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Abstract. This report discusses a case study for modeling uncertainties in
a Matlab model for space system design, with the goal of determining robust
feasible designs for the model.

An initial analysis of the original model (provided without uncertainties) re-
vealed a number of anomalies that were resolved. In addition, the problem
structure revealed the presence of all difficulties an optimization problem can
have: discrete variables, strong nonlinearities, discontinuities due to branch-
ing decisions, multiple objectives, multiple local minima.

To aid in providing reliable uncertainty information, an uncertainty elicita-
tion interface (implemented in Matlab) is described. The uncertainty infor-
mation actually provided by ESA consisted in independent worst case bounds
(intervals) for a number of variables.

To be able to automatically insert the uncertainty information into the model,
semiautomatic conversion tools into the modeling languages AMPL (cf. [6])
and LINGO (cf. [13]) are discussed.

The formal modeling of uncertainty by means of clouds, and the robust op-
timization of a resulting uncertain model was considered from a theoretical
point of view, with a toy example demonstration. The sensitivity approach to
the robust optimization requires tools from automatic differentiation which
turned out not to be realizable for the model problem under discussion.

Instead, a heuristic approach using surrogate function modeling, corner searches,
and discrete line searches was used to solve the robust optimization problem
in case of interval uncertainties. This approach works satisfactorily for the
model problem for the case of interval uncertainty.

Solving the model problem with uncertainty revealed significant robustness
advantages of the approach using uncertainty. The influence on assumed
knowledge about additional uncertainty information was illustrated by for a
few model choices.
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1 Study objectives

According to the study description 05/5201 in the call for proposals, the task
of the project is to:

• Formulate sample space design applications in the design modelling
frame of Neumaier [2];

• Investigate the possibility of modelling the random (uncertain) design
variables by clouds;

• Quantify the kinds of available uncertainty information for the sample
applications and study their reliability;

• Verify the robustness of the possible existing solutions of the sample
design cases (e.g. by determining a proper failure probability value to
the outcome of the design), and propose ’safe’ designs (for given failure
probabilities) as substitution solutions, by using global optimization
and constraint satisfaction techniques.

2 Material provided by ESA

Apart from general background information and the answers to some ques-
tions, we obtained from ESA:

• An Excel document COMPLETE_v02.xls identifying variable names in
the programs and input, output, control variables as used in the ’In-
structions’;

• A Word document instructions.doc with tables for the allowed val-
ues of the control parameters (design variables);

• Two Excel documents:
initial_values.xls and initial_values_xeus.xls giving two sets
of initial values for the input and output variables. All the global
input parameters are the result of a mission analysis study and will
be considered given and fixed, apart from the uncertainties specified in
the Excel document Uncertainty_v01.xls. It provides deterministic
interval uncertainties for the global inputs.
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• Eight m-files with Matlab functions for various subsystems, and the
mass budget; complemented later by 3 more m-files with auxiliary pro-
grams, and finally (since more files were missing) with the whole (un-
documented) Matlab implementation of the Manager system. Upon
request of ESA we neglected the AOCS subsystem, and put to 0 the
variables mass_aocs and pow_aocs.

• An m-file TTC_cloud.m with a small real life problem, from the area of
satellite design.

The ’Instructions’ mentioned that ”in order to achieve compatibility with
the existing tools, it would be very important to use the above mentioned
subsystem model files and build the new tools around this core. If changes to
these files can not be avoided, the issue should be brought to our attention.”

Our first approach (using symbolic solvers) required changes to the program
for two reasons:

1. The equations as given do not account for uncertainty, except in a rough
form by means of safety factors. To take into account uncertainty, all uncer-
tain equations will get an additional error terms.

2. To interface the programs to our optimization tools, we need to have
the problem specified in a declarative rather than operational format. This
means that we rewrote all control structures (if, while) and replaced them
by mathematically equivalent equations involving binary variables.

We reverse engineered the programs to rediscover the relevant part of the
conceptual level underlying the program, and generated semi-automatically
streamlined versions of the programs that suit our purposes. A problem
description on the conceptual level (which we had expected to get when
writing our proposal), e.g., by detailed cross-references to Larson & Wertz

et al. [1]) might have saved us some work.

All changes made are documented, and it will be ensured that they do not
change the mathematical meaning of the equations. We also use the programs
as they are to verify that our solutions are correct.
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3 Analysis of the material

The modified version of the programs consists of nine m-files defining Matlab
functions: six for the various subsystems, one for the mass budget, and two
auxiliary functions.

The Attitude and Orbit Control System in file AOCS_ss.m was ignored by
agreement.

id letter file name use

D DH_ss.m Data Handling System

T TTC_ss.m Tracking, Telemetry and Command

P pow_ss.m Power System

S str_ss.m Structure System

L str_stabil.m aux. for Structure System

G target_planet_func.m aux. for Thermal Protection System

H thermal_ss.m Thermal Protection System

R prop_ss.m Propulsion System

M mass_budget.m Mass Budget

In order to see what is going on and to check the correctness of our modifica-
tions, we wrote a program testss.m which encodes all initial values and the
tables for the allowed choices of the design parameters, and evaluates these
functions at randomly chosen global inputs within the specified uncertainty
interval, and random choices for the design parameters.

The dependence of the m-files is shown in the following Figure 1; an entry is
occupied by the letter of the corresponding column if the file whose id letter
labels the row depends on results computed in the file whose id letter labels
the column.
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Figure 1: File dependence.

The problem defined by these files and the test program has 107 variables
which are related by the equations defined in the above m-files. The 107
variables fall into five different classes:

(F) 24 fixed variables,

(G) 24 global input variables,

(D) 24 design variables,

(I) 19 intermediate result variables, and

(O) 16 only result variables.

The fixed variables are fixed and certain for a given mission. Among them
are a number of variables which have the value zero, which arise since the
problem under discussion is in fact part of a bigger model in which these
variables would get nontrivial values. There are 5 other fixed variables, 4 of
which take discrete values only:
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fixed variable structure meaning

target_planet nonneg. integer Target Planet id

count nonneg. integer Counter

elev angle Elevation

body_mount_SA binary Body Mounted Solar Arrays

primary binary Only Primary Source

The values of the fixed variables are fixed as follows:

a_ther 0

aff_DH 0

aff_TTC 0

aff_batt 0

aff_pow 0

aff_prop 0

aff_str 0

aff_tot 0

body_mount_SA 1

c_ther 0

cost_DH 0

cost_SA 0

cost_TTC 0

cost_batt 0

cost_pow 0

cost_prop 0

cost_str 0

cost_tot 0

count 1

elev 90

mass_aocs 0

pow_aocs 0

primary 0

target_planet 3
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The remaining global input variables are fixed but uncertain for a given
mission. We call a fixation of them a scenario for the global inputs.

The 24 design variables (23 original ones and one added by us, see Section
3.1) fall into 10 categories, each of which can be chosen independently and
determines one or more design variables.

choice variable used in structure

θ1 D 4 choices from R
3

θ2 T 14 choices from R

θ3 T 6 choices from R

θ4 T 8 choices from R

θ5 P 5 choices from R
4

θ6 P 20 choices from R
3

θ7 S 9 choices from R
4 (cf. Section 3.1)

θ8 H 44 choices from R
2

θ9 R 30 choices from R
4

θ10 S,P continuous from [0.5, 8.0]

As described in Section 10.2.2 we have rearranged the tables as follows

mem mem_mass mem_pow θ1

8 2 6 1

64 2.5 7 2

64 3 8 3

128 3 14 4

θ2 1 2 3 4 5 6 7 8 9 10 11 12 13 14

f 0.2 0.45 1.54 1.56 2.2 3 4 8 8.5 14 15.35 30 31.8 32.3

θ3 1 2 3 4 5 6

D 0.2 0.7 1.1 1.56 1.7 2.44

θ4 1 2 3 4 5 6 7 8

Eb 2.7 4 4.4 5.8 9.6 10.3 13.3 13.8
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eta d ro alfa θ5

0.14 2.27 2 0.65 1

0.19 1.9 2.84 0.89 2

0.22 0.87 2.84 0.92 3

0.25 1 3.14 0.92 4

0.27 1.61 3.14 0.92 5

spec dens eff θ6

30.1 84.12 0.72 1

32.9 107.01 0.72 2

34.3 98.26 0.72 3

35.2 103.98 0.72 4

37.3 107.17 0.72 5

38.6 115.03 0.72 6

42 61 0.7 7

43.39 76.89 0.7 8

50 69.3 0.7 9

50.4 74.65 0.7 10

50.9 88 0.7 11

52 49.8 0.7 12

52.8 78.8 0.7 13

52.9 82.8 0.7 14

53.4 83.7 0.7 15

90 175 0.96 16

120 259 0.96 17

124 283 0.96 18

129 303 0.96 19

145 327 0.96 20
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El rho ult_str yie_str θ7

45 1770 270 165 1

290 1856 320 290 2

68 2710 290 240 3

71 2800 460 380 4

72 2850 420 320 5

110 4430 900 855 6

196 7860 860 620 7

201 7940 970 660 8

203 8220 1280 1080 9

alfa_sup eps_sup θ8

0.96 0.88 1

0.96 0.91 2

0.94 0.9 3

0.92 0.86 4

0.91 0.94 5

0.88 0.88 6

0.77 0.81 7

0.73 0.86 8

0.67 0.87 9

0.66 0.88 10

0.57 0.88 11

0.48 0.82 12

0.47 0.87 13

0.44 0.88 14

0.42 0.87 15

0.39 0.82 16

0.35 0.9 17

0.35 0.84 18

...
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alfa_sup eps_sup θ8

0.28 0.87 19

0.2 0.9 20

0.17 0.92 21

0.09 0.9 22

0.32 0.02 23

0.23 0.03 24

0.31 0.03 25

0.44 0.03 26

0.09 0.03 27

0.26 0.04 28

0.33 0.04 29

0.4 0.05 30

0.39 0.07 31

0.52 0.1 32

0.7 0.13 33

0.29 0.3 34

0.12 0.45 35

0.55 0.46 36

0.43 0.49 37

0.44 0.56 38

0.26 0.58 39

0.15 0.59 40

0.38 0.67 41

0.92 0.72 42

0.97 0.75 43

0.17 0.76 44
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I m_eng T_eng P_eng θ9

3200 9 0.01 9 1

3600 10.3 0.01 10.3 2

3200 13 0.03 13 3

1500 9.9 0.08 9.9 4

1650 11.5 0.09 11.5 5

1700 15 0.12 15 6

4500 27 0.15 27 7

3470 26.7 0.15 26.7 8

227 0.19 0.75 0.19 9

226 0.33 1 0.33 10

227 0.2 2 0.2 11

230 0.38 4.5 0.38 12

228 0.22 6 0.22 13

295 0.41 10 0.41 14

230 0.24 10 0.24 15

295 0.45 22 0.45 16

235 0.52 22 0.52 17

234 0.36 24 0.36 18

235 1 90 1 19

280 2 110 2 20

234 1.8 350 1.8 21

306 2.5 404 2.5 22

235 1.6 445 1.6 23

315 4.8 450 4.8 24

320 4.7 460 4.7 25

315.5 3.6 490 3.6 26

328 6 530 6 27

303 4.5 890 4.5 28

239 5.8 2500 5.8 29

315 6.8 4000 6.8 30

θ10 continuous

slimfactor [0.5,8.0]
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We treat θ10 (the slim factor punt_h_vs_r) as continuous parameter, al-
though in the ’Instructions’ it is restricted to 20 grid points in the specified
range. We call a fixed θ a choice for the design variables.

The ’only result’ variables only occur as result variables, hence are immaterial
for the difficulty of the problem (except for pow_tot, which may influence
the objective function).

All other variables are intermediate result variables, and occur both as input
of some file and as output of some file.

Fixed point structure. Some of those are inputs before they are com-
puted, that yields a recursive structure and leads to a fixed point problem.
The sequence in which the subsystems are called determines the number of
recursive variables and thus the dimension of the fixed point problem; the
sequence should be chosen so that the dimension is minimal. With the man-
ually chosen sequence as in Figure 1 we have a 3-dimensional fixed point
problem size with the recursive variables m_tot, pow_prop and pow_ther.

3.1 Hidden features discovered during the analysis

During the analysis we discovered and resolved a number of peculiarities in
the programs.

• Extra column in structure controls (in hidden_data.m) (cf. p.466 of
[1])

El rho ult_str yie_str

72 2850 420 320

68 2710 290 240

71 2800 460 380

196 7860 860 620

201 7940 970 660

203 8220 1280 1080

45 1770 270 165

110 4430 900 855

290 1856 320 290

• Discontinuity and zero finding subproblem (in str_ss.m)
resolved by rewriting str_ss.m and str_stabil.m; see Section 4.
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• Restructured target_planet_func.m: separated constant and noncon-
stant parts. We also repaired a bug in cold case data of Venus: In place
of H_min_IR = H_target it should read H_min_IR = H_terra.

• There was a typing error in pow_ss, lines 43 and 45: teta0 has been
replaced by pi*(teta0)/180.

• Undocumented pointer structure
The design variables are represented in the program as entries of a vec-
tor x. For example, mem_mass is recorded in x(punt_mem_mass), with
punt_mem_mass being a pointer containing the relevant index; simi-
larly for the other design variables. Unfortunately, the indices used are
nowhere documented. From close inspection of the Manager program
we reconstructed the following probable pointer values:
punt_f = 1;

punt_D = 2;

punt_Eb = 3;

punt_mem = 4;

punt_mem_mass = 5;

punt_mem_pow = 6;

punt_eta = 7;

punt_d = 8;

punt_ro = 9;

punt_alfa = 10;

punt_spec = 11;

punt_dens = 12;

punt_eff = 13;

punt_El = 14;

punt_rho = 15;

punt_ult_str = 16;

punt_h_vs_r = 17;

punt_alfa_sup = 18;

punt_eps_sup = 19;

punt_I = 20;

punt_m_eng = 21;

punt_P_eng = 22;

punt_T_eng = 23;

4 Manual modifications

We spent considerable time in writing support routines to help us transform
the given programs reliably (and checkable) into a form that we can use,
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without having to understand every detail of the programs.

4.1 General modifications

At first we did some generally important modifications:

• The design vector x is no longer input for the files, but an identity func-
tion for the pointer variables. As a consequence the pointer variables
now represent the value of the former component of x they pointed at.

• In the file prop_ss.m the occurrence of transfer_time seems to be
not necessary, so transfer_time has been removed as input, output
and within the code of the file.

• As mentioned in Section 3.1 str_ss.m and str_stabil.m have to be
rewritten. In str_ss.m yie_str_ss becomes punt_yie_str_ss and a
new input variable for the file, thus the call of hidden_data.m can be
omitted. str_stabil has been reshaped to a single line expression, the
input variable h has been removed as it is never used by str_stabil.

• In thermal_ss.m two global values are commented out. As indicated
above (cf. Section 3.1) target_planet_func is separated in a constant
part target_planet_func1 and a nonconstant part
target_planet_func2. The calls to radiaz_solare.m are replaced by
pasting the contents of radiaz_solare.m inline.

4.2 Special preparations for DAG generation

The goal here is to make the subsystem m-files interpretable by the DAG
generator needed exclusively for the approach using symbolic solvers via the
modeling system AMPL. But before the files can be passed to a preprocessor
to modify them automatically, some changes were made manually:

• Control structures like ”if” are removed in case they concern uncertain
variables as AMPL lacks an implementation for them by now; then
they are substituted by equivalent explicit expressions. E.g.,

17



if x<=1

a=-27.5;

elseif x>1 & x<=2

a=-28.4;

else

a=-57.4;

end

is replaced by

controlsubs_a(1)=-57.4;

controlsubs_a(2)=-28.4;

controlsubs_a(3)=-27.5;

a=controlsubs_a(stepnum(x,1,2));

Thus the if-structures of the s subsystem m-files are handled by step
functions stepnum.m (cf. Figure 2), stepnum2.m or casenum.m, which
can be overloaded for the DAG.

• We have inserted newlines in the else-case because the preprocessor is
not able to detect equals signs in lines starting with else (that would
require an if-parser).

• The function calls to str_stabil in str_ss are replaced inline by the
new single-line-expression. The function call to fzero has changed to a
call to fzero_str_stabil, a new function that is overloaded for DAG
inputs to create suitable constraints.

• We made some modifications to avoid semantic conflicts with the solver
languages. In Matlab the equals-sign ’=’ is an assignment operator,
while solver languages interpret ’=’ similar to the ’==’ in Matlab, left
and right hand side are interchangeable. So in Matlab it is possible to
overwrite variables like x=10*x, but the same expression as solver code
constraint would implicate x=0. One has to find, rename and/or replace
these variables if necessary, e.g. rename the overwritten x to x2=10*x

and replace x in the following by x2. With regard to this problem we
have modified thermal_ss for the variables coseno, T_minr, pow_ther
and str_ss for the variables punt_yie_str, punt_El, punt_ult_str
appropriately.
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Figure 2: The step function stepnum(x,1,2) with steps at 1 and 2.

5 Preprocessing, DAG generation and con-

version

The conversion of the given Matlab model to an AMPL model enables the
application of symbolic solver software on the optimization problem (cf. Sec-
tion 9). After the changes in Sections 4.1 and 4.2 the subsystems should be
ready for this conversion. We create an AMPL model to be flexible in our
choice of a solver as we have several converters from AMPL to different solver
languages. Moreover the syntax in AMPL is quite intuitively comprehensible,
which is a significant advantage concerning readability.

5.1 Preprocessing

After the changes in Sections 4.1 and 4.2 the program preprocessor.m reads
the modified files. It removes all comments, triple dots and print commands
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from each file. If any control structure is still found the preprocessor prints
a warning to make it easier to remove it manually.

Apart from that the preprocessor tracks equals signs and replaces the right
hand side by a function call of equation.Example:

mass_pow=(mass_SA+mass_batt)*1.2;

reads in the preprocessed version

mass_pow=equation(’mass_pow’, ’Linenumber 91’, ’pow_ss’,...

(mass_SA+mass_batt)*1.2);

equation will be overloaded for the DAG, and should later on deal with the
uncertainty information.

stage1.m includes all the results of both manual modification and preprocess-
ing. In addition to that it provides detailed information about the structure
of the files and their variables (cf. Section 3).

5.2 DAG generation

To represent the mathematical structure of the complete model we use a di-
rected acyclic graph (DAG) representation of the computational flow. This
representation allows one to perform automatically a number of important
problem transformations (including writing equivalent Matlab or AMPL code,
and generating code for partial derivatives and interval enclosures). For de-
tails, see, e.g., Schichl & Neumaier [4].

The current version of the DAG generator (parser) is able to generate a DAG
from the preprocessed files in absence of subsasn and subsindex.

The DAG is both a class in the MATLAB sense and a cell array which defines
a tree (a special form of a DAG).

Let’s have a look at the following simple Matlab function:

function z=held(x,y)

z=x^y
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This function takes 2 inputs x,y and puts a variable z to the caller’s workspace.

The input variables form two groups: precise and imprecise variables. The
precise ones are simply arrays of doubles, while the imprecise ones are vari-
ables of class DAG.

Some equations like

z=x^z

could include uncertainty information in the form of safety factors

z=[0.8,1.2]*x^z

or additive constants

z=x^z+-0.003.

Therefore it is necessary to overload equations to find possible sources of
uncertainty.

The preprocessed files will be called using DAG and double variables. When
calculations are performed solely with doubles then the results are again
precise data (at least in this version of the DAG). When a function will be
called with doubles and DAGs then the double information will be copied to
a special field called value

The classical Matlab datatypes cannot store information about uncertainty.
Therefore a new datatype, the ’DAG’ class, is created to propagate these
information. Normally, integer variables are precise and floats are imprecise.
When imprecise equations occur, an additional source of imprecise data (from
the DAG class) is created.

A typical DAG node has the form
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DAG{157} =

base: ’0’ base is 1 when a newnode will be created

child: [] not set

filename: ’’ for equation to use in the gui

left: 153 index of the left part of the binary operator

linenum: ’’ the linenum of the equation in filename only for

equation

name: ’’ name of the variable empty when intermediate

variable only for equation

op: 25 type of operation

pos: 157 position in the DAG

right: 156 index of the right part of the binary operator

value: NaN value of variable NaN when no value is available

In general, the value can be a general array.

y=newnode(x,yadd) creates a DAG variable and enlarges the DAG (cell ar-
ray).
yadd overwrites the standard settings of newnode.
overload overloads the operators.

5.3 Conversion to AMPL and LINGO

To create the AMPL model we make use of our generated DAG.

The conversion to AMPL will be done automatically.

Some conversions from Matlab to AMPL are very complex because AMPL
lacks the support of most of the Matlab functions, e.g. subsref, ceil, floor
and log10.

The language conversion is difficult because the semantics of Matlab differs
from AMPL.

In most overloaded functions the AMPL code will be created directly, some
files like ceil2ampl, casenum2ampl, stepnum2ampl are auxiliary functions
for this purpose.

The following tabular illustrates the overloaded functions for the DAG. In
some cases overloading leads to a non-trivial problem formulation for the
solver constraints. On the other hand some overloaded operators are not in
use yet.
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DAG object non-trivial Description

and.m

asin.m

casenum.m yes aux. fct. casenum2ampl

ceil2ampl.m obsolete function

ceil.m yes aux. fct. ceil2ampl

colon.m

controlsubsTant.m obsolete function

cos.m

ctranspose.m

dag.m

display.m special output for Matlab inter-
nally, this is a special version for
developers

disp.m the same like display, but function
differs

double.m special, has no impact on the
AMPL file

eq.m

equation.m yes the most important function,
both double and DAG objects are
implemented in a special way

exp.m

fzero str stabil.m yes cf. Section 4.2

ge.m

generatesubsrefampl.m yes obsolete function

get.m yes Matlab only

gt.m

horzcat.m yes special, creates an AMPL vector,
written by equation

...
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DAG object non-trivial Description

ldivide.m yes not yet needed

le.m

log10.m yes similar to Matlab log10 but not
identical for AMPL

logical.m yes not yet needed

log.m

lt.m

max.m yes max only for 2 doubles or integer,
2 input variables version

min.m yes min only for 2 doubles or integer,
2 input variables version

minus.m

mldivide.m yes not yet needed

mplus.m

mpower.m

mrdivide.m

mtimes.m

ne.m

not.m

or.m

overload.txt

plus.m fundamental function for overloading

polyval.m yes polynomials will be written by
this function verbatim to the
AMPL file

power.m

rdivide.m yes not yet needed

...
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DAG object non-trivial Description

round.m yes this is a dag2gams problem, so it
needs to be overloaded

sin.m

sqrt.m

stepnum2.m yes aux. fct. stepnum22ampl, special
function to resolve ifs

stepnum.m yes aux. fct. stepnum2ampl, special
function to resolve ifs

subsasgn.m yes not yet needed

subsindex.m yes very special but simple, concerns
only integer or doubles, no vectors

subsref.m yes very difficult for AMPL, but no
problem for LINGO (different
rounding : always truncate)

times.m

transpose.m yes not yet needed

uminus.m

uplus.m

vertcat.m yes not yet needed

x.m

The following function are essential for the DAG generation:

ceil2ampl.m yes for ceil

equation.m yes equation for only double equations

horzcatextra yes needed by equation

makeampl.m

newnode.m this is the constructor for the
class DAG

overload.m important to make the files in the @dag directory

subsyst.m creates the AMPL code

subtest.m creates the AMPL code for the test cases

update.m not yet needed for creation of the DAG

ceil generates for y = ceil(x):
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var y integer, >=-10^50,<=10^50;

s.t. ans_ceil_1 :(y - x)>=0;

s.t. ans_ceil_2 :(y - x) <=1-eps);

round generates constraints in an analogous manner.

horzcat (double, for DAG analogically) generates for m = [4.5, 4, 2]:

subject to doublehorzcatvar_73_1: m[1]= 4.5 ;

subject to doublehorzcatvar_73_2: m[2]= 4 ;

subject to doublehorzcatvar_73_3: m[3]= 2 ;

Subreferencing in AMPL is created like this:

var y >=-10^50,<=10^50;

var b {i in 1 .. 3} binary;

var x integer, >=1, <=10^50;

subject to const1 :

sum{i in 1 .. 3} b[i]=1;

subject to const2 {i in 1 .. 3}:

b[i]*(x -i)=0;

subject to const3 {i in 1 .. 3}:

b[i]*(y-m[i])=0;

means y = m[x], the entry of the vector m at x.

The if-structures, as mentioned in Section 4.2, are handled via step functions
to be overloaded.

As an example, to model the stepfunction from Figure 2 we create the con-
straints:

subject to stepfct_1_1: (b[1]-1)*(x-2)>=0;

subject to stepfct_1_2: b[1]*(x-2)>=0;

subject to stepfct_2_1: abs(b[1]-1)*(b[2]-1)*(x-1)>=0;

subject to stepfct_2_2: b[2]*(x-1)>=0;

subject to stepfct_3_1: (b[3]-1)*(x-1)<=0;

subject to stepfct_3_2: b[3]*(x-1)<=0;

subject to stepfct_1: sum {i in 1 .. 3} b[i]=1;

subject to stepfct_2: stepfct=sum {i in 1 .. 3} b[i]*i;
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for the variables

var x;

var b {1 .. 3} binary;

var stepfct integer, >=1;

stepfct is the value of the step function at x.

In addition to the DAG evaluation we take the results of our structural
analysis to initialize sets, parameters, the design tables, variables, design
constraints and boxes for variables. Boxes have to be declared for all variables
of the model as they are required by one of the converters and some solvers.

The generated AMPL code is initially written to various files:

ampl.equation
ampl.param
ampl.var
sets
params
paramsdata
vars
st
dispvars.

All the constraints, initializations, declarations, assignments are finally put
together and aligned to three files s1.mod, s1.dat and s1.run. s1.run

can be run in AMPL, s1.mod satisfies the requirements of the converters
ampl2dag and dag2gams taking the output DAG of ampl2dag (these con-
verters are provided within the Coconut environment). Thus we are able to
create a GAMS file from our AMPL model.

The AMPL syntax does not allow multiple declarations - but needs at least
one - for sets, parameters, variables and constraints, so the model is checked
after its generation for missing or multiple declarations and appropriately
modified afterwards.

Besides we generate a modified DAG for the questionnaire gui (cf. Section
7.1) with the option to choose the set of variables the questionnaire will have
to deal with. We implemented line intervals for the if structures to improve
the reference to the original files shown by the gui textviewer.
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As mentioned above we are able to create a GAMS file from our AMPL model.
Unfortunately initializations of the variables are lost during the conversion,
so we have written a program to re-set them automatically and additionally
prepare the GAMS file for a possible conversion to LINGO (this converter is
built-in for GAMS) - at the current stage LINGO10 is our preferred solver.

6 Multidimensional potential function based

clouds

The concept of clouds was introduced by Neumaier in [2]. It is a new notion
for handling uncertainty.

Clouds allow the representation of incomplete stochastic information in a
clearly understandable and computationally attractive way.

They describe the rough shapes of typical samples of various size, without
fixing the details of the distribution.

The use of clouds permits a worst case analysis without losing track of im-
portant probabilistic information.

All computed probabilities – and hence the resulting designs – are safe-
guarded against perturbations due to unmodelled (and unavailable) infor-
mation.
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Figure 3:

The special case of interest for large-scale models is a confocal cloud defined
by a continuous potential V which assigns to each scenario x a potential
function V (x) defining the shape of the cloud, and a lower probability
α(U) and an upper probability α(U) defining the fuzzy boundary of the
cloud, such that, for all U ,

α(U) ≤ Pr(V (x) < U) ≤ Pr(V (x) ≤ U) ≤ α(U).

α and α must be strictly increasing continuous functions of U mapping the
range of V to [0, 1]. This corresponds to the level function x(ξ) defined by
x(ξ) = α(V (ξ)), x(ξ) = α(V (ξ)).

For a given failure probability ε and α = 1− ε, the so-called α-cut describes
an inner region Cα of α-relevant scenarios with V (x) < U ε and a (generally
larger) region Cα of α-reasonable scenarios with V (x) < U ε, where

α(U ε) = 1 − ε, α(U ε) = 1 − ε.

The conditions defining the cloud guarantee that U ε ≤ U ε, and that there
is a region C with Cα ⊆ C ⊆ Cα containing a fraction of α of all scenarios
considered possible.

The potential determines the shape of the cloud. In particular,

V (x) = max
k

|xk − µk|/rk
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defines rectangular clouds (a sort of fuzzy boxes),

V (x) = ‖Ax − b‖2
2

defines elliptical clouds (a sort of fuzzy ellipsoids) The worst case bounds
provided by ESA correspond to rectangular clouds. Elliptical clouds are
appropriate in many situations, too.

This Section deals with clouds based on potential functions, specifically with
their computation, properties, and their illustration through examples.

6.1 Calculation of a potential function based cloud from
data

The direct calculation of a cloud, based on a general multidimensional po-
tential, is very difficult. To this end, this Section presents a method which
reduces computational complexity by representing a cloud by an ellipsoidal
potential function and an interval-valued potential function.

Suppose we have n sample points x1, . . . ,xn. Each sample point represents
a possible setting. Let µ be the sample mean and let C be the covariance
matrix of the sample. Let R be the upper triangular Cholesky factor of C−1,
i.e.

RT R = C−1.

Assume we have a quadratic potential function

V (ξ) = ||R(ξ − µ)||2.

Theorem 4.3 in [2] defines the potential based cloud as

x(ξ) :=
[

p(V (ξ)), p(V (ξ))
]

,

where (Pr denotes ”probability of”)

p(u) = Pr(V (x) > u), p(u) = Pr(V (x) ≥ u)

and p, p : R → [0, 1] are the potential level maps. These are approximated
using the Kolmogorov-Smirnov distribution in the following way.

Let α ∈ (0, 1) be a confidence level (e.g. 0.05 to allow 5% error), let F be
the hypothetical cumulative distribution function and let Fn be the empirical
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distribution function. The Kolmogorov-Smirnov test decides whether Fn and
F can be considered the same. This decision is made according to a prede-
fined threshold level c = H−1(1 − α), where H is the Kolmogorov-Smirnov
function

H(t) = 1 − 2
∞

∑

i=1

(−1)i−1e−2i2t2 .

The hypothesis F = Fn is accepted if

Dn = sup
x∈R

|Fn(x) − F (x)| ≤ c/
√

n.

Remark. Note, that there exists a better upper bound than c/
√

n, but it
has the same order of magnitude.

The worst case is when for all x, |Fn(x) − F (x)| = c/
√

n. Hence the two
”worst” distributions which are accepted are

p(V (ξ)) := min(1, 1 − (F n(V (ξ)) − c/
√

n)), and

p(V (ξ)) := max(0, 1 − (F n(V (ξ)) + c/
√

n)),

where

F n(t) = Pr(V (x) < t) =
1

n

n
∑

i=1

I(V (xi) < t),

F n(t) = Pr(V (x) ≤ t) =
1

n

n
∑

i=1

I(V (xi) ≤ t).

The Matlab functions realizing the above described algorithm are as follows.

function out = V(xi)

% the value of the potential function at xi

% input: R, M (mean) describing the potential, xi

% output: potential of xi, "distance from M"

out = R*(xi-repmat(M,1,size(xi,2)));

out = sum(out.^2,1)’;

end

function out = FnUpper(x) % 1x1 -> 1x1

% the distribution of the potential values
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% calculated from the potential values of the sample points

% the number of strictly smaller values / number of values

out = 0;

for k0 = 1:nSamples

if (VSamples(k0) < x)

out = out + 1;

end

end

out = out / nSamples;

end

function out = FnLower(x) % 1x1 -> 1x1

% the distribution of the potential values

% calculated from the potential values of the sample points

% the number of less or equal values / number of values

out = 0;

for k0 = 1:nSamples

if (VSamples(k0) <= x)

out = out + 1;

end

end

out = out / nSamples;

end

function out = pUpper(vxi)

out = max(0, min(1, 1-(FnUpper(vxi) - c/sqrt(nSamples))));

end

function out = pLower(vxi)

out = max(0, min(1, 1-(FnLower(vxi) + c/sqrt(nSamples))));

end

function [l u] = cloudi(xi)

l = pLower(V(xi));

u = pUpper(V(xi));

end

These functions are utilized by a Matlab script, which calculates the cloud
itself.
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nSamples = 1000;

ALPHA = 0.005;

c = kolminv(1-ALPHA); % Kolmogorov-Smirnov constant

samples = generateSamples(nSamples, 2); % n x nSamples matrix

C = cov(samples’); % n x n, symmetrical

M = mean(samples’)’; % n x 1 vector

R = chol(inv(C)); % n x n, upper triangular matrix

% the potentials of the sample points

VSamples = V(samples);

% the value of the cloud at (u,v)

u = .5; v = -.3;

x = cloudi([u; v]);

To sum up, a cloud is represented by two functions. The importance of
the potential function is that it reduces the dimensionality to 1, so that
the Kolmogorov-Smirnov test can be applied. The selection of the potential
function is arbitrary, it affects basically the shape of the cloud. Here, machine
learning algorithms could be applied in order to determine the best potential
function for a given problem. In view of the lack of sample information in
the data provided by ESA we did not pursue this possibility, and consider
only ellipsoidal clouds. The interval-valued distribution functions determine
the ”thickness” of the cloud, which in fact depends on the number of sample
points n and the confidence value α selected.

6.2 Upper bound for density functions in continuous

clouds

Let x be a continuous cloud. According to Proposition 5.1 in [2], the bounds
for the density function of a random variable x in x can be calculated as
follows. Suppose A is an infinitely small subset of M . Let x(A) = [al, au].
Then by Equation (22) in [2],

Pr(x ∈ A) ∈ [0, min(au, 1 − al)].
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6.3 Illustrative examples

In this subsection we provide several examples which show the use of the
above described algorithm. For the sake of simplicity we assume two dimen-
sional data. Samples are generated according to either uniform or a normal
distribution with fixed mean on [−5, 5]2. Figures 4-6 show the steps of the
construction method with an initial sample set size 100, normal distribution,
and 99.5% confidence. Similarly, Figures 7 and 8 shows the cloud construc-
tion method from sample points with uniform distribution.

(a) (b)

Figure 4: (a) 100 sample points with normal distribution. (b) Quadratic
potential fitted on the sample.
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(a) (b)

Figure 5: (a) in red: the transformed distribution function of the potential
values; in blue and cyan: the approximated p and p functions with 99.5% con-
fidence level. (b) the distribution function according to the original sample
points.
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(a) (b)

(c) (d)

Figure 6: Subfigures (a) and (b): the functions p(V (ξ)) and p(V (ξ)), respec-
tively. Subfigures (c) and (d) show the corresponding level sets of (a) and
(b).
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(a) sample points with uniform distribu-
tion

(b) quadratic potential fitted to the
sample points

(c) transformed empirical and approxi-
mated potential distributions

(d) distribution of the original sample

Figure 7: Steps of the cloud construction from data with uniform distribution.
Part I.
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(a) p(V (ξ)) (b) p(V (ξ))

(c) level sets of (e) (d) level sets of (f)

Figure 8: Steps of the cloud construction from data with uniform distribution.
Part II.

6.4 Examination of generated clouds

The number of sample points and the confidence level heavily affect the shape
and thickness of the constructed cloud. In fact, the thickness of the cloud is
determined only by the number of sample points and the confidence level. As
a consequence of the Kolmogorov-Smirnov method, this thickness is between
c/
√

n and 2c/
√

n.

The present subsection shows the influence of these parameters. Figures 9-12
illustrate the cloud construction method with various sample set sizes and
confidence levels.

Note, that as the number of sample points increases, the cloud gets thinner.
Three examples are shown. If the number of sample points is low (in our
example n = 10, see Figure 9), then the cloud is thick, and the mean of
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the sample cannot be determined with a good confidence. An example with
n = 100 was illustrated on Figures 4-6. If the number of sample points is
increased to n = 1000 (as on Figure 10), then the cloud is apparently more
”smooth”. It still has tiny jumps, of course.

The change in the confidence level has less effect. As it increases, the cloud
gets thicker. The alterations induced by increasing the confidence value, can
be followed on Figure 11, Figures 4-6, and Figure 12, respectively.

Figure 9: Cloud construction from 10 sample points with normal distribution
and 99.5% confidence level.
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Figure 10: Cloud construction from 1000 sample points with normal distri-
bution and 99.5% confidence.
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Figure 11: Cloud construction from 100 sample points with normal distribu-
tion and 99% confidence.
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Figure 12: Cloud construction from 100 sample points with normal distribu-
tion and 99.9% confidence.

7 Interactive uncertainty elicitation

As possible sources of uncertainty we detected the following:

• Inputs

• Equations

• Safety margins

• Table entries (for design variables)

• Regression coefficients (in the context of polyval)

• Other constants
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For a reliable uncertainty analysis and associated robustness measures, a
complete specification of the extent of uncertainty is mandatory. This Sec-
tion is intended to help specify completely and realistically uncertainties in
a mathematical model. An interactive (and enhanced) version of this ques-
tionnaire is available in Matlab.

It is important to realize that any analysis based on assumed knowledge
which is in fact not available results in spurious predictions.

Thus it is important to be reasonably sure of the uncertainty specifications
made.

It is better to specify less with confidence than to specify unknown details
based on pure guesswork.

The strength of the cloud approach is that it can utilize such partial informa-
tion, in contrast to worst case analysis, which ignores probabilistic knowledge,
and to traditional fully probabilistic methods, which require to know exactly
the probability distribution.

Uncertainty comes in various forms, among which the following are typical:

1. Worst case bounds on uncertainties. E.g., a design parameter may
be known to be realizable within 10% relative accuracy of the nominal design
value, and no knowledge about relative frequencies is available >from past
experience.

2. Probability distribution. E.g., a parameter has been frequently mea-
sured in the past and is known to take random values with a Gaussian dis-
tribution with given mean and standard deviation, or with another known
distribution.

3. Families of probability distributions. E.g., a parameter is known
to be typically Gaussian distributed but its mean and/or standard deviation
may not be known reliably.

4. A sample of typical values, intervals representing expert knowledge,
or various other incomplete ways of describing available information about
the uncertainty.

5. Qualitative information only, such as expert opinions expressed in
ordinary language.
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6. Simulation techniques which provide a number of plausible scenarios,
i.e., values for certain groups of parameters, under conditions that can be
controlled by the simulation program.

In addition, information about the dependence or independence of different
uncertain variables may be available in the form of

• bounds on correlations,

• qualitative statements (such as ”x and y vary at a similar rate”),

• joint probability distributions, or

• structural independence of groups of variables.

There may also be uncertainty in the goals, which would have to be specified
similarly.

Examples of informal uncertainty .

The interface discussed below contains text fields in which verbal specifica-
tions of uncertainty can be given. These are not automatically translated
but give hints on which information to automatize next. Here we give some
examples of informal specifications of uncertainty.

• In the equation y = cos(7.0x) ∗ 1.1, the constant 7.0 is accurate to
10% (to ±0.01, etc.) in the worst worst case; 1.1 is a safety factor
which represents a reasonable upper bound for a number t which may
be regarded as lognormal with var(log t) = 0.03.

• The input variable z is 17 ± 3, but smaller values are more likely than
larger ones.

• Three typical values for z are 15, 16, 17; rare values would be 14, 18,
20, and values outside [12,25] are impossible.

• Three experts estimated the possible range of x as [17, 20], [15, 20],
[16, 18]. The first expert has twice as much experience than the other
two.

• A sample of 20 values for (x, y) is given by [...]

• Based on a sample of 500 values, the distribution of x is compatible
with N(22.5, 1.7).
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• Variables x and y are positively correlated (are independent).

• Variables x and y are at most weakly correlated, with a correlation
coefficient in [−0.2, 0.2].

• The components of x have mean µ = ... and covariance matrix Σ = ....

If different experts differ in their assessment, conflicting information may be
worth recording.

Invent (and characterize) further categories as needed, if similar situations
occur over and over again. If the assignment is itself uncertain, put the type
in parentheses, e.g., (NA) for uncertainty.which is probabilistic but not quite
normally distributed, or (BM) for uncertainty which is nonprobabilistic but
where the bounds are uncertain. Explain if possible.

In the irregular case (e.g., other distributions, or fuzzy information, or subjec-
tive judgments), some explanatory text describing the form the uncertainty
takes should be given if possible. (We shall later query the information avail-
able in these cases by asking for typical alternative values, extreme values,
etc.)

7.1 Using the interactive uncertainty elicitation soft-
ware

The crucial part of collecting information on an unknown problem is the
questioning of the area experts on uncertainties of the variables taken into
consideration. This is not an easy task, for the following reasons. Usually
the experts have very specific knowledge of their areas. More importantly,
the structure of this knowledge can be very different from the applied model.
Furthermore, the experts usually do not and need not have explicit knowledge
of the complete model.

Independent to the modeling framework, a good questionnaire asks such
questions that the experts can answer. It shall not refer to the model of
the problem nor shall use its notions, but preferably use the language of the
experts, or at least stick to a common framework. In our case it means that
the concept of clouds is not referred to explicitly in the questionnaire. We
have chosen probability theory notion as the intermediate language used be-
tween the experts and the model. Experts are requested to answer questions
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using probabilistic notions such as mean, variance or correlation. Probabil-
ity theory is a good choice to be a mediator, since it is widely known and
understood, and has a strong relationship to the concept of clouds.

7.1.1 The variable selection window

The uncertainty elicitation uses two windows. The variable selection window
and the window of probabilistic information panels. In this section the vari-
able selection window is presented. Figure 13 shows the initial state of the
window. The set of variables can be loaded with the ”Load all” button. This
loads all probabilistic information contained in a given mat-file. Analogously,
the ”Save all” button saves all probabilistic information in a mat-file.
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Figure 13: The initial variable selection window.
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Figure 14 shows the state of the window after the loading the mat-file. Note,
that the list of variables are enabled and filled in, and the full name, unit,
type and initial value fields are also filled in with the first variable’s data.

Figure 14: The filled in variable selection window.
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Variables can be selected from the drop-down list, as illustrated on Figure
15.

Figure 15: Variable selection.

After changing the current variable the fields are refreshed automatically
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according to the new selection. If the variable is determined by other variables
then the ”equation variable info” panel shows the file and the line number
where its equation is at. The reference textbox may contain any reference to
the origin of the formula.

Figure 16: The ”Equation variable info” panel.

The ”View File” button opens the Matlab source file and highlights its corre-
sponding line(s) where the current variable is determined. See Figure 17 for
an example.

Figure 17: The mat-file viewer window.

Samples can be assigned to the variable by the ”Add samples” and the ”Re-
place samples” buttons. When assigned these sample points are showed in
the bottom part of the window. It is possible to have multiple graphs illus-
trating variable information, for example a histogram of the sample points
(Figure 18).
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Figure 18: The diagram panel with a histogram.

The random behaviour of each variable is modeled by assigning a specific type
of uncertainty to them. The current variable’s uncertainty type is shown and
can be modified with a drop-down list (Figure 19).
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Figure 19: Selecting the type of the current variable.
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7.1.2 The probabilistic information panels

After selecting a variable in the main window (or after creating a new one), a
child window opens. Here the user can specify various probabilistic statistics
values of the currently selected variable. This window is divided into several
probabilistic information panels, each responsible for a specific property. The
number and kind of the panels are determined by the uncertainty type of the
current variable.

Figure 20: The window of the probabilistic information panels.
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In the case when the current variable has a normal distribution, its standard
deviation can be set via the panels seen on Figures 21 and 22. The standard
deviation can either be set as a nominal value or relative to the variable’s
mean. This is determined by the type of uncertainty of the current vari-
able. If it is ”normal additive”, then the nominal value, if it is ”lognormal
multiplicative”, then its value relative to the mean can be set.

Figure 21: Panel for setting the nominal value of the standard deviation.

Figure 22: Panel for setting the standard deviation relative to the mean.

If the current variable has a uniform additive or a bound additive distribution,
then the user can set its maximal deviation (nominally), using the panel
shown on Figure 23.

Figure 23: Panel for setting the nominal value of the maximal deviation.

If the current variable has a uniform multiplicative or a bound multiplicative
distribution, then the user can set its maximal deviation (in relation to the
mean), using the panel on Figure 23.
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Figure 24: Panel for setting the maximal deviation relative to the mean.

The panel for setting a bounding interval for the current variable (see Figure
25) is enabled for all types of uncertainties. Using this panel, one can set
the extremal values for the current variable. For example, in case the current
variable is wind speed in km/h, the minimum value shall be set to 0. It is not
necessary to fill in both fields, if one is left empty it is considered unknown.

Figure 25: Panel for the setting the bounding interval.

For variables with normal or lognormal distribution, their expected value or
mean is one of the most informative property. However, the expected value
of a random variable may not be known exactly. This is reason why its
corresponding panel (Figure 26) contains two fields. This way, the user can
specify an interval in which a real (but unknown) mean belongs.

Figure 26: Panel for setting the expected value.

In many cases correlations between variables is easy to assess. Especially in
the two extremal cases, when a variable completely determines the value of
another one, or when two variables are fully linear independent. Apart from
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these cases, it is usually easy to predict at least whether two variables are pos-
itively correlated or not. The purpose of the correlations and independence
panels (see Figures 27 and 28) is to assess this information. The information
contained in these panels are symmetrical. For example, if variable A is set
to be independent of variable B, then this means that B is also independent
of A, and this information appears automatically in the panel of variable B,
too. This mechanism also applies to the correlation panels too.

Correlations can be specified as a subinterval of [−1, 1]. The set of indepen-
dent variables of the current variable is represented as a list. This list can be
modified in two ways. The ”Add” button adds the selected variable to the
list of independent ones, and the ”Remove” button deletes the highlighted
element from the list.

Figure 27: Panel for setting the correlations.

Figure 28: Panel for setting the property of independency.

Additional remarks on the uncertainty of the current variable can be given
in the panel shown on Figure 29. For example, if the uncertainty categories
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in the panels don’t apply, the user can specify here what is known instead,
e.g. giving two interval estimates by two different experts. This information
is retrieved manually to improve the elicitation interface in later versions,
adapting it to the knowladge actually available.

Figure 29: Panel for setting additional remarks.

Table 1 summarizes the corresponding panels for each type of uncertainty.
The assignment of the panels is stored in a table, which can simply be mod-
ified or augmented, according to demands.

7.1.3 The output of the uncertainty elicitation interface

The purpose of the interactive uncertainty elicitation interface is to provide
the assessed uncertainty information in a structured form for further elabora-
tion. This structure is then the input for example of an optimization software
which concerns also the random nature of the variables.

The output is actually a Matlab one dimensional cell array. Each element
of this cell array contains information on one variable. Each element is a
structure with the following fields.
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field description

name short name

fullname long name

isequation true, if the variable is determined

by an equation in some file

infile the file name where the variable occurs

linenumber the position of the variable in the file

unit the unit of the variable

description short description of the variable

type the uncertainty type of the variable.

reference any reference to the meaning of the variable

samples sample points assigned to the variable

typeproperties is a structure with the following fields

minvalue lower bound for the possible values

maxvalue upper bound for the possible values

mincorrelation vector of lower bounds for the

linear correlations with other variables

maxcorrelation vector of upper bounds for the

linear correlation with other variables

qualitativestatement optional verbal description

of the uncertainty of the variable

independence list of variables which are

independent from the current one

deviation the standard / maximum deviation

of the normal distribution measured in units

deviationpercent the standard / maximum deviation

in percentages of the nominal value

expectvaluemin lower bound for the expected value

expectvaluemax upper bound for the expected value
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• normal additive

1. LevelStdDev

2. BoundingBox

3. ExpectedValue

4. Correlations

5. Independency

6. Qualitative

• uniform additive

1. LevelMaxDev

2. BoundingBox

3. Correlations

4. Independency

5. Qualitative

• bound additive

1. LevelMaxDev

2. BoundingBox

3. Correlations

4. Independency

5. Qualitative

• irregular

1. BoundingBox

2. Correlations

3. Independency

4. Qualitative

• lognormal multiplicative

1. LevelStdDevPercent

2. BoundingBox

3. ExpectedValue

4. Correlations

5. Independency

6. Qualitative

• uniform multiplicative

1. LevelMaxDevPercent

2. BoundingBox

3. Correlations

4. Independency

5. Qualitative

• bound multiplicative

1. LevelMaxDevPercent

2. BoundingBox

3. Correlations

4. Independency

5. Qualitative

• unknown

1. BoundingBox

2. Correlations

3. Independency

4. Qualitative

Table 1: Summary of the available panels for each type of uncertainty.
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8 The cloud demonstration applet

A cloud demonstration applet is available online at

http://www.inf.u-szeged.hu/~banhelyi/CloudDemonstrationApplet/

a screenshot of the applet (in the initial state) is shown on Figure 30.

The applet visualizes the following optimization problem. Suppose there are
two external variables u and v. Every pair (u, v) represents an event. These
are external in the sense that their values are determined independently of
the posed problem. Usually these values are not known, thus we consider
them to be random. There are 100 sample points of these, which are illus-
trated on the left figure in the applet by blue dots. In reality these sample
points originate from observations. For example u and v may be the tem-
perature and humidity of air. For demonstrational purposes these sample
points are randomly generated and the user can choose among three sample
distributions:

1. independent normal – u and v are independent and have normal dis-
tribution

2. uniform – u and v, when both have uniform distribution

3. dependent normal – u and v are correlated and have a bimodal joint
distribution

Also on the left figure, a level cut of the calculated cloud is shown by two
red curves. The actual level cut can be set with the ”safe” slider. The cloud
is determined by the sample, according to the algorithm described above. In
all cases a level cut of the cloud is given by two ellipses, since a quadratic
potential function is fitted on the sample. Events outside the outer red curve
are considered to be rare. These events have less probability than what is
set by the ”safe” threshold with the confidence value of ”confidence level”.
Events inside the inner curve are considered to be frequent.

On the right figure, the design variables x and y are shown. These are
internal, design variables in the sense, that their values can be altered. We
also consider a technical constraint g(u, v, x, y) ≤ 0, which depends only on

60



the external variables u and v, and the design variables x and y. In our case
it is a fixed inequality:

g(u, v, x, y) = ux2 + vy2 − 30 ≤ 0.

This technical constraint represents the relationship between the external
and the design variables.

Figure 30: A screenshot of the cloud demonstration applet with default set-
tings.
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The dark gray region on the right figure is the set of all (x, y) points not
fulfilling the technical constraint g(u, v, x, y) < 0. Moreover, the design vari-
ables x and y can be further restricted by ”design constraints”. This can
also be chosen by the user, and it is represented by an orange curve on the
right. The optimization is done under these constraints regarding the ob-
jective function set by the user. The optimum value is attained at a point
shown by a black circle. The value of the objective function in the found
optimizer point is also shown at the bottom of the figure.

Figures 31-35 show the applet with various settings. On each figure only
one parameter is changed. Figures 31 and 32 show the effect of different
sample distributions. Figure 33 illustrates the change in the level cut (and
also the feasible set) caused by setting ”Safe”. Figure 34 shows how the target
function affects the optimal place and value. Also, see Figure 35 for the effect
of design constraints.
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(a)

Figure 31: Screenshot of the applet with dependent normal sample points.
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(a)

Figure 32: Screenshot of the applet with uniform sample points.
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(a)

(b)

Figure 33: Screenshots of the applet with independent normal samples and
different ”Safe” values.
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(a)

(b)

Figure 34: Screenshots of the applet with independent normal samples and
different target functions.
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(a)

(b)

Figure 35: Screenshots of the applet with independent normal samples and
different design constraints.
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8.1 A real life example

ESA has provided a real problem, from the area of satellite design. The
problem has four variables, two (the temperature of the antenna and the path
length) are external and cannot be conttrolled, two are internal and refer to
design parameters of a satellite. Furthermore, there are three constants which
affect the constraints and the objective function. The input parameters are
shown in Table 2, and the following Java code provides the target function.
There is also a constraint just specifying an upper bound on the objective
function; it has no effect on the optimization.

parameter meaning [unit] interval

x = R data rate, [bps] from 2.5e3 to 10e6

y = SAD space antenna diameter, [m] from 0.2 to 2

u = Ts space antenna temperature, [K] from 250 to 1000

v = S path length, [m] from 300e6 to 300e9

Table 2: External variables and design variables of a real life optimization
problem

static double TargetFunction(double u, double v,

double x, double y,

int band,

int modulation,

double elev) {

double k=1.380e-23; //Boltzmann constant

double eta_S=0.55; //spacecraft antenna efficiency

double eta_G=0.65; //ground antenna efficiency

double Ll=-0.5; //[dB] -1 if not cooled receiver,

// -0.5 if cooled receiver

double c=3e8; //[m/s] light speed

double[] freq={2e9,8e9,37e9}; //[Hz]

double[] ebn0_mod={9.6,10.3,9.6,13.3,9.2,4.4,

2.7,4.0,9.6,13.8}; //[dB]

double f=freq[band];

double GSD=5; // [m]

double ebn0=ebn0_mod[modulation]+2; //margin
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// Elevation angle

double Gt=20.0*Math.log10(Math.PI)+20*Math.log10(y)

+20*Math.log10(f)+10*Math.log10(eta_S)

-20*Math.log10(c)-12*0.84*0.84;

// Antenna pointing offset 84% beamwidth

double Gr=20.0*Math.log10(Math.PI)+20*Math.log10(GSD)

+20*Math.log10(f)+10*Math.log10(eta_G)

-20*Math.log10(c)-12*0.1*0.1;

// Antenna pointing offset 10% beamwidth

double Ls=20.0*Math.log10(c)-20.0*Math.log10(4*Math.PI)

-20.0*Math.log10(v)-20.0*Math.log10(f);

double[] coeff_La={4.657e-7,-1.304e-5,2.556e-4,7.979e-4,0.041};

double La_temp=(((coeff_La[0]*f*1e-9+coeff_La[1])*f*1e-9

+coeff_La[2])*f*1e-9+coeff_La[3])*f*1e-9

+coeff_La[4];

double La=-La_temp/Math.sin(elev*Math.PI/180)-1.3;

double pow_dB=ebn0+10*Math.log10(k)+10*Math.log10(u)

+10*Math.log10(x)-Ll-Ls-La-Gt-Gr;

double pow_TTC=Math.pow(10,(pow_dB/10)); //[watt]

return pow_TTC;

}

Although the solution of the optimization problem is not too time–consuming,
its visualization takes usually much more resources. The reason for this is
that a lot of cases have to be calculated separately in order to get a fine
image of the set of feasibility. This is the reason why a Java applet could not
visualize this problem quickly, in real time.

The above simple demonstration problem could do this demonstration in real
time since the objective function there involved just a few operations. The
present antenna design problem has a much larger computational complexity.
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On the top of that, we have found that the original set problem has almost
exclusively feasible points in the given variable rangess. Once we decrease
the allowed level of the objective function, we can find the level sets to be
line segments.

The total computational time for the 256 x 256 points is about half an hour
on our standard strength PC; but the acceptable amount of waiting time
should be under 10 seconds. To decide whether a point on the right window
is feasible requires the calculation with all the points of the left window.
Monotonicity could possibly give a kind of remedy, but it is not clear at
present to which extent it can be automatically exploited.

A possible way out could be to decrease the resolution from the present 125
x 125 to a lower level – although the total computation time can only be
decreased proportionally with the number of illustration points. Additional
constraints could also help, since they can be utilized to reduce the amount
of computational burden.

9 Optimization problem formulation

According to our understanding, the problem can be naturally posed as a
particular case of the following general form:

min
θ

max
x,z,ε

f(x) (objective functions)

s.t. z = Z(θ) + Dε (table constraints)

F (x, z) = Eε (functional constraints)

V (ε) ≤ Vα (cloud constraint)

θ ∈ C (selection constraints)

(1)

Here z is the vector consisting of all global input variables and all design
variables, x is the vector consisting of all output variables (including inter-
mediate outputs if they have an associated uncertainty), θ is the vector of
choice variables (with one variable for each independent table of choices),
and ε is the vector of uncertainties. Uncertain global inputs are treated as
design variables with a single choice only.

The table constraints assign to each choice θ a design vector z whose value
is the nominal table entry Z(θ) plus its (unknown) error Dε with specified
uncertainty.
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The functional constraints express the functional relationships defined in the
Matlab functions. It is assumed that the number of equations and the number
of output variables is the same (i.e., dimF = dim x), and that the equations
are (at least locally) uniquely solvable for x. This is likely to be the case,
and was confirmed for the model problem in some scenarios, cf. Section 11.

The cloud constraint expresses the knowledge about the uncertainty in the
form of a confocal cloud, with a potential to be derived from the uncertainty
specification. At present, all uncertainties are deterministic intervals, so that
the cloud is box-shaped.

The selection constraints specify how many choices are allowed for each choice
variable, and the range for the variables with continuous choices (at present
only the slim factor).

9.1 Difficulties

• The problem structure is – apart from the dimension – already in the
form without uncertainty as difficult as the most complex problem cat-
egory. It is a fullblown mixed integer nonlinear program (MINLP),
with multiple (two) objectives and internal branching, which cannot
be handled directly with standard optimization software. MINLP is
still a recent research direction which has not yet matured.

• In addition, there is the bilevel structure imposed by the uncertainties,
which is already a nontrivial complication in the traditional situation
where all variables are continuous. The current methods for handling
such problems require at least that the objective and the functional
constraints are continuously differentiable.

• This lack of C1 structure of the problem without uncertainty makes the
bilevel problem significantly more difficult than the smooth problems
we have experience with. To use current optimization technology for
bilevel problems, the partially discrete nature of the current problem
would have to be eliminated in one way or another.

• The uncertainty structure may become slightly more complex as addi-
tional uncertainty information becomes known.

• In view of these difficulties, which seem central to a good attack on
the problem, we decided to simplify the problem in another compli-
cating aspect; We restrict our discussions to the single objective case,
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using some form of aggregation or constraints to reduce the multiple
objectives (mass_tot and pow_tot) to a single objective. The initial
objective suggested by ESA is to minimize the total mass mass_tot

with respect to the input variables (the mission requirements).

10 Optimization

Now we discuss how to solve the optimization problem stated in Section 9.
On the one hand we will cope with the full bilevel problem (1), on the other
hand – as to the difficulties concerning the bilevel structure mentioned in 9.1
– we investigate the simplified problem:

min
θ

f(x)

s.t. z = Z(θ)

F (x, z) = 0

θ ∈ C

(2)

with the uncertain global input variables fixed in the middle of their given
boxes.

Problem (1) will be denoted by OUU (Optimization Under Uncertainty) and
problem (2) by OWU (Optimization Without Uncertainty).

10.1 Symbolic solvers

10.1.1 Without Uncertainty

After the conversion to LINGO (cf. Section 5.3) we have been trying to make
the solver find the optimal solution of problem (2) for the objective function
total mass m_tot, but experienced problems even to find a feasible solution
for the model.

It is all but obvious what causes the infeasibility. We started to examine the
LINGO solver and some other solvers and concluded that the solvers them-
selves, at least LINGO, seem to work properly. We checked the converters
and fixed some problems that are mentioned in Section 5.3 (like box dec-
laration): the converters should not create any errors now. We have found
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several mistakes in the generation of the AMPL model file, but the current
version does not appear to differ from the original Matlab model anymore (it
was finally checked line by line). Therefore we went back to the subsystems
and tried to check them for possible errors (we found some and corrected
them, cf. Section 3.1).

The reason why the solver is still unable to find a feasible solution is proba-
bly the translation of if-structures into explicit expressions (cf. Section 4.2)
because doing so requires every branch of the structure to be evaluable in
any case. LINGO – unlike AMPL – does have support for if-structures, so
a direct DAG to LINGO conversion should be helpful with respect to this
problem. A Matlab if-parser would be needed for that conversion. Due to
lack of time, this was not yet implemented.

10.1.2 With Uncertainty: Sensitivity approximation in the smooth
case

For convex optimization, robust optimization is a well-developed subject;
see, e.g. [5]. In the nonconvex case or when discrete structures are present,
virtually nothing has been done.

For attacking the bilevel problem we devised the following plan.

For a design optimization problem with smooth (at least continuously dif-
ferentiable) functional constraints and no logical constraints, we shall ap-
proximate the bilevel problem by a related ordinary optimization problem,
using methods from sensitivity analysis. This solves the bilevel problem up
to higher order terms in the uncertainties, and hence is appropriate provided
the latter are reasonably small.

In our case, the cloud is presently box-shaped, so that the potential can
be taken (after proper scaling) as the maximum norm, V (ε) = ‖ε‖. For a
problem given in the form (1), we may then proceed as follows:

For a fixed choice θ, we consider the problem

f̂(θ, α) := max
x,z,ε

f(x)

s.t. z = Z(θ) + Dε,

F (x, z) = Eε,

‖ε‖ ≤ Vα

(3)
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Let the solution of the functional constraints be x = x(z, ε), and write ẑ =
Z(θ), x̂ = x(ẑ, 0). Then the problem (3) is to maximize

f̂(ε) = f(x(ẑ + Dε, ε), ẑ + Dε)

= f(x̂ + xzDε + xεε, ẑ + Dε) + O(ε2)

= f(x̂, ẑ) + [fx(x̂, ẑ)(xzD + xε) + fz(x̂, ẑ)D]ε + O(ε2),

with index notation for partial derivatives. Because of the simple form of the
potential, the worst case is given by

f̂(θ, α) = f(x̂, ẑ) + Vα‖fx(x̂, ẑ)(xzD + xε) + fz(x̂, ẑ)D‖∗ + O(ε2),

where ‖ · ‖∗ denotes the dual norm, in our case the row sum norm. To get
the required partial derivatives of x, we differentiate the functional constraint
with respect to z and ε and obtain

Fxxz + Fz = 0, Fxxε = E.

Assuming that Fx (which under our assumptions is a square matrix) is non-
singular, we find

xz = −F−1
x Fz, xε = F−1

x E,

hence
fx(xzD + xε) = fxF

−1
x (E − FzD).

Introducing the multiplier yT := fxF
−1
x and neglecting the higher order term,

we find (upon deleting the carets) that the original bilevel problem approxi-
mately reduces to solving the ordinary nonlinear program

min
θ,x,z

f(x̂, ẑ) + Vα‖yT (E − FzD). +z D‖∗

s.t. z = Z(θ)

F (x, z) = 0

Fx(x, z)T y = fx(x, z)T

(4)

Essentially, this problem can be solved by any program that is able to solve
the original problem without uncertainties. (In our case, this still is a mixed
integer nonlinear program of considerable difficulty, but the bilevel structure
disappeared.)

The robustness of the solution of (4) found, considered as an approximate
solution of (3), can be checked independently by a rigorous interval analysis
(again assuming smoothness), as described in the material in [3] referred to
in our proposal.
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To which extent the same approximations will work in the absence of smooth-
ness (with partial derivatives replaced by subgradients), is an issue that will
have to be investigated.

As the symbolic solver does not yet provide useful results without uncertainty
exclusive of additional focus on improving the converter methods and model
generation we did not implement the case with uncertainty.

10.2 Heuristic approach

In view of the difficulties mentioned we approach the solution of (1) and (2)
by means of heuristics. For this purpose one only needs the modifications
specified in Section 4.1. In Section 3 the recursive structure within the subsys-
tems is mentioned which leads to a fixed point problem G(x, θ, ε) = x (where
x is the vector containing the three recursive variables m_tot, pow_prop and
pow_ther, all choice variables and global inputs fixed, i.e. fixed choice θ and
scenario with deviation ε).

An evaluation of G(x, θ, ε) amounts to running once the following Matlab
code:

[mass_DH,pow_DH,cost_DH,aff_DH]=...

DH_ss_preprocessed(data_tot,punt_mem,punt_mem_mass,...

punt_mem_pow)

[beam,mass_TTC,pow_TTC,cost_TTC,aff_TTC]=...

TTC_ss_preprocessed(punt_f,punt_D,punt_Eb,elev,S,GSD,DR)

[diam_SA,P_SA,A_SA,T_SA,mass_SA,cost_SA,aff_SA,capacita,...

volume_batt,mass_batt,cost_batt,aff_batt,pow_tot,...

mass_pow,cost_pow,aff_pow]=...

pow_ss_preprocessed(punt_eta,punt_alfa,punt_ro,punt_d,...

punt_spec,punt_eff,punt_dens,max_sun_dist,min_sun_dist,...

Tecl,teta0,Tday,y,cicli,body_mount_SA,primary,...

target_planet,punt_h_vs_r,powzero,pow_TTC,pow_DH,...

pow_aocs,pow_prop,pow_ther)

[diam,S_Thickness,height,area_tot,mass_str,cost_str,aff_str]=...

str_ss_preprocessed(punt_El,punt_rho,punt_ult_str,...

punt_h_vs_r,punt_yie_str,m_tot,diam_SA,body_mount_SA,...

ax_g,lat_g,ax_freq,lat_freq)
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[H_planet,Gs_hot_2,H_min_IR]=...

target_planet_func2_preprocessed(target_planet,...

H_terra,H_target)

[rad_area,mass_ther,pow_ther,c_ther,a_ther]=...

thermal_ss_preprocessed(Tup,Tdown,target_planet,...

min_sun_dist,max_sun_dist,punt_alfa_sup,punt_eps_sup,...

area_tot,A_SA,P_SA,dens_dep_rad,Tecl,body_mount_SA,...

m_tot,H_planet,Gs_hot_2,H_min_IR)

[m_fuel,m_tot_prop,mass_prop,pow_prop,N_prop,cost_prop,...

aff_prop,cost_tot,aff_tot]=...

prop_ss_preprocessed(deltaV,T_PP,punt_I,punt_m_eng,...

punt_P_eng,punt_T_eng,mzero,mass_TTC,mass_DH,...

mass_aocs,mass_pow,mass_ther,mass_str)

[mass_harness,m_tot,m_tot_mb]=...

mass_budget_preprocessed(mzero,mass_TTC,mass_pow,...

mass_prop,mass_str,mass_DH,mass_aocs,mass_ther,m_fuel,...

count)

The preprocessed files and the function target_planet_func2 are used with
the general modification in Section 4.1. The recursive variables are those
intermediate results variables (cf. Section 3) which occur as input before
they are calculated: m_tot, pow_prop and pow_ther. (As mentioned before,
it depends on the sequence of the subsystem function calls which variables
are recursive.)

In the following we write G(x) = G(x, θ, ε) if θ and ε are fixed. Then the
wanted solution is a fixed point of G, i.e., the equation G(x) = x must hold.

We implemented three methods to solve the fixed point problem.

1. Iteration

2. Zero finding

3. Global residual nonzero minimizing

The first one is simple fixed point iteration, (as apparently in the Manager,
provided by ESA). This produces a sequence of points xk+1 = G(xk); if it con-
verges to x then x is a fixed point. For our second method, we reformulated
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the problem to a zero finding problem F(x) = 0 with F(x) = G(x)−x, that
is solved by the program nleq.m (cf. [7]). As a third method we minimize
‖G(x) − x‖ with the global optimization program MCS (cf. [8]).

Iteration NLEQ MCS

average time for solving one
fixed point problem / s

0.4 0.5 1.8

converging on an average of
/ %

50 60 60

The iteration method is the fastest one, but fails converging in too many
cases. The convergence of the two other methods with nleq and MCS re-
spectively is far better and their results match each other. The performance
of nleq is not much slower than the iteration, while MCS is more robust, but
takes significantly more time to solve the fixed point problem and requires
input boxes for the range of the recursive variables. So we choose nleq to
solve the fixed point problem.

An evaluation of the problem corresponds to obtaining a value for the ob-
jective function f (cf. f in (2) → OWU, max f in (1) → OUU, in our case
f = m tot) for a fixed θ, satisfying the functional constraints.

In OUU the objective function is max f among all possible scenarios for the
input variables, so we obtain a value of the objective function for a fixed
θ by finding the worst case for m_tot in the region defined by the cloud
constraints (in our case boxes for each uncertain input variable as the cloud
is box shaped).

An evaluation of the problem for a fixed choice in OWU means solving the
fixed point problem; in OUU it is the result of the corner search which is
explained below.

To find the worst case we do a corner search: A corner is a point in R
24

(since we have 24 uncertain global inputs) where each variable takes the
maximum or minimum value of the associated uncertainty interval. The
corner search starts with solving the fixed point problem for the scenario of
all uncertain variables fixed at the maximum of their uncertainty intervals.
Then we start with the first variable and change the scenario by taking the
opposite end of the uncertainty interval for this variable, and we solve the
fixed point problem for this new corner scenario. We go on varying corners
in the same manner for each variable. If a corner worse than the starting
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corner (i.e. a higher value of the objective m_tot) is found, this corner will
be taken as starting point for the further search. Each coordinate will be
varied this way at most once and the corner search returns the maximum
value for m_tot found. If no solution was found for some scenario during the
search, the worst case for m_tot is set NaN (not a number) and the corner
search ends returning NaN. The corner search thus requires solving (at most)
24 fixed point problems, since there are 24 uncertain variables. To be sure
to find the correct worst case by corner search one has to assume monotony
for m_tot within the boxes (cf. Section 12). Steep peaks (not yet observed)
or any hidden constraints (observed, cf. Section 12) decrease the reliability
of the corner search, but cannot be handled properly with heuristics anyway.

For a given θ the algorithm (simplified) for the corner search looks like:

function m_tot=cornersearch(θ)

Let ui ∈ [ui, ui], i=1,...,24, be the uncertain variables in the

uncertainty intervals.

Let x1=[m_tot,pow_prop,pow_ther] be the vector containing the

recursive variables.

Solve G(x1)=x1 for fixed u1= (u1, u2, ..., u24)

for i=1:24

u2=u1;

u2i = ui; % opposite end of the uncertainty interval

Solve G(x2)=x2 for the new u2

if infeasible

return NaN;

end

if x2(1)>x1(1) % m_tot worse

u1=u2;x1=x2; % new worst case saved

end

end

return x1(1);
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For one corner search time

average 3.9 sec

fastest 0.5 sec

slowest 11.0 sec

As a simple check of our assumptions at the end of each corner search the fixed
point problem for the opposite corner (i.e. the opposite end of uncertainty
interval in each variable is taken) is solved and should yield a smaller or equal
value for m_tot than the corner search.

We regard a choice as infeasible if the evaluation of the problem for this
choice does not provide a real-valued, nonnegative solution (strictly speaking
we cannot guarantee the infeasibility because nleq.m cannot guarantee con-
vergence in any case where a solution exists). A choice is considered feasible
if the evaluation does provide such a solution.

Now we need a strategy to sample choices and heuristically finding an optimal
choice.

10.2.1 DAKOTA and other software packages

At first we tested DAKOTA (cf. [9]). DAKOTA takes the evaluation de-
scribed above as a black box and creates a surrogate model by sampling.
It should be able to optimize the surrogate model and later on to solve the
whole OUU problem replacing the corner search. Unfortunately after de-
tailed studies on the program functionalities it turned out DAKOTA wasn’t
even able to solve simple MINLPs as some public license subroutines were
not working and a substitution by appropriate commercial subroutines was
not available.

Moreover, we spent some time on further software experiments with nomadm

(cf. [10]) and condor (cf. [11]) that failed because of problems with software
libraries, path problems and gui problems.

10.2.2 SNOBFIT-based heuristics

Finally we based a sampling strategy on SNOBFIT (cf. [12]). Similar to
DAKOTA we take our evaluation of the problem as a black box function
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that provides values of m_tot for given choices. For a given set of starting
points and function values SNOBFIT fits a quadratic model, minimizes this
and suggests new sample points to be evaluated to improve the model. The
number of the suggested points, boxes and mesh size for the suggested points
can be adjusted. The integrality of the choice variables is ignored by SNOB-
FIT, the integer choice variables are simply initialized on a grid with mesh
size 1 and the suggested points are those points on the grid nearest to the
points in R

10 (10 choice variables) that SNOBFIT has requested. Suggested
points are classified by SNOBFIT into 5 types: type 1 best prediction, type
2 putative local minimizer, type 3 alternative good point, type 4 to explore
the empty region, type 5 to fill up the required number of function values if
too little points of the other classes are found. We proceed as follows:

To prepare the subsystem model for the quadratic fit we first permute the
tables for the choice variables manually to achieve an order as smooth as
possible for each of them.
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Figure 36: For each multidimensional table for the choice variables the value
of the ith table entry is plotted against i. It looks very rough, and is unsuit-
able for local quadratic models as used by SNOBFIT.
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Figure 37: Four permuted plots of the first table as an example, the per-
mutations result from sorting one of the four coordinates of the table by in-
creasing values: first punt_I, second punt_m_eng, third punt_T_eng, fourth
punt_P_eng. We decided to use the third permutation, which is visually the
least rough one.

Then we create 20 independent sets of 80 starting points (randomized space-
filling design suggested by SNOBFIT run without input) and evaluate them;
about 17% of the starting points were found feasible. For each set of starting
points we do an independent search for the global optimum.

The search starts with SNOBFIT which suggests 5 points from the starting
points model. We evaluate them and afterwards take a point of type 1 (if
it exists) and a point of type 4 or 5 (if it exists) to start a line search (see
the next paragraph) from both 2 points to find a local minimum. The line
search from the point of type 1 leads to a local minimum close to the best
prediction of SNOBFIT, the line search from the type 4 or 5 point is involved
to find further local minima to achieve a more global search. All evaluations
during the line search will be input for the next SNOBFIT calculation which
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provides the current optimal solution, again requesting 5 points to evaluate,
and we continue in the same manner. If SNOBFIT provides the same optimal
solution 5 times in a row this solution is returned and the search ends. The
fivefold confirmation of the optimum has been found necessary to make the
heuristics reliable.

For the line search all choice variables but one are fixed, this one is varied
through all possible choices or varied by MCS in the case of continuous choice
variables (slimfactor). The minimal choice is stored and another variable
will be varied, all intermediate functions values are saved for the SNOBFIT
search. The line search ends if it identifies the choice to be varied as one that
has already been stored within the intermediate data of the SNOBFIT search
because in this case the line search will fall into the same local minimum as
before and will not provide any new problem evaluations. The line search
serves the purpose to accelerate the convergence of the whole SNOBFIT
search by approx. factor 5, as SNOBFIT lacks integer implementation and
is thus not efficient at finding local minima.

To improve the reliability of the optimum we do this search independently
with the 20 sets of starting points.

For one search with SNOBFIT time

OWU average 0:40:38 hours

fastest 0:33:49 hours

slowest 0:49:26 hours

OUU average 6:23:29 hours

fastest 3:28:56 hours

slowest 11:57:49 hours

10.2.3 Matlab programs

The central Matlab programs for the heuristic algorithms are the following.

To generate the 20 sets of starting points we use a Matlab script gensfinput.m.
The 20 sets are stored in the mat-files sfinput_1.mat to sfinput_20.mat.

We then do the 20 SNOBFIT runs
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for i=1:20

tic

[request,xbest,fbest,fbestv]=...

snobfitbb(’sf’,[’sfinput_’ num2str(i)]);

t=toc;

save([’fbestv_’ num2str(i)],’fbestv’,’t’);

end;

The program

function [request,xbest,fbest,fbestv]=snobfitbb(filename,sfinput)

takes as inputs the file name of the workspace file required by SNOBFIT
and the name of the file containing the starting points. The outputs are the
last request of SNOBFIT, the optimal choice found, the function value at
the optimum and a vector fbestv with the optimal function value after each
iteration of the search. The results are stored in the mat-files sf_ver1.mat

to sf_ver20.mat.

We save fbestv and the time separately for the performance analysis.

11 Results

The first set of initial values, provided by ESA (initial_values.xls) has
lead to no results. We traced back the possible error to TTC_ss where the
variable pow_ttc gets the order of magnitude 109 W during the calculation of
mass_ttc, it results in mass_ttc to be about 1024 kg. Thus no fixed point
could be found.
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So only the second set of initial values provided (initial_values_xeus.xls)
was used. The certain input values were:

variable initial value

a_ther 0

aff_DH 0

aff_TTC 0

aff_batt 0

aff_pow 0

aff_prop 0

aff_str 0

aff_tot 0

body_mount_SA 1

c_ther 0

cost_DH 0

cost_SA 0

cost_TTC 0

cost_batt 0

cost_pow 0

cost_prop 0

cost_str 0

cost_tot 0

count 1

elev 90

mass_aocs 0

pow_aocs 0

primary 0

target_planet 3
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The 20 runs of SNOBFIT resulted in the following objective function values,
giving an indication of the relative efficiency of the starting phase (space-
filling design) and the optimization.

SNOBFIT run # m_tot (starting point) m_tot (best)

1 1849.0879 1730.6923

2 1790.1089 1732.7921

3 1790.6906 1731.7220

4 1846.9259 1734.7001

5 1839.7273 1744.5038

6 1851.4180 1731.2303

7 1875.4363 1734.5897

8 1810.0846 1732.4699

9 1829.1427 1736.1494

10 1778.7890 1733.9263

11 1775.2053 1773.0134

12 1837.6448 1739.3202

13 1775.5364 1736.1511

14 1854.6080 1730.6923

15 1775.2645 1730.6923

16 1845.6264 1732.0388

17 1750.1638 1732.4699

18 1801.9826 1734.6118

19 1867.5913 1732.4699

20 1864.5641 1732.4699
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Figure 38 shows the convergence behavior of SNOBFIT after the first itera-
tion, for a few of the runs.
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Figure 38: Progress by number of iterations in 5 different SNOBFIT searches.
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The following two tables show the optimal choice found with OUU, and two
corresponding scenarios, the scenario with the nominal values of the uncertain
parameters and the scenario determined by the corner search, in which, for
this choice, the worst case was attained.

variable optimal robust choice

punt_I 328

punt_m_eng 6

punt_T_eng 530

punt_P_eng 0

punt_eta 0.2500

punt_d 1

punt_ro 3.1400

punt_alfa 0.9200

punt_spec 50

punt_dens 69.3000

punt_eff 0.7000

punt_alfa_sup 0.7000

punt_eps_sup 0.1300

punt_f 32.3000

punt_D 0.2000

punt_Eb 2.7000

punt_El 290

punt_rho 1856

punt_ult_str 320

punt_yie_str 290

punt_mem 8

punt_mem_mass 2

punt_mem_pow 6

punt_h_vs_r 0.6125
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variable nominal value value for worst case

DR 22000 24200

GSD 15 14.25

H_target 1500000000 1575000000

H_terra 180000 189000

S 1500000000 1575000000

T_PP 10 11

Tday 15552000 16329600

Tdown 273.15 300.465

Tecl 0 0

Tup 313.15 344.465

ax_freq 15 15.75

ax_g 5 5.25

cicli 1 1.05

data_tot 0.33594 0.36953

deltaV 43 47.3

dens_dep_rad 2 2.2

lat_freq 10 10.5

lat_g 1.8 1.89

max_sun_dist 1.2 1.26

min_sun_dist 1 1.05

mzero 1188 1306.8

powzero 190 209

teta0 20 22

y 20 22
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The next table contains for this choice the corresponding solution evaluated
at the nominal scenario (i.e., without uncertainty), and at the scenario with
worst case uncertainty. In particular, we can see the effect on the objective
function.

variable without corner search worst case in OUU

m_tot 1.5661e+03 1.7307e+03

mass_DH 7.7000 7.7000

pow_DH 11 11

cost_DH 0 0

aff_DH 0 0

beam 3.2508 3.2508

mass_TTC 3.1449 3.2437

pow_TTC 2.1060 2.8300

cost_TTC 0 0

aff_TTC 0 0

diam_SA 2.0030 2.2401

P_SA 315.4116 346.0418

A_SA 3.2167 4.0234

T_SA 305.9935 297.6203

mass_SA 10.1005 12.6334

cost_SA 0 0

aff_SA 0 0

capacita 0 0

volume_batt 0 0

mass_batt 0 0

cost_batt 0 0

aff_batt 0 0

...
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variable without corner search worst case in OUU

pow_tot 223.4166 245.1129

mass_pow 12.1206 15.1601

cost_pow 0 0

aff_pow 0 0

diam 2.0030 2.2401

S_Thickness 7.4965e-04 8.1406e-04

height 0.6134 0.6860

area_tot 10.1622 12.7106

mass_str 12.8897 17.5073

cost_str 0 0

aff_str 0 0

H_planet 180000 189000

Gs_hot_2 1418 1418

H_min_IR 1.5000e+09 1.5750e+09

rad_area 12.9166 10.5030

mass_ther 62.6451 69.2277

pow_ther 0 0

c_ther 0 0

a_ther 0 0

m_fuel 19.5176 23.7112

m_tot_prop 1.6435e+03 1.8160e+03

mass_prop 2.3421 2.8453

pow_prop 0 0

N_prop 0 0

cost_prop 0 0

aff_prop 0 0

cost_tot 0 0

aff_tot 0 0

mass_harness 78.3064 86.5346

m_tot 1.5661e+03 1.7307e+03

m_tot_mb 1.5661e+03 1.7307e+03
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The columns of the next table show the best point found with OWU (worst
case found with corner search infeasible), another good point from OWU
(worst case feasible) and an example choice where no fixed point has been
found (only one for negative pow_ther):

variable OWU best OWU good no feasible
fixed point

m_tot 1.5660e+03 1.5757e+03

punt_I 328 315 280

punt_m_eng 6 4.8000 2

punt_T_eng 530 450 110

punt_P_eng 0 0 0

punt_eta 0.2500 0.2500 0.1400

punt_d 1 1 2.2700

punt_ro 3.1400 3.1400 2

punt_alfa 0.9200 0.9200 0.6500

punt_spec 30.1000 43.3900 42

punt_dens 84.1200 76.8900 61

punt_eff 0.7200 0.7000 0.7000

punt_alfa_sup 0.2300 0.3500 0.2600

punt_eps_sup 0.0300 0.8400 0.5800

punt_f 32.3000 30 8.5000

punt_D 0.2000 0.7000 0.7000

punt_Eb 2.7000 10.3000 9.6000

punt_El 290 290 110

punt_rho 1856 1856 4430

punt_ult_str 320 320 900

punt_yie_str 290 290 855

punt_mem 8 64 128

punt_mem_mass 2 3 3

punt_mem_pow 6 8 14

punt_h_vs_r 1.0589 5.6000 4.9614

...
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variable OWU best OWU good

mass_DH 7.7000 9.9000

pow_DH 11 13.2000

cost_DH 0 0

aff_DH 0 0

beam 3.2508 1

mass_TTC 3.1449 5.6005

pow_TTC 2.1060 1.1256

cost_TTC 0 0

aff_TTC 0 0

diam_SA 1.5234 0.6644

P_SA 315.4116 317.3057

A_SA 3.2167 3.2360

T_SA 305.9935 305.9935

mass_SA 10.1005 10.1611

cost_SA 0 0

aff_SA 0 0

capacita 0 0

volume_batt 0 0

mass_batt 0 0

cost_batt 0 0

aff_batt 0 0

pow_tot 223.4166 224.7582

mass_pow 12.1206 12.1933

cost_pow 0 0

aff_pow 0 0

diam 1.5234 0.6644

S_Thickness 7.4158e-04 8.5763e-04

height 0.8066 1.8604

area_tot 7.5054 4.5767

...

variable OWU best OWU good

mass_str 12.7509 14.8349

cost_str 0 0

aff_str 0 0

H_planet 180000 180000

Gs_hot_2 1418 1418

H_min_IR 1.5000e+09 1.5000e+09

rad_area 28.2001 0.9249

mass_ther 62.6380 63.0260

pow_ther 0 0

c_ther 0 0

a_ther 0 0

m_fuel 19.5154 20.4416

m_tot_prop 1.6433e+03 1.6534e+03

mass_prop 2.3418 2.4530

pow_prop 0 0

N_prop 0 0

cost_prop 0 0

aff_prop 0 0

cost_tot 0 0

aff_tot 0 0

mass_harness 78.2975 78.7825

m_tot 1.5660e+03 1.5757e+03

m_tot_mb 1.5660e+03 1.5757e+03
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Our next figure illustrates the difference of the results computed with and
without uncertainty.

Figure 39: Circles denote designs found in different runs by optimization
without uncertainty; crosses denote designs found by optimization with un-
certainty. The horizontal axis displays v1 = mtot(design, nominal), the verti-
cal axis v2 = maxuncertainty mtot(design, uncertainty); Because of the different
ranges of the coordinates, the points where v1 = v2 lie on the only slightly
slanted red line drawn.

We chose 20 good choices found by minimizing the objective m_tot without
taking uncertainty into account. For each of these choices we have the value
of m_tot when all uncertain variables are fixed in the middle of their boxes
v1, and additionally compute the worst case value v2 and mark the point
(v1, v2). We also chose 20 good choices found by OUU. For each of those
choices we again compute the value of m_tot with all uncertain variables
fixed in the middle of their boxes v1 and the worst case value v2 and mark
the point (v1, v2).
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By comparing with the red line, we see that for the robust solutions found
(crosses running almost parallel), the difference between the worst case and
the evaluation of m_tot with fixed uncertain variables appears to be almost
constant, reflecting the effect of the variations in the domain of uncertainty.

On the other hand, only two of the choices found without uncertainty meth-
ods (circles) are feasible under all admissible uncertainties; and in these two
cases, the worst case in the feasible range is much worse than that for the
robust solutions found.

Moreover, by comparing the values for v1 for crosses and circles, we see that
the best robust solutions (found by optimization under uncertainty) have at
the nominal point values m_tot which are competitive with those of the best
solutions computed without uncertainty.

We conclude that the quality of the optimal solutions does not dif-
fer significantly whether or not you take uncertainty into account,
while the robustness is drastically improved.

12 Robustness

In the heuristic approach, the corner search is the means to do a robustness
check. But as illustrated in Figure 40 the corner search may fail detecting
hidden constraints, so we investigate the optimal choice with MCS which in
contrast to the corner search also evaluates the interior of the boxes for the
uncertain variables.
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Figure 40: Unstable behavior at a choice displaying a jump discontinuity and
two hidden constraints. For each uncertain variable unci, i = 1...24 (scaled)
we fix all the other uncertain variables unck, k 6= i at the midpoint of their
boxes and plot m tot(unci).
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From the corner search, one can also get an approximation to the gradient
of m_tot with respect to the uncertain variables, which is exact in the limit
of a linear dependence.

global input variables partial derivatives
of m_tot

DR 3.6251e-05

GSD -0.12821

H_target 0

H_terra 0

S 1.2821e-09

T_PP 0

Tday 0

Tdown 0

Tecl 0

Tup 0

ax_freq 0

ax_g 1.416

cicli 0

data_tot 0

deltaV 0.61048

dens_dep_rad 0

lat_freq 0

lat_g 0.85064

max_sun_dist 66.8306

min_sun_dist 0

mzero 1.2886

powzero 0.19848

teta0 0.27904

y 0.43781
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Figure 41 shows that the approximate linear dependence is a reasonable as-
sumption in a typical robust case.
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Figure 41: The same information as in Figure 40, but for a robust choice.
Within the domain of uncertainty, the dependence on the uncertain param-
eters is essentially linear.

In the present application, the possible unreliability of the corner
search is therefore entirely due to the lack of continuity introduced
into the model by branching conditions whose consequences do not
match at the switch-over point.
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12.1 Consequences of assuming different probability

distributions

By now the uncertainty information provided has yielded α-cuts for α =
100% and a boxed shaped potential function. The consequences assuming
different probability distributions will be discussed in the following example:

The boxes for the uncertain variables are shrinked to 70% of the original
size and three different probability distributions are assumed. First we cut
off 15% from each corner of a box, second we cut off 30% from one random
corner of each box, third we cut off 30% from the opposite to the corner
that we took as second distribution. The corner search is adapted to the
new boxes and we evaluate our choices found with SNOBFIT for OWU and
OUU and additionally do 5 SNOBFIT searches assuming the first probability
distribution mentioned.

Figure 42: The same information as in Figure 39, but now the corner search
is adapted to the new boxes of the first probability distribution assumption.
Many OUU choices (crosses) are now infeasible.
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It is consistent with intuitive expectations that a) some of the OWU choices
that have been infeasible in OUU with the wider boxes now become feasible
for the smaller boxes and b) the 5 brandnew points are infeasible for the
original boxes.

It is on first sight counterintuitive and a matter of concern, however, that
some choices formerly claimed feasible in OUU (where only some corners of
the full box were inspected) are infeasible in OUU with the smaller boxes (cf.
Figure 42). This should not happen with problems in which the structure of
the model depends continuously on the uncertain parameters.

The infeasibility is caused by hidden constraints, cf. Figure 40, which inval-
idate the assumptions inherent in the corner search. The hidden constraints
possibly arise from requirements like mass ≥ 0: it has been observed that
those choices suddenly turning infeasible often lead to fixed points with neg-
ative pow_ther. Possibly, this points to unrealistic simplifications in the
models specified by by ESA.

In general, hidden constraints such as those shown in Figure 40
cannot be handled with heuristics:

Gaps in R
24 (24 uncertain variables) are hard to detect; already simple checks

such as the computations leading to Figure 40 are quite expensive, and they
explore by far not all possible uncertainty combinations in 24 dimensions.
Even our check with MCS, whose global search is significantly more robust
(and much more expensive than a corner search) cannot exclude them and
may mistakenly claim a not everywhere in the uncertainty domain feasible
solution to be feasible.

13 Conclusions and future directions

We studied symbolic and heuristic methods for handling uncertainty in space
system design.

Semiautomatic conversion tools to input for the current generation of global
solvers turned out not to be successful for the model problem under discus-
sion. One reason is the heavy use of branching structures in the programs
defining the model.

Heuristic techniques do handle those structures, but cannot cope with hidden
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constraints, cannot guarantee global optimality, feasibility and infeasibility
and lack a sophisticated integer implementation.

We were able to solve the robust optimization problem in case of interval
uncertainties. This approach works satisfactorily for the model problem,
ecxept for the presence of hidden constraints.

Solving the model problem with uncertainty revealed significant robustness
advantages of the approach using uncertainty, without significantly compro-
mising the quality of the solutions at the nominal (certain) values of the
parameters.

To improve the uncertainty treatment, more data are needed. The ques-
tionnaire gui is a tool to acquire these data, and turn it into quantitative
uncertainty descriptions by means of clouds.

It is recommended to continue both paths, heuristics and symbolic solvers,
to implement on the one hand better integer handling, on the other hand
better control-structures models.

To avoid hidden constraints, whose presence is the major difficulty in the
present heuristic approach, more care is needed in the formulation of the
models to be solved. In particular, it is essential to present the models in
such a way that all branches that result in discontinuities are avoided and
replaced by explicit choices which can be controlled via inputs in the respec-
tive programs (rather than via decisions made within them). We believe that
this can be done in each case by corresponding attention during the creation
of the models.
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