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many real-world machine learning/data mining problems:
graphs: natural way of representing structural aspects of a domain
- e.g., chemical graphs, the web graph, social networks, …

traditional machine learning/data mining algorithms:
assume single fixed-width table representation of the data

- columns → features
- rows → objects

graph structured objects: 
no natural single fixed-width table representation

traditional machine learning/data mining algorithms cannot be applied

new methods specific to graph structured objects have to be developed

Learning and Mining Graph Structured Data
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most frequent scenarios:

i. single-graph mining:
objects are (tuples of) vertices of a single graph

- e.g., classification of webpages (vertices) in the WWW (web graph)

ii. transactional graph mining:
instances are graphs; elements of a graph database

- e.g., classification of chemical compounds (molecular graphs)

this talk: transactional graph mining in chemical graphs

Learning and Mining Graph Structured Data
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virtual screening in drug discovery:
select a limited number of candidate compounds from millions of database 
molecules that are most likely to possess a desired biological activity

Application Example

... ...

?????????

inactive inactive

inactive inactive inactive

active active

active
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Molecules and their Molecular Graphs

molecules give rise to labeled undirected graphs

vertex label

edge label
“double”
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descriptive graph mining (local patterns)

1. frequent subgraph mining in outerplanar graphs

2. frequent subgraph mining in graphs of bounded treewidth

conclusion

Outline
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Frequent Subgraphs

frequent graphs:
- D: set of labeled graphs,

- t: positive integer threshold,

- ϕ: a quasi-order (i.e., reflexive and transitive) specialization relation on D

a labeled graph H is t-frequent w.r.t. D and ϕ if |{G ∈ D: H ϕ G}| ≥ t

F(D,t,ϕ): set of t-frequent graphs w.r.t. D and ϕ
- apart from antisymmetry, special case of [Mannila & Toivonen,´97]

usual cases:
ϕ is the subgraph isomorphism (partial order): graph mining community

ϕ is the homomorphism: ILP community

both cases: ϕ is monotone w.r.t. t-frequency
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Enumeration Complexity

if the size of the output is exponential in that of the input, it is hopeless
the algorithm to work in time polynomial in the size of the input
characterize the delay time [Johnson, Yannakakis & Papadimitriou, ´88]

I. polynomial delay: 
- the delay time is always polynomial in the size of the input

II. incremental-polynomial delay:
- the delay time is polynomial in the combined size of the input and the output 

so far computed
- after exponentially many steps the delay time may become exponential

III. output-polynomial time:
- the total time is polynomial in the combined size of the input and the 

entire output
- after polynomially many steps the  delay time may become exponential

most liberal class: output-polynomial time
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Mining Frequent Connected Subgraphs

Given a set D of labeled graphs and an integer t ≥ 0, enumerate the set 
of t-frequent connected subgraphs of D w.r.t. subgraph isomorphism
- i.e. the set F(D,t,≤), where ≤ is the subgraph isomorphism

cannot be solved in output-polynomial time (unless P = NP)
- can be used to decide the Hamiltonian path problem
- existing approaches resort to various heuristic strategies and restrictions 

of the search space (often with good empirical performance)

☺ enumerable in incremental-polynomial time if D is a set of forests
- [Chi, Muntz, Nijssen, & Kok, ‘05; survey paper]

What about problem classes beyond trees?
challenge for graph mining: systematic study of graph classes and 
non-standard specialization operators
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This Work
problem class:

D: labeled d-tenuous outerplanar graphs (will be defined)
≤: block and bridge preserving subgraph isomorphism (will be defined)
- constrained subgraph isomorphism that generalizes subtree isomorphism

Why this fragment?
1. natural first class beyond trees

- trees, outerplanar graphs, and planar graphs form a natural hierarchy
(Hedetniemi, Chartrand, & Geller, ´71)

2. practically relevant class
- NCI dataset: 94.3% (236180 out of 250251) compounds are 11-tenuous 

outerplanar graphs

3. subgraph isomorphism is often not adequate, e.g., in chemoinformatics
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Outerplanar Graphs

(Chartrand & Harary, ’67)

graphs which can be embedded in 
the plane in such a way that
- no two edges intersect except at 

a vertex in common

- all vertices lie on the exterior face

Properties:
outerplanarity can be decided in linear time [Mitchell,´79]

each block (biconnected components) with n vertices has a unique
Hamiltonian cycle
the unique Hamiltonian cycle
- can be computed in linear time  [Mitchell,´79]
- has at most n-3 diagonals

exterior face

bridge
block
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d-Tenuous Outerplanar Graphs

each block has at most d diagonals

NCI dataset: 
- 236180 outerplanar graphs (out of the 250251 compounds) 
- d = 11 (only for one compound)
- d = 5 for 236083 (99.99%) outerplanar graphs

d is considered to be a constant!

some molecular graphs from the NCI dataset:
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Subgraph Isomorphism 
between Outerplanar Graphs

G, H outerplanar graphs;
How hard is to decide whether H is subgraph isomorphic to G? 

NP-complete if H is not connected
- generalizes the NP-complete subforest isomorphism problem

[Garey & Johnson,´79] 

NP-complete even if H is connected but not biconnected and 
G is biconnected [Syslo,’82] 

☺ decidable in time O(|V(H)| |V(G)|2) if H is biconnected [Lingas,´89]
- unlabeled case 

☺ decidable in time O(|V(H)|)1.5 |V(G)|) if H and G are trees [Matula,´78]
- improved bound                                                   [Shamir &Tsur,´99] 
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BBP Subgraph Isomorphism

G, H outerplanar graphs;
a block and bridge preserving (BBP) subgraph isomorphism from 
H to G is a subgraph isomorphism from H to G mapping
• different blocks of H to different blocks of G

• bridges of H to bridges of G

BBP BBP
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Mining d-Tenuous Outerplanar Graphs w.r.t. 
BBP Subgraph Isomorphism

k-pattern: outerplanar graph s.t. number of blocks + number of
vertices not belonging to any block is k

input: set D of d-tenuous outerplanar graphs and t > 0
1. compute the set of frequent 1-patterns (i.e., vertices + blocks) 
2. compute the set of frequent 2-patterns (i.e., edges + two blocks with 

a common vertex + a block and an edge with a common vertex) 
3. k = 2
4. while Lk ≠ ∅ do
5. ++k   
6. generate the set Ck of candidates from Lk-1
7. compute the set Lk from of frequent patterns from Ck
8. endwhile
9. return ∪k>0 Lk
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Four Algorithmic Problems

1. canonical string representation for outerplanar graphs

- string encoding of outerplanar graphs unique modulo isomorphism

- defines a total order on outerplanar graphs allowing advanced data 
structures that support fast search

2. computing frequent biconnected outerplanar graphs

3. candidate generation

4. frequency counting
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1. Canonical String Representation – BB-Trees

block and bridge graph of an outerplanar graph G
vertices: bridge vertices 

+ vertices belonging to more than one block
+ a vertex for each block

edges: bridges of G + edges representing vertex containment
always a free tree
we generalize the depth-first canonical representation for free trees
[Chi, Muntz, Nijssen & Kok, ´05; survey]

BB-tree
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2. Frequent Biconnected Outerplanar Graphs

input: set D of d-tenuous outerplanar graphs, integer t > 0 

1. compute in L0 the set of frequent cycles of D

2. for k = 1 to d do

3. let Ck be the set of candidate biconnected graphs containing k
diagonals

- removing any diagonal results in an element of Lk

4. let Lk be the frequent patterns in Ck

5. endfor

6. return ∪k=0,1,…,d Lk
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2. Frequent Biconnected Outerplanar Graphs – Step 1

How to compute the frequent cycles in Step 1?

– a d-tenuous biconnected outerplanar graph has at most 2d+1 cycles

the number of cycles of a d-tenuous graph G is bounded by O(|V(G)|)

– the cycles of a graph can be enumerated with linear delay 
[Read & Tarjan,´75]

Lemma: For d-tenuous outerplanar graphs, the set of frequent cycles 
can be computed in time polynomial in the size of D.

always a tree

bijection between subtrees and cycles
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Main Result

1. canonical string representation for outerplanar graphs

2. computing frequent biconnected graphs

3. candidate generation

4. frequency counting

Thm: Frequent d-tenuous outerplanar graphs can be enumerated 
in incremental polynomial time. 
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Empirical Evaluation

NCI dataset [http://cactus.nci.nih.gov/]

most frequently used benchmark graph dataset
- usually small subsets are considered (e.g., HIV) 

250251 chemical graphs 
- about 107 compounds have so far been synthesized 

236180 (i.e., 94.3%) outerplanar

max number of diagonals (d) is small: 
- d = 11

- d = 5 for 236083 (i.e., 99.99%)
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Empirical Evaluation - Results

frequency number of
candidates

number of
frequent
patterns

candidate
generation
time (sec)

frequency
counting

time (hours)

10% 925 521 0.80 1,98 

5% 2688 1929 2.42 4,41 

2% 36889 33247 60.08 12.10

1% 94606 83159 266.07 25.54

for 10% and 5%:entire set of frequent patterns

for 2% and 1%:only the first 18 levels

Current implementation is NOT optimized!
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descriptive graph mining (local patterns)

1. frequent subgraph mining in outerplanar graphs

2. frequent subgraph mining in graphs of bounded treewidth

conclusion

Outline
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measure of tree-likeness of graphs

tree decomposition of a graph G: 
tree T with vertices labeled by subsets of the vertex set of G  s.t.

i. for each edge e of G there is a vertex of T whose label contains
the vertices of e

ii. for each vertex v of G, the induced subgraph of T defined by the
vertices whose labels contains v is connected (i.e., it is a tree)

width of T: 
maximum cardinality of the labels -1 

treewidth of G: 
the width of a tree decomposition of G with the smallest width

e.g., the treewidth of trees is 1; the treewidth of cycles is 2

Treewidth (Robertson & Seymour,’86)
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Treewidth: Example

a1 a3a2 an+1an
b1 b2 bn

c1 c2 cn

{a1,a2,an+1}

{a2,a3,an+1}

{an,an+1}

{a1,a2,b1} {a1,a2,c1}

{a2,a3,b2}
{a2,a3,c2}

{an,an+1,bn} {an,an+1,cn}

tree decomposition of G
treewidth: 2

treewidth of G: 2

G:
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useful parameter in the design of algorithms

- many hard problems become polynomial for graphs of bounded
treewidth

many graph classes have bounded treewidth

- e.g., k-outerplanar graphs: 3k-1

outerplanar graphs: 2

vast majority of molecular graphs of pharmacological compounds
have small treewidth

- e.g., NCI chemical dataset: 250251 compounds

treewidth at most 2: 243638 (97,36%)
treewidth at most 3: 250186 (99,97%)
treewidth at least 4:        65 (  0,03%)

Treewidth (cont‘d)
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Mining Frequent Connected Subgraphs
in Graphs of Bounded Treewidth

Given a set D of labeled graphs of treewidth at most k and an integer 
threshold t ≥ 0, list all connected graphs that are subgraph isomorphic 
to at least t graphs in D
- k is a constant

for constant k, it can be decided in linear time, whether a graph has 
treewidth at most k [Bodlaender, ’96]
- not a practical result (huge hidden constant)
- NP-complete if k is a parameter [Arnborg, Corneil, Proskurowski, ’87]

subgraph isomorphism remains NP-hard between graphs of treewidth
at most k
- NP-complete if the pattern is not k-connected or has more than k vertices 

of unbounded degree; otherwise it is tractable [Gupta & Nishimura, ’96]
candidate generation and test is not directly applicable



CSCS 2008 – Szeged, Hungary T. Horváth: Mining Chemical Graphs 28

Mining Frequent Connected Subgraphs
in Graphs of Bounded Treewidth

Thm [Matousek & Thomas, ’92; also Hajiaghayi & Nishimura, ‘07]
for constant k, subgraph isomorphism between graphs of treewidth
at most k can be decided in polynomial time if the pattern is 
connected and has bounded degree

proof: dynamic programming algorithm
for the text graph, it computes a tree decomposition T of treewidth k
for each node v in T, it computes a set of “properties” from v and 
from the properties of v’s children  
- polynomially many, polynomial time computable properties for each 

node in T
- if the treewidth is only restricted then the number of properties can be 

exponential
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Mining Frequent Connected Subgraphs
in Graphs of Bounded Treewidth

Thm: can be solved in incremental polynomial time
proof idea:

levelwise (BF-search) generation of candidate patterns
- add one new edge to a pattern s.t. the graph obtained has treewidth at most k

to decide whether a candidate pattern P is subgraph isomorphic to a 
transaction graph in D, it is sufficient to compute a set of properties with 
cardinality polynomial in the combined size of D and the set of frequent 
patterns listed before P

- the delay can be exponential only after the enumeration of exponentially many 
frequent patterns
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Conclusion and Future Work

frequent connected subgraph mining in outerplanar graphs:
positive result for a practically relevant graph class beyond trees
BBP subgraph isomorphism algorithm may be of interest in itself

frequent connected subgraph mining in graphs of bounded treewidth:
positive result though the matching operator is NP-complete

efficient pattern mining is possible even for NP-hard matching 
operators!

? enumerable with polynomial delay

design and implementation of a practical algorithm for graphs of
treewidth at most 3

- vast majority of molecular graphs of pharmacological compounds
have treewidth at most 3
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