two headers. One of
them is math.h and here it is part of a definition of another macro:

#define __MATHDECL_1(type, function,suffix, args)

extern type __MATH_PRECNAME(function,suffix) args __THROW

From this we have to check whether or not this newly defined macro is present
in bits/mathcalls.h. Actually, it is. But we have not finished yet, because
a question still remains. There are two #if directives before the definitions of
__MATH PRECNAME. Is it possible that the compiler never gets this code? To answer
this, we have to examine other macros to determine whether they are defined
here, and what their values are. In general we can say that the job of a prepro-
cessor must be simulated by the programmer to understand the code. Using our
Schema makes the whole procedure easier and a schema instance enables us to
directly answer these questions.

The outline of the schema instance of the example is shown in Fig. 1.

math.h : File

MATHDECL_1: FuncDefine| |1 Conditional ﬁ
Type = cndIf

Enabled =1

ﬁﬁ H— |
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‘ .. _ MATH PRECNAME .. ‘ ‘

" MATH_PRECNAME : FuncDefine o
refDefinition s
refName
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Fig. 1. math.h: example Schema instance - UML Object diagram

As can be seen, math.h contains the definition of __MATHDECL_1. This def-
inition is used at least once in mathcalls.h as can be seen by navigating
through the FuncMacroRef object B. __MATHDECL_1 also contains invocation
of __MATH PRECNAME macro, this invocation also being connected with its defi-
nition in math.h. It is also in the figure, that the first #if condition (C1) has
the logical value true (1), and also the #ifdef of _STDC__ (C2) was true, so



the first definition of __MATH_PRECNAME was active. After this, we can answer
the set of questions at the beginning of this section in the following way. The
_-MATH_PRECNAME macro was used before it was undefined (so it is, of course, not
a bug), and the compiler gets this code fragment with the first definition active.

As can be seen from the example above there are several typical questions
about preprocessing. Where is the active definition of a macro? Is this file really
included? Does the compiler get these lines after preprocessing? And so on. Our
aim in the paper is to find a way of answering these questions and similar ones.

3 The Preprocessor Schema

During the preprocessing of a C/C++ source CANPP builds the Schema in-
stance of the compilation unit, which represents both the whole source code and
the preprocessing transformations made by CANPP. There are two ways of us-
age. The first makes use of operations/investigations on the original source code
after preprocessing, the second follows the semantics of the whole preprocessing
activity.

The preprocessed output of a given source code varies due to the predefined
and command-line defined macros. We generate such models that belong to
one particular run of the preprocessor (using a particular set of input macros).
During the analysis we ignore the conditional blocks which have a false value.
Just preprocessing these blocks without the corresponding set of macros would
only give partial results.

3.1 Structure of the Schema

The Schema instance is a special graph (a decorated tree), the structure of this
graph being described by the the Preprocessor Schema. The schema is presented
using the UML [12] Class Diagram notation. The class structure of the Schema
follows the general structure of the C/C++ sources.

From our point of view a source file consists of elements which can be either
preprocessor directives or other text elements (Directive or Text classes in
Figure 2). Text elements are divided into two groups: normal text elements
and decorated text elements. The latter elements refer to macro definitions,
parameters, etc. The UML Class diagram of the Preprocessor Schema is given
in Figures 2 and 3. The root of the generated tree is one File object. A File
object includes any number of Element objects. Element is an abstract base
class of all elements in the file. There are two specialized classes from Element:
Directive and Text, the first is also being abstract.

Preprocessor directive part. Specialized classes of Directive correspond to
the directive types. These are the following:

e Empty - The Empty directive, does nothing, has no arguments and no
following tokens. (code: # newline)
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Fig. 2. Schema UML Class diagram - Directive part

Error - Produces an error message with the text tokens that follow it.
Pragma - An implementation-defined control sequence. It contains text
tokens, and possibly macro invocations.

Include - An Include object contains a new File object, which is the root
object of a subtree corresponding to the included source file (- this subtree
is also completely expanded). It may also contain more included files. The
include directive in the source is followed by a list of tokens. These tokens
may contain macro calls, but after expansion the whole list must have a valid
filename. This list of tokens is also contained in the File object.
Conditional - Represents code blocks determined by the conditional in-
clusion (commonly known as conditional compilation). It has a cond_type
attribute according to the conditional preprocessor directives (#if, #ifdef,
#ifndef, #elif, #else - note that #endif is not present in the Schema as a
class). The first four directives are followed by an integral constant expression
(see [6]). Constant expressions are evaluated during the preprocessing phase
of compilation. The result of the given constant expression is stored in the
Conditional object. The conditional block is a list of sequential elements
beginning with an #if, #ifdef, #ifndef or #elif and ending before the
matching #elif or #else or #endif pair of previous directives (conditional
directives can be nested). Each Conditional object contains a conditional
block. If the conditional expression has the logical value true (means not
0) after evaluation, the Conditional object becomes the root of elements



in the block. There may be additional conditionals or included files in this
subtree. Before or after an enabled conditional block there are some disabled
blocks. Their elements are currently not included in the generated Schema
instance (see example in Section 3.2).

e Define - This class is employed for a macro definition and it contains a
replacement list of tokens. With function-like macros it also contains a pa-
rameter list (for detailed description see below).

e Undef - References only the corresponding Define object.

e Line - It is followed by a number and optionally a file name (these can be
also described with macros). It has two tasks: it generates line information
for the compiler and it defines the _LINE__ macro (and the __FILE__ macro
if its text is given). Both are standard C/C++ macros.
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Fig. 3. Schema UML Class diagram - Text and Define part

The Text and Define part. Text is generally a list of Tokens, while Token
is an abstract base class of tokens. Id objects stand for identifier tokens (macro



names, macro parameters and simple identifiers). Other tokens are represented
by Nonld objects. There can be two special operators in a replacement list of
a macro: stringize operator (#) and concatenate operator (##). Both produce
new tokens from their arguments. The first creates a string literal from a macro
parameter, while the second concatenates those tokens preceding and following
it into one token. Class TokenPasting (## operator) is specialized directly
from Token, class Stringize (# operator) is specialized from class Id, because
its argument is a parameter of a function-like macro (see examples in the next
section).

The Define class represents directives for a macro definition. It can define
object-like and function-like macros (classes ObjDefine and FuncDefine). A
Define object has an identifier as its name, and has a replacement list (Text
object). This list can also contain TokenPasting operators. A FuncDefine
object contains an ordered list of Parameter objects as well. In the latter case
the replacement list can contain Ids referencing to a Parameter, and can also
Stringize operators followed by an Id.

Macro invocations are represented by MacroRef objects. A MacroRef ob-
ject links an Id, which is a macro name at the point of occurrence, with its active
definition. At a given point in a source file the active definition of a macro is the
first #define directive before this point, assuming there is no undef directive be-
tween them (note: the included source files are also taken into account). A macro
definition can contain additional macro invocations, these invocations cannot be
evaluated at the point of the definition. The isInClassWith association gives
a classification on MacrolRef objects. Once the invocation is started with an
identifier, a set of MacroRef objects describe the first and the further, gener-
ated invocations; this set forms one class in the classification mentioned above.
With the help of this reference set the texts can be replaced with their active
definition even in case of nested macro calls. The invocation of a function-like
macro (FuncMacroRef object) in addition contains an ordered list of argu-
ments. An Argument object is a Text which will replace the macro parameter
in the replacement list.

3.2 Example Schema instances

In this section we present examples of how some commonly used preprocessor
features can be modelled using our Schema.

Include directive. The following example code shows how include directives
are modelled.

#include <stdio.h>
#include "config.h"
#include _SUPPORT_H
int main ) { ... }

Include directives are represented by an Include object which contains a File
object as the root of the subtree. So the generated tree can have recursive sub-
trees. The Schema instance of the above example is shown in Figure 4. This



include_example.c : File

stdio .h : Include

config.h : Include

SUPPORT_H : Include

!—l—\

int main() {

}
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for
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:

:

Subtree

cpplexsupport.h

‘_SUPPORT_H ‘ ‘ cpplexsupport.h ‘

Fig. 4. Schema instance of the example of include directive

simple example contains an unusual feature, namely the macro call in the third
include directive. This macro is defined in config.h and is expanded in the
text cpplexsupport.h. The File object just corresponds to this header file (the

usage of the ObjMacroRef object is described later).

Conditional code inclusion. The following example is about conditional com-
pilation (here we assume that a value of 1.3 is assigned to the macro __VERSION

and a value of 1 is assigned to the macro __unix).

#if __VERSION > 2
codel

#else

code?2

#if defined __unix
code3

#elif defined _WIN32
code4

#else

codeb

#endif

codeb

#endif

The Schema instance belonging to this example is shown in Figure 5. The
shaded parts have a true value after evaluation and they appear in the output
as well. There is a straightforward connection between the program code and

the diagram.

==>

code?2

code3

codeb
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__unix _WIN32

Fig. 5. Schema instance of the example of conditional compilation

Macros. Our last example shows how various macro usages can be described:
object-like macros, function-like macros, macro in replacement list, # and ##
operators. The example and its expansion can be seen below.

#define N 200

#define A(a,b) X ## b #b a+N

#if N <100

#define K 2

#else

#define K 1

A(K,3) ==> X3 "3" 1+200

The schema instance of this code fragment can be seen in Figure 6. The defi-
nition of macro A consists of three parts, namely the name token, the parameters
and the replacement tokens. The replacement tokens contain a concatenate op-
erator with the first parameter and an Id, a stringize operator with the second
parameter, and the sum of the two parameters (Id, Nonld, Id tokens). The
parameter occurrences are linked with the parameter definitions. These are the
static information of the replacement list. The MacroRefs cannot be linked at
the place of the definition as they belong to the place of the macro invocation.
There is an #if conditional directive (C1) with a value of 0 (its body is ignored)
and an #else pair (C2), which is preprocessed and contains the definition of
macro K, given a value of 1. The last part of the code is the invocation of macro
A. The FuncMacroRef object R1 links the Id token with the actual arguments
and the actual macro definition. The first parameter is a macro invocation (K)
in this point of the code, so another macro reference is required (R2). The re-
placement list of macro A also contains a macro invocation (N) which is handled



#if N<100 #else

#define N 200 ‘*define A(a,b) X ## b #b a+N ‘ bdefine K 2 #aetine k 1 A(K,3) ‘
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Fig. 6. Schema instance of a macro example

by R3. The three macro references are in the same reference class because they
are used to describe the state of macro invocations at one place of the code (the
corresponding objects are shaded in the diagram).

3.3 Using the Schema for information extracting

Both the original source code and the final preprocessed output can be extracted
from a Schema instance. In addition, every intermediate state of the program
which occurs during the transformations done by a preprocessor can be seen.
Preorder tree walks on the generated tree are used to extract the requested
information. The level of extracting and the kind of information is controlled
by the depth and the details of the tree walk. Three scenarios are described
here: getting back the original source after preprocessing, extracting the final
preprocessed code and intermediate state investigation.

Original source. Retrieving the original source code during the preorder walk
consists of the following actions. All text objects are written to output un-
changed, including the #define, #undef, #pragma, #error, #error and # di-
rectives. Instead of included files only the #include directive is written out.
After text elements with function-like replacement-references the argument list
has to be written out. Conditional directives are also written out unchanged, but



the finally retrieved source code is not the the same as the original source code,
because the code from the false-evaluated conditional blocks are (currently) not
restored.

Preprocessed file. Extracting the preprocessed file requires more operations
during the walk. Included subtrees are written out, “silent” directives produce
empty lines, the conditional blocks which has true value are written out. The
macros are completely expanded with the help of MacroRef objects, the ref-
erenced Text objects are always replaced with their definition, recursively. The
parameters are substituted and # and ## operators are replaced by their resulting
tokens.

Intermediate states. Analyzing intermediate states helps us better under-
stand the job of the preprocessor. By an intermediate state of the source code
we mean the level of macro expansion, and whether the included subtrees are
placed instead of the directives. The latter is a trivial task during the tree walk.
Macro expansions are described with replace-references, # and ## operators and
parameter substitutions. When some of the macro strings are used and some of
the replacement strings from active definition are used instead during the tree
walk, then we get an intermediate state of source file (note that for a given class
of MacroRefs not all combinations are valid). Likewise we can choose whether
to write out arguments with operators or write out the resulting token. Code
may also be generated before and after a parameter substitution.

3.4 Environment of use and implementation

A reverse engineering tool called Columbus ([4], [3], [5]) has been developed
in a cooperation with our department for some years now. Like most tools of
this type, Columbus expects preprocessed input files. This approach bypasses
analysing the code translations made by the preprocessor. Columbus is able to
use any preprocessor, but currently the Microsoft ¢l [11], GNU cpp [15] and
Borland cpp32 are preconfigured. CANPP is a suitable alternative to these; we
used cl and cpp for testing the tool on Win32 and Unix platforms, respectively.
The CANPP tool has two tasks, namely to make an .i file as an ordinary
preprocessor does, and to create Schema instances from the input. CANPP has
now been integrated into Columbus and the Preprocessor Schema extends the
Columbus Schema used by Columbus for additional analyses of whole programs.

The PCCTS [13] system was used to facilitate the lexical and syntactic anal-
ysis. We wrote an LL(1) grammar to syntactically analyse the input. The pre-
processing is syntax driven, which means that as the parser recognizes a prepro-
cessor directive then it calls the appropriate action. To evaluate integral constant
expressions we created a separate parser.

4 Related work

In the past decade preprocessing has been a common theme in the literature and
has led to the creation of several useful tools.



In spite of its disadvantages, preprocessor directives are still widely employed.
Ernst, Badros and Notkin [2] analysed the frequency and nature of preprocessor
use in 2000. In their study they analyzed 26 commonly used Unix software
packages written in C with about 970000 source lines (for example gce, bash,
emacs, gs, cvs...). Among other things they found that preprocessor directives
make up the relatively high 8.4% of lines (varying from 4.5% to 22%).

A lot of related works deal only with some special aspects of preprocessing.
Spencer and Collyer [14] investigated the use of conditional directives for sepa-
rating codes running on different platforms. Their opinion is that the wide use
of conditionals is “harmful” and should be avoided as much as possible. Well-
organized code should be used instead. Krone and Sunelting [7] analysed the
complex configuration structures created with directives and produced a graph-
ical output of them. Latendresse [9] created a tool for finding the conditions
needed for a particular source line to get through the conditional compilation.

There are some studies that approach the preprocessing problem in a more
general way. Badros and Notkin [1] constructed a framework which executes user
defined perl callback functions when an action being analysed occurs during the
parsing. It has only a couple of limitations. However, every user has to write his
own code to produce the analysed output. In [8] Kullbach and Riediger worked
along similar lines to us. They divided the code into foldable and non-foldable
segments. All directives are represented by this structure, which is integrated
into a text editor and can visually help the programmer. But their schema does
not permit external use. Livadas and Small [10] developed the Ghinsu program
slicing tool. They focused on macro expansions, which are solved using different
coordinate mappings between calls and definitions. They included the Ghinsu
Preprocessor to produce extra code for the slicing tool to describe the macros.

Our work significantly differs from above-mentioned ones in that it is not just
limited to special applications, but it may be used in many other tools like those
mentioned above. The CANPP tool generates an ordinary .1i file, hence it can
be incorporated into the build process of existing projects. Furthermore, the use
of a standard notation and technology (UML, XML) facilitates interoperability
between software tools.

5 Conclusions and further work

In this work we introduced the Preprocessor Schema and the corresponding
CANPP preprocessor tool. It extends the Columbus Schema, but can be em-
ployed as a stand-alone tool as well. We showed that there are a number of real
problems which can be overcome with the help of our Schema. This works for sev-
eral reasons. The structure of the schema follows the structure of C/C++ source
code, and it is sufficiently general. It is not specifically designed for any partic-
ular field, but it also has the possibility of answering special questions about
source code. Last, but not least, the XML output of an analysis can be used by
anyone for further analysis, for example in source browsers, pretty printers and
code-understanding tools.



In future research we would like to extend the use of conditional compilation
and source configurations. We plan to handle them unconditionally and extract
information regardless of the actual source configuration (e.g. macro values).
We have also started work on designing a compact link between the Columbus
Schema and the Preprocessor Schema. We would like to support new output
formats (like HTML) so that, with the help of these, we can generate additional
information for special applications extracted from the schema instances.
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