
Black-box optimization benchmarking of the
GLOBAL method

László Pál pallaszlo@sapientia.siculorum.ro
Faculty of Business and Humanities, Sapientia – Hungarian University of
Transylvania, Miercurea-Ciuc, Romania

Tibor Csendes csendes@inf.u-szeged.hu
Institute of Informatics, University of Szeged, Hungary
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Abstract

GLOBAL is a multistart type stochastic method for bound constrained global opti-
mization problems. Its goal is to find the best local minima that are potentially global.
For this reason it involves a combination of sampling, clustering, and local search.
The role of clustering is to reduce the number of local searches by forming groups of
points around the local minimizers from a uniform sampled domain and to start few
local searches in each of those groups. We evaluate the performance of the GLOBAL
algorithm on the BBOB 2009 noiseless testbed, containing problems which reflect the
typical difficulties arising in real-word applications. The results show that up to a small
function evaluation budget, GLOBAL performs well. We improved the parametriza-
tion of it and compared the performance with the MATLAB R2010a GlobalSearch al-
gorithm using the BBOB 2010 test environment. According to the results the studied
methods perform similar.
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1 Introduction

In this paper, global optimization problems subject to variable bound constraints are
considered:

min
x∈X

f(x), X ⊂ R
n, (1)

where f(x) is the objective function, X is the set of feasibility, a rectangular domain de-
fined by bounds on the variables and n is the dimension of the search space. In general
we assume that the objective function is twice continuously differentiable, although
this is not necessary for the global optimization framework procedure – with a proper
local search algorithm also nondifferentiable problems can be solved.

Several stochastic strategies have been developed recently in the past in order to
solve problem (1). Usually they consist of two phases: the global one and the local
phase. During the global phase, random points are drawn from the search space X
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according to a certain, often uniform, distribution. Then, the objective function is eval-
uated in these points. During the local phase the sample points are manipulated by
means of local search to yield a candidate global minimum. We assume that a proper
local search method LS is available. It can be started from an arbitrary point x0 ∈ X
and then this algorithm generates the sequence of points in X which converges to some
x∗ := LS(x0) ∈ X , that is the local minimizer related to the starting point x0.

These methods are also called Multistart techniques, because they apply local
searches to each point in a random sample drawn from the feasible region (Boender
et al., 1982b; Rinnooy Kan and Timmer, 1987a,b). However, the Multistart method is
inefficient when it performs local searches starting from all sample points. That is, in
such cases some local minimizer points will be found several times. Since local search
is the most time consuming part of the method, it should ideally invoked no more than
once in every region of attraction.

Various improvements were proposed by diverse authors in order to reduce the
number of local searches, see e.g. (Törn, 1978; Rinnooy Kan and Timmer, 1987a; Guss
et al., 1995). The two most important methods which are aimed at reducing the num-
ber of performed local searches are: the clustering methods and the Multi Level Single
Linkage (MLSL) algorithms.

The basic idea behind clustering methods is to form groups (clusters) around the
local minimizers from a uniformly sampled domain and to start as low number of local
searches as possible in each of those groups. In other words, the procedure tries to
identify the regions of attraction of the given function.

MLSL methods have been derived from clustering methods (Rinnooy Kan and
Timmer, 1987b). In this algorithm the local search procedure is applied to every sample
point, except if there is another sample point within some critical distance which has a
lower function value.

Random Linkage (RL) multistart algorithms introduced by Locatelli and Schoen
(Locatelli and Schoen, 1999) retain the good convergence properties of MLSL. Uni-
formly distributed points are generated one by one, and LS is started from each point
with a probability given by a nondecreasing function φ(d), where d is the distance from
the current sample point to the closest of the previous sample points with a better func-
tion value.

The multistart clustering global optimization method called GLOBAL (Csendes,
1988) has been introduced in the 80s for bound constrained global optimization prob-
lems with black-box type objective functions. The algorithm is based on Boender’s
algorithm (Boender et al., 1982b), and its goal is to find the best local minimizer points
that are potentially global. The local search procedure used by GLOBAL was originally
either a quasi-Newton procedure with the Davidon–Fletcher–Powell (DFP) update for-
mula (Davidon, 1959) or a random walk type direct search method called UNIRANDI
(for details see (Järvi, 1973)). The main idea behind quasi-Newton methods is the con-
struction of a sequence of matrices providing improved approximation of the Hessian
matrix (or its inverse) by applying rank-one (or rank-two) update formula in order
to avoid the direct and costly calculations. The DFP formula was the earliest scheme
for constructing the inverse Hessian and it has theoretical properties that guarantee
superlinear (fast) convergence rate and global convergence under certain conditions.
GLOBAL was originally coded in the Fortran and C languages. In several recent com-
parative studies (e.g. (Mongeau et al., 2000), (Moles et al., 2003)), this method per-
formed quite well in terms of both efficiency and robustness, obtaining the best results
in many cases.
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Based on the old GLOBAL method, we introduced a new version (Csendes et al.,
2008) coded in MATLAB. The algorithm was carefully analyzed and it was modified
in some places to achieve better reliability and efficiency while allowing higher di-
mensional problems to be solved. In the new version we use the quasi-Newton local
search method with the Broyden–Fletcher–Goldfarb–Shanno (BFGS) update instead of
the earlier DFP. Numerical experiments (Powell, 1986) have shown that BFGS formula’s
performance is superior over DFP formula. All three versions (Fortran, C, MATLAB)
of the algorithm are freely available for academic and nonprofit purposes at

www.inf.u-szeged.hu/ ∼csendes/Reg/regform.php

(after registration and limited for low dimensional problems).
The aim of the present work is to benchmark the GLOBAL algorithm and compare

the performance with the MATLAB GlobalSearch solver on a testbed which reflects
the typical difficulties arising in real-word applications. The remainder of the paper
is organized as follows: The GLOBAL method is presented in Section 2 and the test
environment in Section 3. The benchmarking on the BBOB 2009 noiseless testbed (Finck
et al., 2009a; Hansen et al., 2009b) is done in Section 4. During this section, we also
describe the parameters and its settings in the test. The CPU timing experiment is
presented in Section 4.2, while the discussion of the results are done in Section 4.3.

In Section 5, we compare GLOBAL with the MATLAB GlobalSearch method using
the BBOB 2010 test environment. The new parameter settings of the GLOBAL method
are presented in Section 5.1, while the GlobalSearch method overview in Section 5.2.
Section 5.3 contains discussion of the comparison results.

2 The GLOBAL algorithm presentation

The GLOBAL method has two phases: a global and a local one. The global phase
consists of sampling and clustering, while the local phase is based on local searches.
The local minimizer points are found by means of a local search procedure, starting
from appropriately chosen points from the sample drawn uniformly within the set of
feasibility. In an effort to identify the region of attraction of a local minimizer, the pro-
cedure invokes a clustering procedure. The role of clustering is to reduce the number
of local searches by forming groups of points around the local minimizers from a uni-
formly sampled domain and start local searches as few times as possible in each of
those groups. Clusters are formed stepwise, starting from a seed point, which may be
an unclustered point with the lowest function value or the local minimum found by
applying local search to this point. New points are attached to the cluster according to
clustering rules.

GLOBAL uses the Single Linkage clustering rule (Boender et al., 1982b; Rin-
nooy Kan and Timmer, 1987a), which is constructed in such a way that the probability
that a local method will not be applied to a point that would lead to an undiscovered
local minimizer diminishes to zero when the size of the sample grows. In this method
the clusters are formed sequentially and each of them is initiated by a seed point. The
distance between two points x and x′ in the neighborhood of the local minimum x∗ is
defined as

d(x, x′) = ((x − x′)⊤H(x∗)(x − x′))1/2,

where H(x∗) is the Hessian of the objective function at the local minimum x∗. Let
C(xs) denote the cluster initiated by the seed point xs. After a cluster C(xs) is initiated,
we find an unclustered point x such that d(x,C(xs)) = miny∈C(xs) ‖x − y‖ is minimal.
This point is then added to C(xs), after which the procedure is repeated until d exceeds
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Algorithm 1: The GLOBAL algorithm

1. function GLOBAL(f,X)

2. k ← 0;X∗ ← ∅;X(1) ← ∅
3. repeat
4. k ← k + 1
5. Generate N points x(k−1)N+1, . . . , xkN with uniform distribution on X .
6. Determine the reduced sample consisting of the γkN best points from

the cumulated sample (entire history) x1, . . . , xkN .
7. Apply clustering to the reduced sample using the points of X∗ and

X(1) as seed points.
8. while Not all points from the reduced sample have been clustered do
9. Let x be the best unclustered point from the reduced sample.

10. x∗ ← LS(x)
11. C(x∗)← C(x∗) ∪ {x}
12. if x∗ /∈ X∗ then
13. X∗ ← X∗ ∪ {x∗}
14. xs ← x∗

15. else

16. X(1) ← X(1) ∪ {x}
17. xs ← x

18. end
19. Apply clustering to the unclustered points using xs as seed point.

20. end

21. until Some global stopping rule is satisfied.
22. return The smallest local minimum value found.

some critical value rk. The applied critical distance in our algorithm is based on the
one used in (Boender et al., 1982a) which is

rk =
1√
π

(

Γ(1 +
n

2
) · |H(xs)|1/2 ·m(X) · (1− α1/(kN−1))

)1/n

,

where Γ is the gamma function, |H(x∗)| denotes the determinant of H(x∗), m(X) is the
Lebesgue measure of the set X , and α ∈ (0, 1) is a parameter of the clustering proce-
dure. If xs is a local minimizer then a good approximation of H(xs) can be obtained by
using the BFGS method, otherwise H(xs) can be replaced by the identity matrix. The
main steps of GLOBAL are summarized in Algorithm 1.

In line 2, the X∗ and X(1) sets are initialized, where X∗ is a set containing the local
minimizer points that were found so far, while X(1) is a set containing sample points
to which the local search procedure has been applied unsuccessfully in the sense that
already know local minimizer was found again. Moreover, the set X(1) has the role to
further reduce the number of local searches by applying clustering using the elements
of it as seed points. The number of new drawings is denoted by k that initial value
is 0. The algorithm contains a main iteration loop and the steps from line 4 to line 20
will be repeated until some global stopping rule is satisfied. In line 5, N points are
generated uniformly on X . In line 6, a reduced sample is constructed by taking those
γkN points of the cumulated sample that have the lowest function values. A clustering
procedure is then applied to the reduced sample (line 7). The elements of X∗ are first

4 Evolutionary Computation Volume x, Number x



Black-box optimization benchmarking of the GLOBAL method

chosen as seed points, followed by the elements of X(1). In case of a seed point xs, we
add all unclustered reduced sample points which are within the critical distance rk to
the cluster initiated by xs. In the first iteration, X∗ and X(1) are empty and thus no
clustering takes place.

Between lines 8 and 20 we iterate over the unclustered points from the reduced
sample and apply a local search procedure to them to find a local minimizer point x∗.
The point x is then added to the C(x∗) cluster (line 11). If x∗ is a new local minimizer
point, then we add it to X∗ (line 13) and choose it as the next seed point (line 14),
otherwise we add x to X(1) (line 16) and choose it as the next seed point (line 17). In
line 19, we apply again the clustering procedure to the unclustered reduced sample
points which are within a critical distance from the cluster initiated by the seed point
xs. In line 22, the smallest local minimum value is returned.

One of the questions in applying a stochastic method is when to stop it. Sev-
eral approaches based on different assumptions about the properties of possible ob-
jective functions f and using some stochastic techniques have been proposed to design
a proper stopping rule.

A Bayesian stopping rule for the Multistart algorithm has been introduced by
(Zieliński, 1981) and further developed by (Boender and Zieliński, 1982; Boender and
Rinnooy Kan, 1987, 1991; Betrò and Schoen, 1992) and others.

Most Bayesian stopping rules for multistart techniques are based on the collected
knowledge about the size of the sample and the number of local minimizers detected.
In our GLOBAL algorithm we stop the search when it has not found any new local
minimizer point in the actual iteration step.

3 The test environment description

In this paper, the numerical experiments are conducted on a testbed comprising
twenty-four noiseless test functions (Finck et al., 2009a; Hansen et al., 2009b). These
functions have been constructed so that they reflect the real-word application difficul-
ties and are split into several groups like separable functions, functions with low or
moderate conditioning, functions with bad conditioning and unimodal, multi-modal
with adequate global structure, multi-modal with weak global structure. All functions
are scalable with the dimension, thus in our tests we used 2, 3, 5, 10 and 20 as dimen-
sions. Additionally, all functions are defined over Rn, while the actual search domain
is [−5; 5]n. Each of the functions have an artificially chosen optimal function value.
Consequently, for each function different instances can be generated. Each function is
tested over five different instances and the experiments will be repeated three times for
each instance. The algorithm performance is evaluated over all 15 trials. The success
criterion of a run is to reach the ft = fopt +∆ft target value, where fopt is the optimal
function value, and ∆ft is the precision to reach.

In order to quantify the search cost of an algorithm, a performance measure should
be provided. The main performance measure adopted in this paper (Hansen et al.,
2009a; Price, 1997) is the runtime ERT, Expected Running Time. The ERT number de-
pends on a given target function value, and is computed over all relevant trials as the
number of function evaluations used during the trials while the best function value did
not reach ft, summed over all trials and divided by the number of trials that actually
reached ft. Formally

ERT (ft) =
pS · RTS + (1 − pS) · RTUS

pS
,
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where pS is the probability of success, the ratio of the number of successful runs over
the total number of runs, RTS and RTUS denote the average number of function eval-
uations for successful and unsuccessful trials, respectively.

The results are also presented using the Empirical Cumulative Distribution Func-
tion (ECDF) of the distribution of ERT divided by n to reach a given target function
value. It shows the empirical cumulated probability of success on the problems consid-
ered depending on the allocated budget. For a more detailed environment and experi-
mental description see (Hansen et al., 2009a, 2010a).

4 Benchmarking GLOBAL on the BBOB 2009 noiseless testbed

4.1 Parameter tuning and setup

GLOBAL has six parameters to set: the number of sample points to be generated within
an iteration step, the number of best points to be selected for the reduced sample, the
stopping criterion parameter for the local search, the maximum number of function
evaluations allowed for local search, the maximum number of local minima to be find,
and the type of local method to be used. All these parameters have a default value and
usually it is enough to change only the first three of them.

In all dimensions and for all functions we used 300 sample points, and the two
best points were kept for the reduced sample. In 2, 3, and 5 dimensions we used the
Nelder-Mead simplex method (Nelder and Mead, 1965) implemented by (Kelley, 1999)
as a local search with 10−8 as termination tolerance parameter value and with 5,000 as
the maximum number of function evaluations. In 10 and 20 dimensions with the f3,
f4, f7, f16, f23 functions we used the previous settings with a local search tolerance of
10−9. Finally, in the case of the remaining functions we used the MATLAB fminunc
function as the local search method using the BFGS update formula with 10,000 as the
maximum number of function evaluations and with 10−9 as the termination tolerance
parameter value.

As it can be observed, during the parameter tuning we used two different settings.
In lower dimensions we used the Nelder-Mead method while in higher dimensions the
BFGS local search was applied to all functions except for five of them. Although this
kind of a priori parameter settings are not suggested, the two important parameters of
GLOBAL (the number of sample points, the number of best points selected) were the
same on the entire testbed. The different settings may be characterized with the entropy
measure crafting effort (Price, 1997; Hoos and Stützle, 1998) for each dimensionality in
the following way:

CrE = −
K
∑

k=1

nk

n
ln
(nk

n

)

,

where n =
∑K

k=1 nk is the number of functions in the testbed and nk is the number of
functions, where the parameter setting with index k was used for k = 1, . . . ,K , K is
the number of different parameter settings. The crafting effort CrE = 0 for dimensions
2, 3, and 5, while for D = 10, 20 it can be calculated as CrE10 = CrE20 = −( 5

24 ln
5
24 +

19
24 ln

19
24 ) = 0.5117.

4.2 CPU timing experiment

For the timing experiment the GLOBAL algorithm was run on the test function f8,
and restarted until at least 30 seconds had passed (according to Figure 2 in (Hansen
et al., 2009a)). These experiments have been conducted with an Intel Core 2 Duo 2.00

6 Evolutionary Computation Volume x, Number x



Black-box optimization benchmarking of the GLOBAL method

GHz processor computer under Windows XP using the MATLAB 7.6.0.324 version. We
have completed two experiments using the BFGS and the simplex local search methods.
The other algorithm parameters were the same. In the first case (BFGS) the results
were (2.8, 2.9, 3.0, 3.0, 3.2, 3.2) · 10−4 seconds, while in the second case (Nelder-Mead
simplex) they were (2.6, 2.9, 3.4, 4.6, 7.5, 21.0) · 10−4 seconds per function evaluation in
dimensions 2, 3, 5, 10, 20, and 40, respectively. The CPU time of a function evaluation of
the BFGS search grows sub-linearly with the dimension. The slow increase in the CPU
time is due to the initializing process. On the other hand in lower dimensions there
will be more restarts (befor surpassing the 30 seconds) which means that there will be
more initializations. We assume the CPU time per function evaluation would increase
given that the dimensionality is large enough. For the Nelder-Mead simplex method,
the CPU time increases with the dimension linearly up to 20 dimensional problems,
while for 40 dimensional functions a rapid increase can be observed.

4.3 Results and discussion

The GLOBAL method has been tested in a black-box scenario on 24 noiseless bench-
mark functions. Results from experiments according to (Hansen et al., 2009a) on the
benchmark functions given in (Finck et al., 2009a; Hansen et al., 2009b) are presented
in the Figure 1 and Tables 2 and 3.

Tables 2 and 3 give the Expected Running Time (ERT) for targets 101,−1,−3,−5,−7

divided by the best ERT obtained during BBOB 2009, together with its standard de-
viation (smaller values in parentheses), for D = 5 and D = 20. The median number
of conducted function evaluations is additionally given in italics, if ERT(10−7) = ∞.
#succ is the number of trials that reached the final target fopt + 10−8. The ERT values
can also be followed in the Figure 1. Numbers above ERT-symbols indicate the num-
ber of successful trials. The thick line with diamonds shows the single best results from
BBOB 2009 for ∆f = 10−8. Additional grid lines show linear and quadratic scaling.

For low search space dimensions the algorithm shows good results on many func-
tions. The number of solved functions amounts to 18, 16, 11, 8, 5 out of 24 functions
for dimensions 2, 3, 5, 10, 20. We can notice that GLOBAL obtains the highest number
of successful trials in separable, moderate, illconditioned and weak structure noiseless
functions, specifically for f1, f2, f5, f6, f8, f9, f10, f11, f12, f21 and f22 in dimensions 2, 3,
and 5. For f1, f2, f5, f8 and f9, the method obtained successful trials for all dimensions.

The scaling of the expected number of function evaluations with the problem di-
mension is closely linear for f8, f9 and is approximately quadratic for f2. For f1 and
f5 we can observe a decreasing tendency (see Figure 1). These results are due to the
stochastic nature of the method, usually the ERT grows sub-linearly on these functions.
The running times to reach the final target function value in case of the solved problems
in 20 dimension range between 25n and 2, 500n.

Considering the different function subgroups, the best behavior of the GLOBAL
algorithm can be observed on the separable (except f3 and f4), moderate (except f7)
and ill-conditioned functions. The good performance on these subgroups are due to
the unimodal property of the objective functions. On the other hand, most of these
functions have a quite large region of attraction of the global optimum (i.e. f8 and f9),
hence there is a high chance to sample in this ones. In case of the f6 (Attractive sector)
and f11 (Discus) functions in dimension 20 up to the target precision 10−1, all the 15
trials were successful, but the method fails to reach ∆f = 10−3. The results on the
attractive sector function can be improved by increasing the function evaluation limit
of the BFGS method, while for the Discuss function f11 one cannot find a better target
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precision value than 10−1 in 20-D due to a problem of the BFGS local search. In this case
the local search method stops too early because it cannot decrease the objective func-
tion along the current search direction. Finding the final target function values for f8
and f9 are mainly due to the BFGS local search and partly to the property of these func-
tions presented previously. GLOBAL performs also well on Gallagher’s multimodal
functions f21 and f22 with weak global structure. Compared to the best algorithm from
BBOB 2009, the GLOBAL method can improve the ERT in dimensions 5 and 20 on the
latter functions.

The hardest problems for which the method did not reach the solution in higher
dimensions are the multimodal Rastrigin functions f3, f4, f15,f24. In case of the last
one even in 2-D we cannot find a better target precision value than 10−2, while in the
case of the functions f3, f4, and f15 the ∆fbest value is not better than 10 in 5-D and
102 in 20-D, respectively. The common feature of these functions is that they have more
than 10n local optima. Therefore the algorithm cannot discover the overall function
structure. Moreover, the size of the basin of attraction of the global optimum is small
for this problems, and hence the algorithm fails to satisfactorily sample in these regions.
GLOBAL also fail to reach a target value below 1 on the multimodal functions f17 and
f19 with adequate global structure in 5-D and 10 in 20-D. The reason is the same as
presented above.

Considering the individual maximum number of function evaluations, GLOBAL
performs well on ill-conditioned functions and on the multimodal weakly structured
functions for a budget smaller than a thousand times n. A similar conclusion has been
reached in (Hansen et al., 2010b), where 31 algorithms were compared on a testbed
of functions in dimensions up to 40. GLOBAL was ranked together with NEWUOA
(Powell, 2006) and MCS (Huyer and Neumaier, 1999) best for a function evaluation
budget of up to 500n function values, but was no longer competitive when the budget
was significantly larger.

5 Comparing GLOBAL with the MATLAB GlobalSearch solver using the
BBOB 2010 framework

5.1 Improved parameter settings in GLOBAL

The most important parameters used in GLOBAL are the number of sample points to
be drawn uniformly in one iteration cycle, the number of best points selected from the
actual sample, and the maximal number of function evaluations allowed for a local
search. In our previous works (Csendes et al., 2008; Pál et al., 2009), we tuned this
parameters empirically and individually for a set of problems without directly includ-
ing information like the dimension of the problem or the maximal function evaluation
budget.

Although, GLOBAL has its own stopping criteria, we introduced a new parame-
ter (maxfunevals ) with which we control the total number of function evaluations.
This parameter is also used in setting the default value of the sample number and the
maximal number of function evaluations for local search in the following way:

number of sample points = min(50 ∗ n,maxfunevals ∗ 1%),

func eval nr in local search = maxfunevals ∗ 10%,

where n is the dimension of the problem. In our tests, the function evaluation budget is
equal to maxfunevals = 5∗103 ∗n, hence the upper limit of the function evaluations in
20 dimension is 105. On the whole testbed we use the MATLAB fmincon local search
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method with the interior-point algorithm and with TolFun = 10−12 termination toler-
ance parameter value. The number of the selected best points is 2. The corresponding
crafting-effort is equal to CrE = 0.

5.2 Overview of the MATLAB GlobalSearch solver

GlobalSearch is a solver designed to find global optima of smooth constrained non-
linear problems. The solver was introduced in the MATLAB R2010a version and is
available in the new Global Optimization Toolbox. It is a multistart type method which
runs a local search from a variety of starting points in order to find a global minimum,
or multiple local minima. The solver uses a scatter-search mechanism for generating
start points. It analyzes them and rejects those that are unlikely to improve the best
local minimum found so far. Essentially, GlobalSearch accepts a start point only when
it determines that the point has a good chance of obtaining a global minimum.

The method uses the MATLAB fmincon function as the local search method. It
is an interior-point algorithm which aim is to find the local minimum of a constrained
nonlinear multivariable function. Nevertheless, it can be applied to bound constrained
problems.

The GlobalSearch solver is similar to the commercial optimization software TOM-
LAB/OQNLP and both of them are based on the paper (Ugray et al., 2007). Although
GlobalSolver is not considered a state of art algorithm, based on some recent compara-
tive studies (Rios and Sahinidis, 2010) on bound constrained problems, its commercial
counterpart belongs to the best derivative free optimization algorithms. The main rea-
son of choosing the GlobalSolver for comparisons was that this method is very similar
to the GLOBAL procedure, involving cluster formation by identifying the regions of
attraction and avoiding local searches from every trial point. On the other hand, as we
used GLOBAL with fmincon , our aim was to compare the two methods based on the
different global phases used by them. The main steps of the GlobalSearch method are
summarized in Algorithm 2.

The most important parameters of the GlobalSearch solver are the number of trial
points (NumTrialPoints ) with a default value of 1,000, and the number of points
used in Stage 1 (NumStageOnePoints ) with a default value of 200. We do not have
any possibility to control the total function evaluation budget, but we can impose a
running time limit using the MaxTime parameter. The starting point (used in line 2,
Algorithm 2) chosen by us is the center of the search domain [−5; 5]n, but it can also
randomly be selected. In the conducted experiments we used the default parameters of
the method. For more parameters and settings see the ”Using GlobalSearch and Mul-
tiStart” explanation in the Global Optimization Toolbox Users Guide for the MATLAB
R2010a version.

5.3 Results

In this section we show the comparison results obtained for the GLOBAL and Glob-
alSearch algorithms. The conducted experiment results according to (Hansen et al.,
2010a) on the benchmark functions given in (Finck et al., 2009b; Hansen et al., 2009c)
are presented in the Figures 2, 3, 4 and 5 and Tables 4 and 5.

In Tables 4 and 5 we can follow the running time in terms of the number of function
evaluations for dimension 5 and 20 in comparison with the respective best algorithm
of BBOB 2009 and 2010. These tables also presents the statistical significance of the
difference between the two methods, which is tested with the rank-sum test for a given
target ∆ft using, for each trial, either the number of needed function evaluations to
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Algorithm 2: The GlobalSearch solver steps

1. function GlobalSearch(f,X, x0)
2. Run fmincon from x0.
3. Generate N1 trial points using the scatter-search mechanism on X .
4. Stage 1: Start a local search from the best trial point among the first N2 points.
5. Initialize the regions of attraction, counters, threshold, based on the point

find in Stage 1 and in the first step of the algorithm.
6. repeat
7. Stage 2: Examine the a remaining trial points and run a local search

from a point x, if x is not in any existing basin and f(x) < threshold.

8. until Reaching MaxTime seconds or running out of trial points
9. return The smallest local minimum value found.

reach ∆ft, or, if the target was not reached, the best ∆f -value achieved, measured
only up to the smallest number of overall function evaluations for any unsuccessful
trial under consideration if available. Bold entries are statistically significantly better
(according to the rank-sum test) compared to the other algorithm, with p = 0.05 or
p = 10−k where k > 1 is the number following the ⋆ symbol, with Bonferroni correction
of 48.

Both algorithms perform very similar considering the number of solved problems
in 5 and 20-D. The GlobalSearch method solves 9 and 5 out of 24 functions in 5 and
20-D, while GLOBAL solves the same problems and in addition to that the f22 function
in 20-D. Compared to the best algorithm from BBOB 2009 and 2010, the GlobalSearch
method can improve the ERT in dimensions 5 and 20 on f9, f10, f11, f13, and f14, while
GLOBAL performs better on f10, f11 and f22. These improvements can be observed in
the case of a few target values.

Considering the ERT numbers, the GlobalSearch solver is significantly better than
GLOBAL on f1, f2, f5, f6, f9,f10, f11, f13, f14 and f19 in dimension 5 as well as in
dimension 20. These improvements can be observed usually on unimodal functions
and are due to the started local search in line 2 of the Algorithm 2. In contrast to that,
the GLOBAL starts the first local search after evaluating all the sample points drawn.
On the rest of the functions we can observe similar efficiency values, except those (f21,
f22), where GLOBAL performs better. Usually these results appear not statistically
significant.

Figures 2, 3, 4 and 5 show the empirical cumulative distributions of the runtime in
number of function evaluations and of the runtime ratio between the two algorithms
in dimensions 5 and 10. The x-values in the figures show a given budget (a given
number of function evaluations, divided by dimension), while the y-value gives the
proportion of problems where the ∆ft-value was reached within the given budget. As
it can be observed, the runtime is shorter for GlobalSearch on separable, moderate and
ill-conditioned functions for the reason given previously. A shorter runtime can be
observed for GLOBAL on multi-modal functions. The latter fact is due to the way of
cluster formation of the two methods. The GLOBAL algorithm uses the Single Linkage
method which approximates the level sets more accurately, while GlobalSearch makes
the assumption that basins of attraction are spherical. In this case again is true that both
of the algorithms work best in the beginning of the search up to a budget of 1, 000n.

The timing experiment results for the two algorithms can be found in Table 1.
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Algorithm 2-D 3-D 5-D 10-D 20-D 40-D 80-D
GLOBAL 6.8 (215) 6.1 (147) 5.3 (87) 4.3 (43) 3.8 (17) 3.5 (5) 3.6 (2)
GlobalSearch 9.8 (7) 9.5 (8) 7.9 (7) 5.8 (5) 4.6 (2) 3.8 (1) 4.1 (1)

Table 1: CPU time per function evaluation in seconds*10−4

and the corresponding restarts numbers

It contains the CPU time per function evaluation and the corresponding number of
restarts. As it can be observed, for both algorithms the necessary CPU time decreases
with increasing dimension up to 40-D. In the case of the GLOBAL method, this is most
likely due to a larger number of initialization procedures for the required multiple runs
of the algorithm until thirty seconds have passed, while in the case of the GlobalSearch
method there is no dependency to be recognized between the number of restarts and
CPU time decrease. The relative small number of restarts are due to the lack of a proper
termination criteria.

Using the new parameter settings, GLOBAL is more adaptive to the problem di-
mension and the found results are similar to the ones obtained on the BBOB 2009
testbed. Despite the fact that the GlobalSearch uses a more sophisticated sampling
phase we could not discover important differences between the two methods. How-
ever, the GlobalSearch solver is faster than GLOBAL in the initial stage of the optimiza-
tion due to the local search started before the sampling phase.

6 Summary and conclusion

We have benchmarked the GLOBAL algorithm on the BBOB 2009 noiseless testbed. As
a result of the evaluation, we can state that the investigated method performs well on
ill-conditioned and multimodal, weakly structured functions up to a small budget, but
on multimodal functions the results are usually poorer. We have tried new parameters
for the GLOBAL method and compared it with the MATLAB GlobalSearch solver using
the BBOB 2010 framework. The two methods performed similar except the runtime
measured in number of function evaluations. In these cases the GlobalSearch is better
on a few problems. The GLOBAL with the new parameters are more adaptive to the
dimension of the problem. Based on the comparison we can conclude that in the early
stages of the optimization the speed of GLOBAL can be improved by incorporating
a local search before the global phase while in the later stages a more sophisticated
sampling phase is needed in order to take advantage of the more function evaluations.

Acknowledgements. This work was supported by the grant TÁMOP-4.2.2/08/1/
2008-0008 of the Hungarian National Development Agency.
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Figure 1: Expected running time (ERT) divided by dimension versus dimension
in log-log presentation. Shown are different target values fopt + ∆f , where ∆f =
10{+1,0,−1,−2,−3,−5,−8} and the exponent is given in the legend of f1 and f24. Plus sym-
bols (+) show the median number of f -evaluations for the best reached target value.
Crosses (×) indicate the total number of f -evaluations (#FEs(−∞)) divided by the
number of trials. Numbers above ERT-symbols indicate the number of successful tri-
als. Y-axis annotations are decimal logarithms.
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∆f 1e+1 1e+0 1e-1 1e-3 1e-5 1e-7 #succ
f1 11 12 12 12 12 12 15/15

6.8(9.4) 26(0.61) 28(0.74) 32(1.2) 35(1.0) 39(1.4) 13/15
f2 83 87 88 90 92 94 15/15

6.3(1.9) 6.9(1.9) 7.3(1.8) 7.8(1.5) 8.2(1.4) 8.5(1.4) 15/15
f3 716 1622 1637 1646 1650 1654 15/15

3.3(3.7) ∞ ∞ ∞ ∞ ∞2600 0/15
f4 809 1633 1688 1817 1886 1903 15/15

8.3(9.2) ∞ ∞ ∞ ∞ ∞3200 0/15
f5 10 10 10 10 10 10 15/15

32(1.3) 33(2.6) 34(2.4) 34(2.4) 34(2.4) 34(2.4) 15/15
f6 114 214 281 580 1038 1332 15/15

2.9(0.21) 2.1(0.60) 2.0(0.50) 2.2(1.6) 3.6(3.9) 35(37) 1/15
f7 24 324 1171 1572 1572 1597 15/15

12(6.7) 5.7(5.8) 10(11) ∞ ∞ ∞1900 0/15
f8 73 273 336 391 410 422 15/15

5.0(0.34) 2.1(1.3) 2.1(1.1) 2.1(0.86) 2.1(0.86) 2.2(0.81)15/15
f9 35 127 214 300 335 369 15/15

11(2.2) 4.6(1.3) 3.2(0.80) 2.8(0.74) 2.7(0.60) 2.7(1.2) 13/15
f10 349 500 574 626 829 880 15/15

1.9(0.70) 1.6(0.49) 1.8(0.71) 2.0(1.5) 1.7(1.1) 1.7(1.1) 15/15
f11 143 202 763 1177 1467 1673 15/15

4.0(1.5) 5.5(2.6) 3.5(3.2) 5.0(6.2) 5.0(6.5) 8.5(8.3) 8/15
f12 108 268 371 461 1303 1494 15/15

4.6(1.2) 2.7(0.61) 2.4(0.82) 5.0(6.0) 3.1(4.0) 3.4(3.9) 6/15
f13 132 195 250 1310 1752 2255 15/15

4.2(2.5) 6.1(4.9) 11(11) ∞ ∞ ∞1300 0/15
f14 10 41 58 139 251 476 15/15

2.2(1.9) 7.7(0.22) 5.9(0.28) 3.3(0.40) 3.6(2.1) ∞1300 0/15
f15 511 9310 19369 20073 20769 21359 14/15

6.0(6.9) ∞ ∞ ∞ ∞ ∞2700 0/15
f16 120 612 2663 10449 11644 12095 15/15

1.4(1.3) 1(0.53) 1(1.2) 3.5(4.2) 6.8(8.0) 6.6(7.7) 0/15
f17 5.2 215 899 3669 6351 7934 15/15

3.5(3.1) 5.0(4.0) ∞ ∞ ∞ ∞3100 0/15
f18 103 378 3968 9280 10905 12469 15/15

3.9(1.7) 15(15) 14(14) ∞ ∞ ∞2600 0/15
f19 1 1 242 1.20e5 1.21e5 1.22e5 15/15

46(44) 7329(8077) ∞ ∞ ∞ ∞4300 0/15
f20 16 851 38111 54470 54861 55313 14/15

17(4.9) 18(19) ∞ ∞ ∞ ∞2300 0/15
f21 41 1157 1674 1705 1729 1757 14/15

2.3(2.2) 1.1(0.87) 1(0.85) 1(0.83) 1(0.82) 1(0.81) 14/15
f22 71 386 938 1008 1040 1068 14/15

3.6(1.7) 1.3(0.90) 1(1.1) 1(1.1) 1(1.1) 1(1.0) 14/15
f23 3.0 518 14249 31654 33030 34256 15/15

1.6(2.0) 1.0(0.48) 4.8(5.6) ∞ ∞ ∞4900 0/15
f24 1622 2.16e5 6.36e6 9.62e6 1.28e7 1.28e7 3/15

4.2(4.7) ∞ ∞ ∞ ∞ ∞6400 0/15

Table 2: Expected running time (ERT) and half-interquantile range (90% – 10%) in
number of function evaluations divided by the best ERT measured during BBOB 2009
(given in the respective first row) for different ∆f values for functions f1–f24 in 5-D.
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∆f 1e+1 1e+0 1e-1 1e-3 1e-5 1e-7 #succ
f1 43 43 43 43 43 43 15/15

8.0 8.0 8.0 8.0 8.0 8.0 15/15
f2 385 386 387 390 391 393 15/15

18(3.7) 23(3.0) 26(13) 33(14) 51(40) 63(65) 13/15
f3 5066 7626 7635 7643 7646 7651 15/15

∞ ∞ ∞ ∞ ∞ ∞5.0e4 0/15
f4 4722 7628 7666 7700 7758 1.41e5 9/15

∞ ∞ ∞ ∞ ∞ ∞7.8e4 0/15
f5 41 41 41 41 41 41 15/15

10(0.52) 11(0.78) 11(0.78) 11(0.78) 11(0.78) 11(0.78) 15/15
f6 1296 2343 3413 5220 6728 8409 15/15

3.6(1.00) 3.6(0.74) 6.1(3.0) ∞ ∞ ∞4.1e4 0/15
f7 1351 4274 9503 16524 16524 16969 15/15

∞ ∞ ∞ ∞ ∞ ∞1.4e4 0/15
f8 2039 3871 4040 4219 4371 4484 15/15

1.6(0.32) 1.2(0.16) 1.2(0.16) 1.2(0.15) 1.2(0.14) 1.2(0.14)15/15
f9 1716 3102 3277 3455 3594 3727 15/15

1.7(0.28) 1.7(0.89) 1.6(0.84) 1.6(0.79) 1.6(0.77) 1.5(0.74)15/15
f10 7413 8661 10735 14920 17073 17476 15/15

1(0.22) 1.1(0.15) 1.1(0.53) 2.0(1.7) 5.9(6.8) ∞4.1e4 0/15
f11 1002 2228 6278 9762 12285 14831 15/15

1.2(0.42) 1.0(0.60) 1(0.84) ∞ ∞ ∞2.7e4 0/15
f12 1042 1938 2740 4140 12407 13827 15/15

1(0.85) 1(0.88) 1(0.70) 1(0.49) 1.1(1.1) 3.4(3.4) 0/15
f13 652 2021 2751 18749 24455 30201 15/15

2.0(0.34) 1.1(0.08) 1.1(0.04) 4.5(5.4) ∞ ∞1.9e4 0/15
f14 75 239 304 932 1648 15661 15/15

5.0(0.28) 2.2(0.22) 2.1(0.21) 1.1(0.08) 1(0.04) ∞8500 0/15
f15 30378 1.47e5 3.12e5 3.20e5 4.49e5 4.59e5 15/15

∞ ∞ ∞ ∞ ∞ ∞2.4e4 0/15
f16 1384 27265 77015 1.88e5 1.98e5 2.20e5 15/15

1(0.72) ∞ ∞ ∞ ∞ ∞1.2e4 0/15
f17 63 1030 4005 30677 56288 80472 15/15

6.2(1.2) ∞ ∞ ∞ ∞ ∞6.9e4 0/15
f18 621 3972 19561 67569 1.31e5 1.47e5 15/15

∞ ∞ ∞ ∞ ∞ ∞7.5e4 0/15
f19 1 1 3.43e5 6.22e6 6.69e6 6.74e6 15/15

5601(3531) ∞ ∞ ∞ ∞ ∞5.3e4 0/15
f20 82 46150 3.10e6 5.54e6 5.59e6 5.64e6 14/15

5.2(0.38) 1.6(1.7) ∞ ∞ ∞ ∞7.8e4 0/15
f21 561 6541 14103 14643 15567 17589 15/15

1(0.26) 1(1.3) 1(1.2) 1(1.1) 1(1.1) 2.1(2.3) 0/15
f22 467 5580 23491 24948 26847 1.35e5 12/15

1.1(0.54) 1(1.5) 1(1.1) 1(1.1) 1(0.95) 1.3(1.5) 0/15
f23 3.2 1614 67457 4.89e5 8.11e5 8.38e5 15/15

2.8(2.7) 1(0.93) ∞ ∞ ∞ ∞9300 0/15
f24 1.34e6 7.48e6 5.19e7 5.20e7 5.20e7 5.20e7 3/15

∞ ∞ ∞ ∞ ∞ ∞2.8e4 0/15

Table 3: Expected running time (ERT) and half-interquantile range (90% – 10%) in
number of function evaluations divided by the best ERT measured during BBOB 2009
(given in the respective first row) for different ∆f values for functions f1–f24 in 20-D.
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∆f 1e+1 1e+0 1e-1 1e-3 1e-5 1e-7 #succ
f1 11 12 12 12 12 12 15/15

0: myd 1.2⋆2 2.0(0.49)⋆3 2.5⋆3 3.2(0.25)⋆3 3.9(0.25)⋆3 4.5(0.49)⋆3 15/15
1: myd 6.4(5.0) 22 22(0.49) 23(0.74) 24(0.98) 24(0.98) 15/15
f2 83 87 88 90 92 94 15/15

0: myd 1.5(0.69)⋆3 1.6(0.62)⋆3 1.7(0.65)⋆3 1.8(0.65)⋆3 2.3(0.65)⋆3 3.0(0.72)⋆3 15/15
1: myd 4.2(0.56) 4.1(0.57) 4.2(0.60) 4.4(0.66) 5.0(0.70) 5.8(1.0) 15/15
f3 716 1622 1637 1646 1650 1654 15/15

0: myd11(11) ∞ ∞ ∞ ∞ ∞6100 0/15

1: myd 3.6(3.2)⋆2 ∞ ∞ ∞ ∞ ∞1700 0/15
f4 809 1633 1688 1817 1886 1903 12/15

0: myd22(23) ∞ ∞ ∞ ∞ ∞5200 0/15
1: myd 7.5(8.7) 27(29) ∞ ∞ ∞ ∞2800 0/15
f5 10 10 10 10 10 10 15/15

0: myd 3.1⋆3 4.9⋆3 6.1⋆3 6.7⋆3 7.3⋆3 86(64) 13/15
1: myd26(0.30) 27(0.60) 29(0.75) 30(0.60) 30(0.80) 32(3.6) 6/15
f6 114 214 281 525 723 919 15/15

0: myd 1.3(0.45)⋆2 1.1(0.29)⋆3 1.0(0.15)⋆3 1.1(0.27) 1.1(0.25) 1.1(0.30) 15/15
1: myd 2.6(0.27) 1.8(0.34) 1.6(0.40) 1.1(0.21) 1.1(0.36) 1.2(0.28) 14/15
f7 24 283 824 1081 1081 1121 15/15

0: myd40(55) ∞ ∞ ∞ ∞ ∞2300 0/15
1: myd50(52) ∞ ∞ ∞ ∞ ∞1600 0/15
f8 73 273 336 391 410 422 15/15

0: myd 1.1(0.14)⋆3 1.9(2.6) 1.7(2.1) 1.5(1.8) 1.5(1.8) 1.5(1.7) 15/15
1: myd 4.3(0.27) 2.0(1.2) 1.8(1.00) 1.6(0.85) 1.6(0.84) 1.6(0.80) 14/15
f9 35 127 214 300 335 369 15/15

0: myd 1.2(0.13)⋆3 0.71(0.07)⋆3↓3 0.64(0.04)⋆3↓4 0.58(0.03)⋆3↓4 0.57(0.02)⋆3↓4 0.55(0.03)⋆3↓415/15
1: myd 9.3(0.84) 3.5(1.2) 2.3(0.81) 1.8(0.57) 1.6(0.52) 1.5(0.47) 15/15
f10 349 500 574 626 829 880 15/15

0: myd 0.28(0.04)⋆3↓4 0.22(0.04)⋆3↓4 0.23(0.05)⋆3↓4 0.24(0.05)⋆3↓4 3.7(6.8) 42(52) 0/15

1: myd 0.96(0.07) 0.70(0.05)↓2 0.62(0.04)↓2 0.64(0.10)↓2 2.1(2.9) 16(18) 0/15
f11 143 202 763 1177 1397 1535 15/15

0: myd 0.28(0.07)⋆3↓4 0.25(0.05)⋆3↓4 0.07(0.01)⋆3↓4 0.22(0.26)↓4 39(48) ∞7.2e4 0/15

1: myd 2.0(0.11) 1.5(0.12) 0.42(0.04)↓4 0.43(0.30)↓2 19(23) ∞8300 0/15
f12 108 268 371 461 1303 1494 15/15

0: myd 1.3(0.28)⋆3 0.94(0.46)⋆ 0.81(0.48) 0.79(0.58) 2.3(2.4) 28(31) 1/15
1: myd 3.3(0.33) 1.5(0.41) 1.3(0.35) 1.3(0.39) 1.4(1.4) 2.6(2.7) 3/15
f13 132 195 250 1310 1752 2255 15/15

0: myd 0.74(0.09)⋆3↓ 0.76(0.07)⋆3↓3 0.81(0.06)⋆3↓4 0.66(1.1) 60(56) ∞7200 0/15
1: myd 2.6(0.15) 2.0(0.09) 1.7(0.08) 0.78(0.56) 6.3(6.5) ∞1400 0/15
f14 8.1 41 58 139 251 476 15/15

0: myd 1.3(1.5) 0.62(0.28)⋆3↓2 0.71(0.26)⋆3↓ 0.64(0.24)⋆3↓2 0.75(0.15)⋆3 ∞8500 0/15
1: myd 2.0(2.4) 6.4(0.16) 4.8(0.11) 2.4(0.09) 1.6(0.14) ∞1200 0/15
f15 511 8295 15816 16520 17216 17805 14/15

0: myd15(16) ∞ ∞ ∞ ∞ ∞4700 0/15

1: myd 5.3(5.8)⋆3 ∞ ∞ ∞ ∞ ∞1700 0/15
f16 120 612 2663 8585 9704 9990 15/15

0: myd 6.8(2.9) 212(260) ∞ ∞ ∞ ∞1.8e4 0/15

1: myd 2.2(1.1)⋆2 37(41) ∞ ∞ ∞ ∞1.7e4 0/15
f17 5.2 153 475 2493 5172 7934 15/15

0: myd47(53) 343(401) ∞ ∞ ∞ ∞2.7e4 0/15
1: myd 1.5(1.3) 198(190) ∞ ∞ ∞ ∞7200 0/15
f18 103 378 1635 6176 8749 10418 15/15

0: myd24(3.7) ∞ ∞ ∞ ∞ ∞2.1e4 0/15
1: myd13(17) ∞ ∞ ∞ ∞ ∞7500 0/15
f19 1 1 242 1.14e5 1.16e5 1.17e5 15/15

0: myd 1⋆3 1⋆3 0.21(0.04)⋆3↓4 ∞ ∞ ∞3.6e4 0/15
1: myd37(51) 4499(5482) 261(317) ∞ ∞ ∞2.0e4 0/15
f20 16 851 16445 22406 23232 24043 10/15

0: myd 1.8⋆ 5.8(5.0) ∞ ∞ ∞ ∞3200 0/15

1: myd11(8.1) 4.6(5.5)⋆2 ∞ ∞ ∞ ∞1100 0/15
f21 41 1157 1571 1601 1625 1653 14/15

0: myd 2.1(4.4) 1.5(1.7) 2.6(3.9) 2.7(3.4) 2.7(3.8) 2.7(3.7) 9/15
1: myd 3.2(3.1) 0.45(0.45) 0.66(0.97) 0.67(0.94) 0.70(0.93) 0.78(0.94) 11/15
f22 71 386 850 921 953 980 14/15

0: myd 4.6(5.1) 5.8(7.0) 4.4(4.0) 4.1(3.6) 4.0(3.6) 4.1(3.4) 12/15

1: myd 2.4(1.7) 1.0(0.67)⋆3 0.75(0.59)⋆3 0.74(0.55)⋆3 0.84(0.53)⋆3 0.98(0.56)⋆3 9/15
f23 3.0 518 14249 31654 33030 34256 15/15

0: myd10(11) 3.7(4.5) 1.3(1.3) 11(11) ∞ ∞2.4e4 0/15
1: myd 3.0(3.0) 2.0(2.5) 1.4(1.7) ∞ ∞ ∞2.5e4 0/15
f24 1622 74856 95339 1.47e5 1.48e5 1.49e5 4/15

0: myd 2.6(2.1) ∞ ∞ ∞ ∞ ∞5300 0/15
1: myd 5.1(5.4) ∞ ∞ ∞ ∞ ∞3600 0/15

Table 4: ERT and half-interquantile range (90% – 10%) divided by the best ERT mea-
sured during BBOB 2009 and 2010 for different ∆f values for functions f1–f24 in 5-D
where 0: myd is GlobalSearch and 1: myd is GLOBAL

Evolutionary Computation Volume x, Number x 15



L. Pál, T. Csendes, M.C. Markót, and A. Neumaier

∆f 1e+1 1e+0 1e-1 1e-3 1e-5 1e-7 #succ
f1 43 43 43 43 43 43 15/15

0: myd 1.2(0.24)⋆3 2.3(0.49)⋆3 2.5⋆3 3.4⋆3 4.4(0.49)⋆3 5.3(0.49)⋆3 15/15
1: myd 24(0.24) 25(0.73) 25(0.24) 27(0.49) 27(0.24) 28(0.49) 15/15
f2 385 386 387 390 391 393 15/15

0: myd 4.6(1.4) 5.2(1.1)⋆ 5.6(1.1) 6.4(1.2) 8.6(1.7) 12(7.3) 12/15
1: myd 8.7(2.8) 9.1(2.9) 11(14) 12(14) 14(15) 17(16) 12/15
f3 5066 7626 7635 7643 7646 7651 15/15

0: myd ∞ ∞ ∞ ∞ ∞ ∞6.3e4 0/15
1: myd ∞ ∞ ∞ ∞ ∞ ∞6.3e4 0/15
f4 4722 7628 7666 7700 7758 12953 9/15

0: myd ∞ ∞ ∞ ∞ ∞ ∞6.9e4 0/15
1: myd ∞ ∞ ∞ ∞ ∞ ∞7.0e4 0/15
f5 41 41 41 41 41 41 15/15

0: myd 4.2⋆3 5.7⋆3 6.2⋆3 7.3⋆3 7.8⋆3 380(374) 0/15
1: myd 28(0.52) 30(0.79) 31(0.79) 32(0.79) 32(0.53) 238(249) 0/15
f6 1293 1744 2456 3679 4955 6172 15/15

0: myd 1.4(0.39)⋆3 1.7(0.39) 1.9(0.45) 2.4(0.32) 70(73) ∞5.3e5 0/15
1: myd 2.2(0.50) 2.2(0.61) 2.1(0.65) 3.5(1.8) 41(48) ∞4.2e4 0/15
f7 1351 4274 9503 16321 16321 16969 15/15

0: myd ∞ ∞ ∞ ∞ ∞ ∞3000 0/15
1: myd ∞ ∞ ∞ ∞ ∞ ∞1.8e4 0/15
f8 1959 3745 4040 4219 4371 4447 15/15

0: myd 0.92(0.31)⋆3 0.99(0.75) 0.96(0.70) 0.96(0.67) 0.95(0.64) 0.94(0.63) 15/15
1: myd 1.5(0.28) 1.1(0.41) 1.1(0.38) 1.1(0.36) 1.0(0.36) 1.0(0.36) 15/15
f9 1716 3102 3277 3455 3594 3727 15/15

0: myd 0.19(0.02)⋆3↓4 0.34(0.02)⋆3↓4 0.38(0.02)⋆3↓4 0.40(0.02)⋆3↓4 0.40(0.02)⋆3↓4 0.40(0.02)⋆3↓415/15
1: myd 1.7(0.20) 1.4(0.45) 1.3(0.42) 1.3(0.41) 1.3(0.39) 1.2(0.38) 15/15
f10 7413 8661 10735 11907 12487 13082 15/15

0: myd 0.20(0.17)↓4 0.19(0.17)↓4 0.16(0.14)↓4 0.17(0.16)↓4 29(43) ∞3.0e5 0/15

1: myd 0.30(0.04)↓4 0.27(0.04)↓4 0.23(0.04)↓4 0.22(0.04)↓4 3.5(5.0) ∞4.2e4 0/15
f11 1002 2228 5478 6201 6868 7445 15/15

0: myd 0.16(0.05)⋆3↓4 0.10(0.02)⋆3↓4 0.05(0.01)⋆3↓4 0.43(0.77) 150(159) ∞3.0e5 0/15

1: myd 1.2(0.06) 0.57(0.03) 0.24(0.01)↓4 0.77(0.94) 85(91) ∞4.2e4 0/15
f12 1042 1938 2740 4140 12407 13827 15/15

0: myd 0.57(0.14)⋆3 0.75(0.45)⋆ 0.71(0.42)⋆ 0.66(0.17)⋆2 1.0(1.2) 6.0(7.3) 0/15
1: myd 2.1(1.1) 1.6(0.83) 1.4(0.58) 1.1(0.38) 0.85(0.61) 3.4(3.5) 0/15
f13 652 2021 2751 15081 24455 30201 15/15

0: myd 1.2(0.19)⋆3 0.47(0.07)⋆3↓4 0.46(0.17)⋆3↓4 0.44(0.43)↓ ∞ ∞8.5e4 0/15
1: myd 2.6(0.22) 1.0(0.15) 1.1(0.49) 0.74(0.64) ∞ ∞1.1e4 0/15
f14 75 239 304 932 1648 10447 15/15

0: myd 0.92(0.14)⋆3 0.54(0.09)⋆3↓3 0.73(0.14)⋆3↓ 0.66(0.06)⋆3↓4 0.68(0.14)⋆3↓4 ∞4.8e4 0/15
1: myd 14(0.14) 4.7(0.09) 3.9(0.11) 1.7(0.07) 1.3(0.07) ∞8600 0/15
f15 24927 1.47e5 2.15e5 2.24e5 2.33e5 2.42e5 15/15

0: myd ∞ ∞ ∞ ∞ ∞ ∞4.9e4 0/15
1: myd ∞ ∞ ∞ ∞ ∞ ∞8.0e4 0/15
f16 1384 7325 38236 1.50e5 1.62e5 1.68e5 15/15

0: myd 314(343) ∞ ∞ ∞ ∞ ∞2.3e5 0/15
1: myd 176(185) ∞ ∞ ∞ ∞ ∞1.0e5 0/15
f17 63 912 2012 23262 46594 70330 15/15

0: myd 75(140) ∞ ∞ ∞ ∞ ∞2.2e5 0/15
1: myd 13(7.9) ∞ ∞ ∞ ∞ ∞1.0e5 0/15
f18 621 3024 14625 61478 1.02e5 1.21e5 15/15

0: myd2111(2453) ∞ ∞ ∞ ∞ ∞1.8e5 0/15
1: myd ∞ ∞ ∞ ∞ ∞ ∞1.0e5 0/15
f19 1 1 2.15e5 2.35e6 2.74e6 2.79e6 15/15

0: myd 1⋆3 1⋆3 0.00⋆3↓4 ∞ ∞ ∞7.1e4 0/15
1: myd2063(2050) 4.02e5(4.67e5) ∞ ∞ ∞ ∞1.0e5 0/15
f20 82 5372 2.41e5 3.22e5 3.60e5 4.15e5 15/15

0: myd 1.7⋆3 57(61) ∞ ∞ ∞ ∞1.8e4 0/15
1: myd 15(1.4) 24(25) ∞ ∞ ∞ ∞2.6e4 0/15
f21 561 6541 14103 14643 15567 17589 15/15

0: myd 3.8(3.0) 6.0(6.0) 6.7(7.8) 6.5(7.4) 6.1(7.0) 5.5(6.0) 3/15
1: myd 2.6(0.93) 1.2(1.5) 0.79(0.87) 0.78(0.90) 0.76(0.78) 0.74(0.74) 7/15
f22 467 5580 23491 24948 26847 1.35e5 12/15

0: myd 0.28(0.24)⋆3 7.1(9.2) 8.7(9.0) 8.2(8.5) 7.7(7.9) 1.6(1.7) 0/15
1: myd 4.7(5.4) 0.85(1.1) 1.1(1.1) 1.0(1.0) 0.98(0.99) 0.30(0.29) 1/15
f23 3.2 1614 67457 4.89e5 8.11e5 8.38e5 15/15

0: myd 13(14) 3.4(3.0) 15(17) ∞ ∞ ∞3.6e5 0/15
1: myd 2.8(3.9) 1.9(1.4) ∞ ∞ ∞ ∞1.0e5 0/15
f24 1.34e6 4.87e6 3.11e7 3.12e7 3.12e7 3.12e7 3/15

0: myd ∞ ∞ ∞ ∞ ∞ ∞5.2e4 0/15
1: myd ∞ ∞ ∞ ∞ ∞ ∞3.6e4 0/15

Table 5: ERT and half-interquantile range (90% – 10%) divided by the best ERT mea-
sured during BBOB 2009 and 2010 for different ∆f values for functions f1–f24 in 20-D
where 0: myd is GlobalSearch and 1: myd is GLOBAL
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Figure 2: Noiseless functions 5-D. Left: Empirical Cumulative Distribution Function
(ECDF) of the running time (number of function evaluations) for GLOBAL (◦) and
GlobalSearch (+), divided by search space dimension D, to fall below fopt + ∆f with
∆f = 10k where k is the value in the legend. The vertical black lines indicate the
maximum number of function evaluations. Light brown lines in the background show
ECDFs for target value 10−8 of all algorithms benchmarked during BBOB 2009 and
2010. Right subplots: ECDF of ERT of GLOBAL over ERT of GlobalSearch for differ-
ent ∆f
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Figure 3: Subgroups of functions 5-D. See caption of Figure 2
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Figure 4: Noiseless functions 20-D. See caption of Figure 2
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Figure 5: Subgroups of functions 20-D. See caption of Figure 2
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Hoos, H. H. and Stützle, T. (1998). Evaluating Las Vegas algorithms—pitfalls and remedies. In
Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence (UAI-98), pages
238–245.

Evolutionary Computation Volume x, Number x 21



L. Pál, T. Csendes, M.C. Markót, and A. Neumaier
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Zieliński, R. (1981). A stochastic estimate of the structure of multi-extremal problems. Mathemat-
ical Programming, 21:348–356.

22 Evolutionary Computation Volume x, Number x


