
Noname manuscript No.
(will be inserted by the editor)

Nonlinear Transformations for the Simplification of
Unconstrained Nonlinear Optimization Problems

Elvira Antal · Tibor Csendes · János Virágh

Received: 24.12.2011 / Accepted: date

Abstract Formalization decisions in mathematical programming could significantly
influence the complexity of the problem, and so the efficiency of the applied solver
methods. This widely accepted statement induced investigations for the reformulation
of optimization problems in the hope of getting easier to solve problem forms, e.g. in
integer programming. These transformations usually go hand in hand with relaxation
of some constraints and with the increase in the number of the variables. However,
the quick evolution and the widespread use of computer algebra systems in the last
few years motivated us to use symbolic computation techniques also in the field of
global optimization.

We are interested in potential simplifications generated by symbolic transfor-
mations in global optimization, and especially in automatic mechanisms producing
equivalent expressions that possibly decrease the dimension of the problem. As it was
pointed out by Csendes and Rapcsák (1993), it is possible in some cases to simplify
the unconstrained nonlinear objective function by nonlinear coordinate transforma-
tions. That means mostly symbolic replacement of redundant subexpressions expect-
ing less computation, while the simplified task remains equivalent to the original in
the sense that a conversion between the solutions of the two forms is possible.

We present a proper implementation of the referred theoretical algorithm in a
modern symbolic programming environment, and testing on some examples both
from the original publications and from the set of standard global optimization test
problems to illustrate the capabilities of the method.

Keywords unconstrained nonlinear optimization · symbolic computation · reformu-
lation ·Maple

E. Antal, T. Csendes, and J. Virágh
University of Szeged, Institute of Informatics
H-6720 Szeged, Árpád tér 2, Hungary
Tel.: +36-62-544 305
Fax: +36-62-546 397
E-mail: csendes@inf.u-szeged.hu

2 E. Antal et al.

1 Introduction

Global optimization problems are mostly solved by numerical algorithms, but the
evolution of symbolic computation methodology and the accordingly powerful com-
puter algebra systems (CAS) allow effective symbolic computation techniques also
in this field.

Consider the unconstrained nonlinear optimization problem

min
x∈Rn

f (x), (1)

where f (x) : Rn→R is a nonlinear, twice continuously differentiable function, given
by symbolic expression, a formula. Our aim is to produce an equivalent problem
form:

min
y∈Rm

g(y), (2)

where g(y) : Rm → R is simpler than f (x). We mean a problem is simpler that an
other one, if the former is easier to solve by optimization methods, while a direct
transformation between the optimal solutions y∗ and x∗ is possible.

This kind of reformulation is usually done by hand in the stage of stating the
problem, but that is not the only possibility. In the next section we will show several
techniques, that do automatic manipulations on optimization problems in order to
increase the efficiency of the solver. However, such a usage of symbolic computation
is applied better just for linear and integer programming.

Section 3 presents our reformulation method for unconstrained nonlinear opti-
mization problems, based on nonlinear coordinate transformations described in the
paper by Csendes and Rapcsák (1993). The Maple implementation details are given
in Section 4. Then Section 5 demonstrates the capabilities of this method on a set of
standard global optimization test problems and on some other test functions.

2 Related works

This section gives a short outline of relevant manipulation techniques developed to
simplify an optimization problem in some sense. We mention here the “presolving”
mechanism of the AMPL processor, LP preprocessing, reformulation with relaxation
for IP/MINLP solving, an interval branch and bound method speeded up by symbolic
computation, and also unusual problem solving approaches that use algebraic tech-
niques as quantifier elimination (QE), Gröbner bases, etc. for symbolic optimization.

Our approach is different, because it is not a relaxation, and we do not want to
solve the complete problem with algebraic techniques (since it can be quite slow
and may be not even successful), just to make our problem easier for the solver.
We are interested in mechanisms producing equivalent transformations and such that
possibly decrease the dimension of the problem. Now we present briefly the following
manipulation techniques to provide a perspective.

AMPL is one of the most popular algebraic modeling languages, designed for de-
scribing optimization problems in a form close to the usual mathematical notation.

Simplification of Unconstrained Nonlinear Optimization Problems 3

The AMPL processor can provide the problem and further information about it (the
first, or the second derivatives etc.) to several solvers via the AMPL/solver interface
library. So the AMPL processor is not a solver, but one can call CPLEX, MINOS,
LANCELOT or other well-known third party solvers in a unified way for a problem,
what is formulated in this modeling language.

Furthermore, the AMPL processor implements a preprocessing mechanism (called
“presolving”) what is executed before conveying the problem to the selected solver,
and in fortunate cases it can detect infeasibility or it is able to reduce the size of the
problem, which results in shorter transaction times and is advantageous mainly for
the solvers that do not have its own preprocessor.

Its presolving mechanism was based on the method of Brearley et al. (1975),
and applies only to linear objectives and constraints. Still in some cases it is able to
fix nonlinear elements of a function, if the value of the variable can be determined
by some other constraints. For further information about symbolic manipulations in
AMPL, see the paper of Gay (2001).

In linear programming (LP) it is widely known, that applying various preprocessing
methods before the solver phase can significantly improve the efficiency of both the
simplex and the interior point methods. Possible steps in LP preprocessing are

– fixing some variables or reducing redundant constraints by primal/dual feasibility
tests,

– recognizing the linearly dependent rows, tightening bounds and reducing redun-
dant constraints or variables by elimination,

– reducing the constraint matrix to be as sparse as possible.

As the majority of the solving techniques in integer programming (IP) are based
on relaxing the IP to a convenient LP problem, the efficient reconstruction of LP
problems could benefit also in this field. The reformulation of IP to LP itself is an
other interesting application of symbolic computation in optimization. The possible
automatic transformations can enable the relaxation of constraints and even increas-
ing the number of the variables with the aim of getting a solvable form of the given,
otherwise hopelessly difficult problem.

There exists a freely available software package in the development stage for col-
lecting useful reformulation algorithms in IP and mixed-integer nonlinear program-
ming: Liberti et al. (2010). Preprocessing techniques of LP and a comparison on the
results of large-scale problem preprocessing are summarized shortly by Mészáros and
Suhl (2003) primarily for the execution of a simplex and an interior point method,
but also with possible applications for IP and quadratic programming (QP).

Interval branch and bound speeded up by reformulation with relaxation (Byrne and
Bogle 1999) is an interesting hybrid method combining symbolic reformulation with
the numerical solver. The main idea is to rearrange the non-convex terms of the target
function to the constraints and then simplify the complicated parts by interval bound
relaxations with linear under-estimators.

4 E. Antal et al.

Gröbner bases theory, QE and other algebraic techniques can also be used in some
special cases to reformulate and solve optimization problems. Kanno et al. (2008)
suggest symbolic optimization for a class of signal processing problems, i.e. using
symbolic computation for the solution of the complete problem. It is not necessarily
the most effective way, and the referred theory is available just for algebraic functions.
However, the exploration of applications in connection with optimization could be an
interesting field of symbolic computation.

3 Nonlinear coordinate transformations

As it was pointed out by Csendes and Rapcsák (1993), it is possible in some cases
to simplify the unconstrained nonlinear objective function by nonlinear coordinate
transformations. That means mostly symbolic replacement of redundant subexpres-
sions expecting to relax the computing effort of the solver, while the simplified task
still remains equivalent to the original one, in the sense that a direct transformation
between the solutions of the two form is possible.

The published algorithm was demonstrated to be capable of solving unconstrained
nonlinear optimization problems in fortunate cases by bringing them to a unimodal
form, or simplifying them enough to make a substantial improvement for other opti-
mization methods. In the latter case it acts as preprocessing.

The present section discusses the theoretical method, and Section 4 presents our
implemented automatic simplifier program based on nonlinear coordinate transfor-
mations.

3.1 Motivation: a parameter estimation problem

Consider the parameter estimation problem discussed in Hantos et al. (1990), mini-
mization of a sum-of-squares form objective function:

F (Raw, Iaw,B,τ) =

[
1
m

m

∑
i=1

∣∣ZL(ωi)−Z′L(ωi)
∣∣2]1/2

,

where ZL(ωi)∈C is the measured impedance value, Z′L(ωi) is the modeled impedance
at frequencies ωi for i = 1,2, . . . ,m and Raw, Iaw,B, and τ are model parameters. Pa-
rameter estimation problems form an important part of optimization models (e.g. just
as in Anholcer (2011)), hence it is one of the main target area of our technique.

The original nonlinear model function is based on obvious physical parameters:

Z′L(ω) = Raw +
Bπ

4.6ω
− ı
(

Iawω +
B log(γτω)

ω

)
,

where γ = 101/4 and ı is the imaginary unit. The study of Csendes and Rapcsák (1993)
was motivated by the existence of a simplified and equivalent model function, that is
linear in the model parameters:

Z′L(ω) = Raw +
Bπ

4.6ω
− ı
(

Iawω +
A+0.25B+B log(ω)

ω

)
.

Simplification of Unconstrained Nonlinear Optimization Problems 5

The applied successful variable transformation was A = B log(τ) that changed the
problem characteristic from nonlinear to a linear least squares problem. In the same
time, we obtained a proof that all local minimizer points of the original problem are
global.

It is obvious, that such simplifications could be found for several nonlinear opti-
mization problems, and in addition to that, even an automatic simplifier method could
produce that kind of transformations.

3.2 Theoretical background

Problem (1) is easy to solve when f is unimodal, that is, f has a single region of
attraction and so there is only one local minimizer point (and no local maximizer
point) in the given set of feasibility X ∈ Rn. One may recognize this property in-
tuitively on one-dimensional functions, but in higher dimensions the decision is cer-
tainly not trivial in general. In this subsection we briefly present the results of Csendes
and Rapcsák (1993) on how to observe the generalized unimodal property of n-
dimensional functions by using nonlinear coordinate transformations. The proofs of
the following theorems and assertions could be found in the original paper.

Let us define unimodality in the following way.

Definition 1 The n-dimensional f (x) continuous function is unimodal on an open set
X ⊆Rn if there exists a set of infinite continuous curves such that the curve system is
a homeomorphic mapping of the polar coordinate system of the n-dimensional space,
and the function f (x) grows strictly monotonically along the curves.

In this sense multimodal is synonymous with multiextremal, what is in accordance
with common optimization usage. The mentioned curves can be regarded as those
that belong to the trajectories of local searches. Remark, that an n-dimensional uni-
modal function is not necessarily unimodal along every line in the space. However,
the definition suggests that we could introduce a simpler function (we will call it g)
that suits to f along the mentioned curves, and f and g will have the same region of
attraction.

In conclusion, if f (x) is the objective function of an unconstrained nonlinear op-
timization problem, and we can recognize that f (x) is unimodal in the sense of Defi-
nition 1, then it is possible to transform f (x) to a simpler to solve one g(y), minimize
(maximize) g(y) and get the extremum of f (x) by simple back-transformations.

The implicit unimodality of a function can be formulated by variable transforma-
tions:

Theorem 1 The continuous function f (x) is unimodal in the n-dimensional real space
if and only if there exists a homeomorph variable transformation y = h(x) such that
f (x) = f (h−1(y)) = yT y+c, where c is a real constant, and the origin is in the range
S of h(x).

But how can we find such an h transformation function? In fact, we can con-
struct possible substitutions that simplify f , and apply a sequence of them to reach a
unimodal form in fortunate cases. The following theorems discuss the properties of
substitutions that are needed to simplify the original function.

6 E. Antal et al.

Theorem 2 If h(x) is smooth and strictly monotonic in xi, then the corresponding
transformation simplifies the function in the sense that each occurrence of h(x) in
the expression of f (x) is padded by a variable in the transformed function g(y), while
every local minimizer (or maximizer) point of f (x) is transformed to a local minimizer
(maximizer) point of the function g(y).

So far the properties of h do not guarantee that f and g will be equivalent, but a map-
ping of all x∗ to an appropriate y∗ is given. Therefore we should test each transformed
x∗ whether that is indeed a solution of the original problem. The other option is to
have further investigations before the substitution.

Theorem 3 If h(x) is smooth, strictly monotonic as a function of xi, and its range is
equal to R, then for every local minimizer (or maximizer) point y∗ of the transformed
function g(y) there exists an x∗ such that y∗ is the transform of x∗, and x∗ is a local
minimizer (maximizer) point of f (x).

The described simplifier substitutions could even eliminate some variables. In
other words, we can recognize redundancies. For example, for the two-dimensional
function f (x1,x2) = (x1+x2)

2 the transformation y1 = x1+x2 satisfies the conditions
of Theorem 3 for both x1 and x2, and it results in a one-dimensional objective func-
tion. The recognition of such redundant variables is beneficial and usually by far not
trivial. In this way the outcome of the transformation sequence could be favorable
even if a unimodal problem form could not be reached.

The following two theoretical statements provide additional hints on how to iden-
tify eliminable variables:

Assertion 1 If a variable xi appears everywhere in the expression of a smooth func-
tion f (x) in a term h(x), then the partial derivative ∂ f (x)/∂xi can be written in the
form (∂h(x)/∂xi) p(x), where p(x) is continuously differentiable.

Consequently, if ∂ f (x)/∂xi is not factorizable, then h(x) is linear in the variable xi
for the possible transformations (satisfying the conditions of Theorem 2).

Obviously, finding the appropriate (∂h(x)/∂xi) p(x) factorization is not necessar-
ily easy, as many other factorizations can exist beside the one mentioned in Assertion
1. Yet a canonical form can be derived for a wide class of functions, e.g. for a polyno-
mial f (x)= anxn+an−1xn−1+ · · ·+a1x+a0 which have n roots (x1, . . . ,xn) a standard
factorization an(x− x1)(x− x2) · · ·(x− xn) always exists. Even if ∂h(x)/∂xi can be
determined, it may be difficult to find a good transformation function h(x).

The condition of the existence of a proper variable transformation h(x) that de-
creases the number of variables of an unconstrained nonlinear optimization problem
is given in the following assertion.

Assertion 2 If the variables xi and x j appear everywhere in the expression of a
smooth function f (x) in a term h(x), then the partial derivatives ∂ f (x)/∂xi and
∂ f (x)/∂x j can be factorized in the forms (∂h(x)/∂xi) p(x) and (∂h(x)/∂x j)q(x),
respectively, and p(x) = q(x).

These theoretical statements are the basis for the constructive symbolic algorithm,
the implementation of which is described in the next section.

Simplification of Unconstrained Nonlinear Optimization Problems 7

4 Implementation of a simplifier method for unconstrained nonlinear
optimization problems

The aim of the present study was to create a proper implementation of the referred
theoretical algorithm to be able to observe the limitations of the method in practice,
and to document advantages and disadvantages of the algorithm on a wide set of
global optimization problems. It was realized that a typical computer algebra sys-
tem (CAS), such as Maple provides most of the required symbolic manipulations:
partial differentiation, factorization, (symbolic) integration, list and string manipu-
lation, substitution of expressions, solution of equations, etc. The fundamentals of
the program were established by János Virágh in Maple. That implementation was
reprogrammed and extended by Csilla Urbán, who wrote her masters thesis in this
topic (Urbán 2009). Code review and further substantial improvements of the latter
program resulted in the Maple program presented here.

4.1 Transformation method

The possible aims of an automatic simplifier method for unconstrained nonlinear
optimization problems are as follows:

substitute some subexpressions in the objective function in order to

– eliminate parts of the computation tree,
– recognize unimodality,
– get an equivalent simpler form of the problem requiring less computation, and
– reduce (or at least not extend) the dimension of the problem.

The pseudo-code of our implementation is presented in Algorithm 1. This is a
draft of the main function symbsimp(x,f) that has two input parameters: f contains
the formula of the objective function of the given unconstrained nonlinear optimiza-
tion problem and x represents the variable vector in the form of a Maple list.

According to Algorithm 1, the basic transformation steps are:

1. compute the gradient of the original function,
2. factorize the partial derivatives,
3. determine the substitutable subexpressions and substitute them:

(a) if factorization was successful, then explore the subexpressions that can be
obtained by integration of the factors,

(b) if factorization was not possible, then explore the subexpressions that are lin-
ear in the related variables,

4. solve the simplified problem if possible, and give the solution of the original
problem by transformation, and

5. verify the obtained results.

The most important necessary subroutines of the program are listed in Table 1
with their possible solutions in Maple.

The remaining questions that need further examination are detailed in the next
subsection.

8 E. Antal et al.

Algorithm 1 symbsimp(x, f) // f: function formula, x: variable list
g← f
subslist← {}
subsnumber← 0
for i = 1 to Dimension(x) do

dx←5g
factordx← Factor(dx)
hi ← Null
if factordx 6= dx then

h list← Null
for j ∈ factordx do

p←
∫

factordx dxi
if NumbOccur(g, p) = NumbOccur(g, xi) then

repeat
h temp← Sort({q | q ∈Decompose(g, p) and IsType(q, ’+’)}, p).Pop
if Test(h temp, xi) then

h list.Push(h temp)
end if

until Test(h temp, xi) or h temp = Null
end if

end for
hi ← Sort(h list, xi).Front

end if
if hi = Null then

repeat
h temp← Sort({q | q ∈Decompose(g, xi) and IsLinear(q, xi)}, xi).Pop

until Test(h temp, xi) or h temp = Null
if Test(h temp, xi) then

hi← h temp
subsnumber++

else
hi← xi

end if
end if
g← Subs(g, hi, ’yi’)
subslist.Push(”yi =hi”)

end for
if subsnumber 6= 0 then

g∗← Solve[g, y]
f∗← Transform(g∗, subslist)
Verify(f, g)

end if

4.2 Open questions

4.2.1 Proper algebraic substitutions

Maple offers two types of substitutions: the syntactic substitution subs, and the alge-
braic one algsubs. The simplify command provides also a related service, as it is
able to apply user-defined rules for an expression, as long as the side relations in the
rules are polynomials in the variables. We collected some trivial examples to show
the abilities of this three commands side-by-side in Maple 15:

Simplification of Unconstrained Nonlinear Optimization Problems 9

Table 1 Required subroutines of the implementation and Maple solutions for them

Factor(expr) give a list of the factors of expr, or give back expr if it is not factoris-
able
Maple: factor, afactor (built-in functions)

NumbOccur(expr,y) calculate the number of occurrences of y in expr

Maple: numboccur (built-in function) with some problems (cf. Sub-
subsection 4.2.1)

Decompose(expr,y) provide a list of the part expressions of expr that contain y

Maple: realized by the recursive use of the built-in function
convert(expr,list)

IsType(expr,’+’) set true, if the operator with highest precedence in the expression expr

is addition or subtraction
Maple: whattype (built-in function)

IsLinear(expr,y) set true, if the expression expr is linear in y

Maple: type and linear (built-in functions)
Sort(exprlist,y) order the list exprlist of possible substitutions for variable y in the

decreasing order by the usefulness of the substitution (it is not trivial,
we prefer polynomials, even if it is a more complex expression)
Maple: realized by list operations and built-in functions sort,
PolynomialTools[Sort]

Test(expr,y) give the value true, if expr satisfies all special conditions for simplifi-
cation by y if it is substituted by a new variable (now we test whether
expr characterizes all occurrences of y, and the range of expr is equal
to R)
Maple: not trivial (cf. Subsubsection 4.2.2)

Subs(expr,x,y) substitute y in the place of x in expr

Maple: subs, algsubs (built-in functions) with some problems (cf.
Subsubsection 4.2.1)

Solve(expr,y) try to minimize expr according to the variables y
Maple: not trivial, for example the built-in function minimize

Transform(sollist,subslist) give the solutions of the original function, if sollist contains the
minima of the transformed function and regarding the transformations
given in subslist

Maple: subs and solve (built-in function)
Verify(x,y) check whether x and y are equivalent as objective functions (we apply

range calculation for x and y)
Maple: not trivial (cf. Subsubsection 4.2.3)

Command Result Is it sufficient?

subs(a*b = d, a*b*c) abc F

algsubs(a*b = d, a*b*c) cd T

simplify(a*b*c, {a*b = d}) cd T

subs(a = b, 1/a) 1
b T

algsubs(a = b, 1/a) 1
a F

simplify(1/a, {a = b}) 1
b T

subs(sqrt(a + b) = d, sqrt(a + b) + c) c+d T

algsubs(sqrt(a + b) = d, sqrt(a + b) + c) error F

simplify(sqrt(a + b) + c, {sqrt(a + b) = d}) error F

subs(2^(a + b) = d, 2^(a + b)) d T

algsubs(2^(a + b) = d, 2^(a + b)) error F

simplify(2^(a + b), {2^(a + b) = d}) error F

10 E. Antal et al.

It seems, that neither of the mentioned possibilities are perfect. However, subs is
unambiguously the most robust procedure. This is the reason, why we use this in our
implementation.

Perhaps the inconvenient substitutions cause that numboccur produces false out-
put in some cases:

Command Result Is it sufficient?

numboccur(a*b+a*b,a*b) 1 T

numboccur(a*b*c,a*b) 0 F

numboccur(1/a,a) 1 T

numboccur(1/(a*b),a*b) 0 F

numboccur(Exp(Sin(a/b))*Exp(1),Sin(a/b)) 1 T

numboccur(Exp(Sin(a/b)+1),Sin(a/b)) 0 F

4.2.2 Assumptions for the substituted expressions

As we mentioned before, we need to check whether an y = h(x) substitution satisfies
some special conditions, that guarantee it will in fact simplify the original function
expression. It is required to ensure the completeness and soundness of the whole re-
formulation process, i.e. to prove that the original and the finally transformed problem
forms are equivalent, no solution is lost and no false solution is produced.

Theorem 3 states that an expression h(x) is suitable for such a proper substitution,
if

– the range of it is the whole set of real numbers: R(h) = R,
– h(x) is smooth, and
– h(x) is strictly monotonic.

However, these are not necessarily the tightest possible conditions for such proper
substitutions, and the computer realization of these tests is not easy. Generally speak-
ing, the exact range calculation for a function is just as a hard problem as to find
the global minimum and maximum, and therefore we need some tricks to estimate
it approximately, as you can follow in the next subsubsection. Further investigations
are needed to specify appropriate, and still easy to verify properties to check in the
computer implementation.

4.2.3 Range calculation

For this purpose, the most obvious approach would be the usage of natural interval
extension. We found two approximately adequate solutions for using interval oper-
ations in Maple. The first is the built-in “range arithmetic”, and the second is the
external package intpakX (Grimmer 2003). Both tend to behave incorrectly in some
cases.

Maple itself is able to handle simple interval computations by evaluating specially
defined interval expressions with the function evalr. However, as it was stated by

Simplification of Unconstrained Nonlinear Optimization Problems 11

Grimmer et al. (2004), the proper outward rounding and other necessary features
fail in this range arithmetic to produce reliable results. We mention here just the fact,
that the automatic simplifier mechanism often goes wrong with the built-in interval
type, so one should use results given by Maple range arithmetic with caution. As an
example, see the code:

> a := INTERVAL(-1 .. 1);

INTERVAL(-1 .. 1)

> b := INTERVAL(-1 .. 1);

INTERVAL(-1 .. 1)

> evalr(a*b);

INTERVAL(0 .. 1)

The first two commands declare variables a = [−1,1] and b = [−1,1] having the
interval data type. The next line computes the product a · b, and Maple gives the
result [0,1] as if it would be just a2.

The external package intpakX defines types, operators, and special applications
for real intervals and complex disc intervals. Now, we are interested just in the first
group of features, i.e. for the calculation with real intervals in Maple. The intpakX
interval operations are implemented with names different from the Maple interval
operations to ensure separation. Outward rounding is also done in a separate way.
However, standard Maple operators and functions are commonly used by intpakX,
and hence if the arithmetic of the CAS produces errors greater than one unit of least
precision (1 ULP), it can also appear in the results calculated by intpakX (Grimmer
et al. 2004). IntpakX aims to implement correct interval arithmetic in Maple, but
there are still some deficiency in this package. For example, the extended division for
unbounded intervals (intervals with infinite endpoints) is impossible:

> ext_int_div(construct(-infinity, -1), construct(1, 2)):

Error, (in intpakX:-ext_int_div) first arg must be a finite

interval or a numeric

Unfortunately, unbounded intervals are quite common in unconstrained nonlinear op-
timization, and the documentation does not prohibit the use of them. However, it is
possible to recompile the package for using extended divisions for unbounded inter-
vals (I. Bársony, personal communication), but we were not able to eliminate com-
pletely the emerging uncertainty of the operations with unbounded intervals yet.

In fact, intpakX contains also range enclosure algorithms, but only for 2D and 3D
functions (Grimmer 2003; Grimmer et al. 2004).

Remark, that if a function is continuous and strictly monotonic in the variables
(as Theorem 3 requires), then the range calculation on a computer could be quick and
precise with interval arithmetic, cf. Neumaier (2008). Still, there is no easy way to
check in Maple whether a user-defined function is monotonic or not.

Because of the mentioned problems of range-calculation in Maple, our implemen-
tation applies only the second derivative test. However, there is a way in Maple to use
complete interval packages of other computational systems. An obvious approach
would be the usage of INTLAB (Rump 1999) under MATLAB, as Maple is able to
build a connection to MATLAB in running time, when both programs are installed on

12 E. Antal et al.

the same computer. First we need to set up INTLAB for MATLAB, then it is usable
with the Matlab package of Maple. Automatically one MATLAB session is assigned
to one Maple worksheet, which starts it. The user can open and close MATLAB ses-
sions manually by Matlab[openlink] and Matlab[closelink] functions. This
line create an x interval variable in INTLAB:

> Matlab[evalM]("x=infsup(1,2)");

Naturally, in the same way we can evaluate any other commands in MATLAB. Then
we can get an interval like this:

> Matlab[evalM]("[a]=[x.inf,x.sup]");

> Matlab[getvar]("a");

It seems, that the available connection packages offer the best way to apply interval
calculations from a Maple worksheet.

5 Computational results

We tested our implementation on all the examples both from the original publica-
tion (Csendes and Rapcsák 1993) and from the set of standard global optimization
test problems. We also constructed some additional test functions to observe specific
features of our method.

5.1 A successful example

We have tested our method on the Rosenbrock function from the original paper
(Csendes and Rapcsák 1993). This is one of the standard global optimization test
functions also, that will be discussed in Subsection 5.3 too. The objective function is:

f (x) = 100
(
x2

1− x2
)2

+(1− x1)
2 .

We run the simplifier algorithm with the procedure call:

symbsimp([x2, x1], 100*(x1^2-x2)^2+(1-x1)^2);

In the first step, the algorithm determines the partial differentials:

dx(1)=−200x2
1 +200x2

dx(2)= 400(x2
1− x2)x1−2+2x1

Here the order of the variables given in the first input parameter is not irrelevant with
respect of the execution sequence. This is why we give them in a list, not in a set.
Hence dx(1) is the partial derivative of the Rosenbrock function with respect to x2.

Then the factorized forms of the partial derivatives are computed:

factor(dx(1))=−200x2
1 +200x2,

factor(dx(2))= 400x3
1−400x1x2−2+2x1.

Simplification of Unconstrained Nonlinear Optimization Problems 13

As the Maple function factor is not capable to factorize any of the two partial deriva-
tives, we obtain the original expression (except from multiplying out the brackets by
the automatic simplifier mechanism of Maple).

The list of the subexpressions of f ordered by the complexity in x2 is the follow-
ing:

{100(x2
1− x2)

2,(x2
1− x2)

2,x2
1− x2,−x2,x2,(1− x1)

2,x2
1,100,2,−1}.

This list is built up by recursive decomposition of f and contains the simplest multi-
pliers of x2 also, however, we will never use the constant terms on the last positions.
As the factorization of dx(1) was not successful, we examine the first element of the
list what is linear in x2: that is x2

1−x2. The range of this expression is (−∞,+∞), and
it characterize all occurrences of x2, so the substitution y1 = x2

1− x2 is applicable.

The transformed function at this point of the algorithm is g = 100y2
1 +(1− x1)

2.

Now compute again the partial derivatives and its factorization:

factor(dx(1))= dx(1)= 200y1,

factor(dx(2))= dx(2)=−2+2x1.

The subexpressions of g ordered by the complexity in x1 are

{(1− x1)
2,1− x1,−x1,x1,100y2

1,2,1,−1}.

We are looking again for the first subexpression, what is linear in the actual variable
x1. Our test shows, that 1− x1 have all the necessary properties needed by a good
substitution (the range is (−∞,+∞), and the characterization of all occurrences of
x1). So substitute y2 = 1− x1.

The final simplified function, what our automatic simplifier method produced is

g = 100y2
1 + y2

2.

The extreme value of the function g can be calculated easily also by the build-in
Maple function minimize: y1 = 0,y2 = 0. The minimum of the original function, f
can be determined by the respective inverse transformations: x1 = 1,x2 = 1.

Since the ranges of all substitutions are equal to the set of real numbers, all min-
ima of the original function are found. As the range of the simplified function is a
subset of the range of the original function ([0,+∞)⊆ [0,+∞)), all transformed min-
ima should be valid solutions of the original problem.

14 E. Antal et al.

5.2 An unsuccessful example

We have also tried to simplify the more complex parameter estimation problem of
Csendes and Rapcsák (1993):

F (Raw, Iaw,B,τ) =

[
1
m

m

∑
i=1

∣∣ZL(ωi)−Z′L(ωi)
∣∣2]1/2

.

It was disappointing to found that Maple does not handle the formula of F cor-
rectly with an undefined m, so in our tests we have to fix it to a constant (for this
example, we chose m = 3). The original form of the model function is

Z′L(ω) = Raw +
Bπ

4.6ω
− ı
(

Iawω +
B log(γτω)

ω

)
,

and a non-trivial substitution is hoped in τ correspondingly to the description in Sub-
section 3.1.

Actually, the partial derivative with respect to τ is factorable, and an indefinite
integral of the factor 1/τ with respect to τ is found to be ln(τ), but the program
do not explore the expressions that contain this subexpression because the number
of occurrences of τ and ln(τ) in the original function calculated to be unequal. The
inadequate substitution possibilities of Maple mislead our algorithm in this case. So
the only substitution that was found is y2 =−Raw, while renaming ω to y1 produced
the strange y1[1],y1[2],y1[3] terms instead of ω1,ω2,ω3). Results for this problem are
summarized in Table 2 as ParamEst1, where g1 refers to the final transformed target
function, almost equal to the original one:

g1 =0.5773502693
(∣∣∣∣ZL (y1[1])+ y2−

0.6829549246y4

y1[1]

+ ı
(

y3y1[1]+
0.4342944819y4 ln(1.778279410y5y1[1])

y1[1]

)∣∣∣∣2
+

∣∣∣∣ZL(y1[2])+ y2−
0.6829549246y4

y1[2]

+ ı
(

y3y1[2]+
0.4342944819y4 ln(1.778279410y5y1[2])

y1[2]

)∣∣∣∣2
+

∣∣∣∣ZL(y1[3])+ y2−
0.6829549246y4

y1[3]

+ ı
(

y3y1[3]+
0.4342944819y4 ln(1.778279410y5y1[3])

y1[3]

)∣∣∣∣2
)1/2

At this point we need to explain the codes, what we use in the “Result type” col-
umn of the Tables 2 – 5 to characterize the results:

For the actual problem . . .

Simplification of Unconstrained Nonlinear Optimization Problems 15

Table 2 Our results on the examples of the original publication

ID Function f Function g Substitutions Result type

Cos cos(ex1 + x2)+
cos(x2)

cos(y1)+ cos(y2) y1 = ex1 + x2,y2 = x2 A1

ParamEst1 [1
3 ∑

3
i=1 |ZL(ωi)−

Z′L(ωi)|2]1/2
g1 y1 = ω,y2 =−Raw,y3 =

Iaw,y4 = B,y5 = τ

A2a

ParamEst2 [1
3 ∑

3
i=1 |ZL(ωi)−

Z′′L(ωi)|2]1/2
0.5773502693y1/2

5 y1 = ω,y2 =−Raw,y3 =
Iaw,y4 = B,y5

A3ab

ParamEst3 [1
3 ∑

3
i=1 |ZL(ωi)−

Z′′′L (ωi)|2]1/2
0.5773502693y1/2

5 y1 = ω,y2 =−Raw,y3 =
Iaw,y4 = B,y5

A3b

Otis (|ZL(s)−
Zm(s)|2)1/2

(|−ZL[1]+
1. y2

y4
|2)1/2

y1 = s,y2 =
IC(R1 +R2)C1C2y3

1 +
(IC(C1 +C2)+(RC(R1 +
R2)+R1R2)C1C2)y2

1 +
(RC(C1 +C2)+R1C1 +
R2C2)y1 +1,y4 =
(R1 +R2)C1C2y2

1 +
(C1 +C2)y1

B3

A: simplifying transformations are possible according to the presented theory,
B: simplifying transformations are possible with the extension of the presented the-

ory,
C: some useful transformations could be possible with the extension of the presented

theory, but they do not necessarily simplify the problem (e.g. since they increase
the dimensionality),

D: we do not expect any useful transformation.

Our program produced . . .

1: proper substitutions,
2: no substitutions,
3: incorrect substitutions.

The mistake is due to the incomplete . . .

a: algebraic substitution,
b: range calculation.

We will use the code 2 also when only a constant multiplier is eliminated, as above
in the case of y2.

We use the Maple notation in Table 2 where “1.” represents a numeric value, a
floating point number what is very close to the integer 1.

After the first unsuccessful try we have reformed our problem to have separate
log terms in the model function:

Z′′L(ω) = Raw +
Bπ

4.6ω
− ı
(

Iawω +
B(log(γ)+ log(τ)+ log(ω))

ω

)
,

16 E. Antal et al.

and the respective problem version is called ParamEst2. In this form the program
will inspect the subexpressions that contain ln(τ), but unfortunately the inappropriate
range calculation enables this unhelpful substitution:

y5 =

∣∣∣∣ZL (y1[1])+ y2−
0.6829549246y4

y1[1]
+ ı
(

y3y1[1]

+
y4(0.2500000000+0.4342944819ln(τ)+0.4342944819ln(y1[1])

y1[1]

)∣∣∣∣2
+

∣∣∣∣ZL(y1[2])+ y2−
0.6829549246y4

y1[2]
+ ı
(

y3y1[2]

+
y4(0.2500000000+0.4342944819ln(τ)+0.4342944819ln(y1[2]))

y1[2]

)∣∣∣∣2
+

∣∣∣∣ZL(y1[3])+ y2−
0.6829549246y4

y1[3]
+ ı
(

y3y1[3]

+
y4(0.2500000000+0.4342944819ln(τ)+0.4342944819ln(y1[3]))

y1[3]

)∣∣∣∣2 .
If we examine the list of the potential subexpressions managed by the program, we
can find, that the most favorable option is 0.4342944819ln(τ), so the mistake of the
range calculation is not the only reason, why we do not get the expected substitution.
A new test with altered model function is needed to clarify all technical difficulty,
what causes the failure of the simplification for this example.

The third form of the original parameter estimation problem has the multiplica-
tion by B one by one in the numerator (called as ParamEst3):

Z′′′L (ω) = Raw +
Bπ

4.6ω
− ı
(

Iawω +
B log(γ)+B log(τ)+B log(ω)

ω

)
.

The complicated substitution is this time:

y5 =

∣∣∣∣ZL (y1[1])+ y2−
0.6829549246y4

y1[1]
+ ı
(

y3y1[1]

+
0.2500000000y4 +0.4342944819y4 ln(τ)+0.4342944819y4 ln(y1[1])

y1[1]

)∣∣∣∣2
+

∣∣∣∣ZL(y1[2])+ y2−
0.6829549246y4

y1[2]
+ ı
(

y3y1[2]

+
0.2500000000y4 +0.4342944819y4 ln(τ)+0.4342944819y4 ln(y1[2])

y1[2]

)∣∣∣∣2
+

∣∣∣∣ZL(y1[3])+ y2−
0.6829549246y4

y1[3]
+ ı
(

y3y1[3]

+
0.2500000000y4 +0.4342944819y4 ln(τ)+0.4342944819y4 ln(y1[3])

y1[3]

)∣∣∣∣2 .

Simplification of Unconstrained Nonlinear Optimization Problems 17

It differs form the previous y5 only in the bracketing of the numerator. Finally the list
of the potential subexpressions will contain 0.4342944819y4 ln(τ) (and y4 = B from
an earlier renaming). However, we cannot reach it because of the similar reason as in
the case of ParamEst2.

The last problem we have studied was the Otis modell from the original paper. Its
objective function is

Zm(s) =
Ds3 +Cs2 +Bs+1

Gs2 +Fs
,

where s = jω and

B = RC(C1 +C2)+R1C1 +R2C2,

C = IC(C1 +C2)+ [RC(R1 +R2)+R1R2]C1C2,

D = IC(R1 +R2)C1C2,

F =C1 +C2,

G = (R1 +R2)C1C2.

It is quite easy to see how to simplify it: the original parameters of the model are in
the order of appearance RC, C1, C2, R1, R2, and IC. A natural way to simplify it is
to use the definition equations, and hence the new parameters of B, C, D, F , and G.
What is more, it means in the same time a dimension reduction as well. As it was
stated in the original paper, and as it is easy to see, this type of simplification is not
to be obtained by the suggested method. Table 2 indicates just the same.

5.3 Standard and other global optimization test problems

The most obvious question about our method is how it works on well known nonlin-
ear optimization test functions. The optimization experts know these problems well
enough to have a picture on what is doable in terms of simplification. The results of
our program are comprised in Table 3.

As it was already reported, the Rosenbrock function is easy to simplify. It is by no
means a surprise, since it was obviously constructed to have a simply to understand
structure, and the difficulty in its solution was better just for gradient and to a less
extent for quasi-Newton methods. The simplification of the RCOS function is in a
way a surprise. All in all, the results for the standard global optimization problems
mean a full success: all simplifiable problems were recognized as such, as solved,
while the more complex ones were correctly identified as not to be simplified.

Next we have investigated some other often used global optimization test prob-
lems (see Table 4). In this set only problem Schwefel-227 could be simplified, while
the others were found to be too difficult to simplify (correctly).

Finally we demonstrate the capabilities and limitations of the presented automatic
simplification tool on custom made test functions as listed in Table 5. According to
our experiences, most of the emerging implementation problems could be resolved in
a more favorable computational environment. The range of the simplifiable problems
could be extended by further improvement on the theory.

18 E. Antal et al.

Table 3 Standard global optimization test functions

ID Function g Substitutions Result type

Rosenbrock 100y2
2 +(1− y1)

2 y1 = x1,y2 = y2
1− x2 A1

Shekel-5 memory error none D2

Hartman-3 none none D2

Hartman-6 none none D2

Goldstein-Prize none none D2

RCOS y2
2 +10(1−1/8/π)∗

cos(y1)+10
y1 = x1,y2 = 5/πy1−
1.275000000y2

1/π2+x2−6
A1

Six-Hump-Camel-Back none none D2

Table 4 Other often used global optimization test functions

ID Function g Substitutions Result type

Levy-1 none none D2

Levy-2 none none D2

Levy-3 none none D2

Booth none none C2

Beale none none C2

Powell (y1 +10y2)
2 +5(y3 + y4)

2 +
(y2−2y3)

4 +10(y1 + y4)
4

y1 = x1,y2 = x2,y3 =
x3,y4 =−x4

D2

Matyas none none D2

Schwefel (n = 2) none none C2

Schwefel-227 y2
2 +0.25y1 y1 = x1,y2 = y2

1 + x2
2−2y1 A1

Schwefel-31 (n = 5) none none D2

Schwefel32 (n = 2) none none D2

Rastrigin (n = 2) none none C2

Ratz-4 none none C2

Easom none none D2

Griewank-5 none none D2

6 Summary

We implemented a symbolic algorithm for the simplification of nonlinear optimiza-
tion problems in a popular software environment. Our test results show, that this kind
of preprocessing of an unconstrained optimization problem could be done in seconds
on usual computers, and the result is favorable in many cases. Although just a portion
of the studied problems could be simplified by our technique, the presented method
could substantially improve the efficiency of optimization software. In some cases the
dimension reduction or the recognition of redundant model parameters to be achieved
in this way are invaluable for the experts who analyze optimization models.

Simplification of Unconstrained Nonlinear Optimization Problems 19

Table 5 Some additional simple test functions to demonstrate the capabilities of our technique

ID Function f Function g Substitutions Result type

Cos1 100cos(x1 + x2) 100cos(y1) y1 = x1 + x2 A1

Sin1 sin(2x1 + x2) sin(y1) y1 = 2x1 + x2 A1

Sin2 2x3 sin(2x1 + x2) 2y1 y1 = x3 sin(2x1 + x2) A1

Abs1 |x1/x2| |y1| y1 = x1/x2 B1

Exp1 ex1+x2 ey1 y1 = x1 + x2 A1

Exp2 2ex1+x2 2y1 y1 = ex1+x2 A3b

Sq1 x2
1x2

2 none none A2a

Sq2 (x1x2 + x3)
2 y2

1 y1 = x1x2 + x3 A1

SqSin1 (x1 + x2)
4 +

26sin(x1 + x2)
y4

1 +26sin(y1) y1 = x1 + x2 A1

SqCos1 (x1x2 + x3)
2−

cos(x1x2)
y2

3− cos(y1) y1 = x1x2,y3 = y1+x3 A1

SqExp1 (x1 + x2)
2 + ex1+x2 y2

1 + ey1 y1 = x1 + x2 A1

SqExp2 (x1 +x2)
2 +2e1ex1+x2 y2

1 +2e1ey1 y1 = x1 + x2 A1

SqExp3 (x1+x2)
2+2e1+x1+x2 none none A2a

Acknowledgements The presented work was supported in part by the Grant TÁMOP-4.2.2/08/1/2008-
0008.

References

Anholcer, M., V. Babiy, S. Bozoki, and W.W. Koczkodaj (2011) A simplified implementation of the
least squares solution for pairwise comparison matrices. Central European J. of Operations Research
19(4):439-444

Brearley, A.L., G. Mitra, H.P. Williams (1975) Analysis of mathematical programming problems prior to
applying the simplex algorithm. Mathematical Programming 8(1):54–83

Byrne, R.P., I.D.L. Bogle (1999) Global optimisation of constrained non-convex programs using reformu-
lation and interval analysis. Computers and Chemical Engineering 23:1341–1350

Csendes, T. and T. Rapcsák (1993) Nonlinear Coordinate Transformations for Unconstrained Optimiza-
tion. I. Basic Transformations. J. of Global Optimization 3(2):213–221

Gay, D.M. (2001) Symbolic-Algebraic Computations in a Modeling Language for Mathematical Pro-
gramming. In Symbolic Algebraic Methods and Verification Methods, G. Alefeld, J. Rohn, and T.
Yamamoto, eds, Springer-Verlag, pp. 99–106

Grimmer, M. (2003) Interval Arithmetic in Maple with intpakX. PAMM, Wiley-InterScience 2(1): 442–443
Grimmer, M., K. Petras, and N. Revol (2004) Multiple Precision Interval Packages: Comparing Different

Approaches. Num. Software with Result Verification, LNCS 2991:64–90
Hantos, Z., B. Daróczy, T. Csendes, B. Suki, and S. Nagy (1990) Modeling of Low-frequency Pulmonary

Impedance in the Dog, J. of Applied Physiology 68: 849–860
Kanno, M., K. Yokoyama, H. Anai, and S. Hara (2008) Symbolic Optimization of Algebraic Fuctions.

ISSAC’08, Hagenberg, Austria
Liberti, L., S. Cafieri, and D. Savourey (2010) The Reformulation-Optimization Software Engine. Mathe-

matical Software - ICMS 2010, LNCS 6327:303–314
Mészáros, Cs. and U. H. Suhl (2003) Advanced preprocessing techniques for linear and quadratic pro-

gramming. OR Spectrum 25(4):575–595
Neumaier, A. (2008) Improving interval enclosures. Manuscript

20 E. Antal et al.

Rapcsák, T. and T. Csendes (1993) Nonlinear Coordinate Transformations for Unconstrained Optimiza-
tion. II. Theoretical Background. J. of Global Optimization 3(3):359–375

Rump, S.M. (1999) INTLAB - INTerval LABoratory. In Developments in Reliable Computing, T. Csendes,
ed, Kluwer Academic Publishers, Dordrecht, pp. 77–104

Urbán, Cs. (2009) Simplification of nonlinear functions in Maple (in Hungarian) Masters Thesis, Univer-
sity of Szeged

