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Abstract—UNIRANDI is a stochastic type, direct search
method, where in each step a line search is started from the
current point along a good random direction. In this paper we
consider an improved version of this local search algorithm. The
new method alters the random directions with new directions that
rely on information from the previous stages of the optimization
process. The improved algorithm was tested in a simple multistart
framework and also as part of the GLOBAL method. The new
local search technique is empirically compared with the old one
on a unimodal and a multimodal function testbed up to moderate
size dimensions.

Index Terms—Multistart, Direct search, Local search, Bench-
marking

I. INTRODUCTION

In this paper we focus on solving nonlinear optimization
problems by using direct search methods. This type of algo-
rithms can be considered as a subclass of derivative-free meth-
ods which rely exclusively on function values. Direct search
algorithms doesn’t use any information about the deriva-
tives, hence they are suitable for problems involving non-
smooth, noisy, or discontinuous functions. As many practical
optimization problems belong to this category of problems,
the implementation of efficient direct search methods is a
challenging task.

This work considers the minimization of a nonlinear objec-
tive function over a rectangular domain:

min
x∈D

f(x),

where f is a nonlinear function, D = {x | l ≤ x ≤ u} ⊆ Rn,
and x, l, u ∈ Rn.

The rest of the paper is organized the following way.
Section II presents the UNIRANDI [1] local search algorithm
and its modified version. The computational experiments are
described in Section III. First the experimental settings are
provided. This is followed by the comparison of the UNI-
RANDI method and its improved version on the unimodal and
multimodal testbeds. The section is closed by the comparison
results of some global optimization solvers. Conclusions and
future researches are discussed in Section IV.

II. ALGORITHM PRESENTATION

A. The UNIRANDI local search method

The UNIRANDI procedure is a random walk type robust
local search method, which can be used when the derivatives
of the problem are not available or they are costly to evaluate.
The method consists of two main steps: generation of random
directions and line searches along the good ones of these
directions. If we cannot find a better point along the current
direction, the opposite direction is also tried.

The algorithm takes h as parameter which controls the step
length. The step length is also used in the stopping criterion:
the local search stops when the actual value of h is smaller
than a prescribed value (10−9). The local search method is
summarized as Algorithm 1.

Algorithm 1 The UNIRANDI algorithm.
1: function UNIRANDI(f , x, h)
2: while convergence criterion is not satisfied do
3: Generate random direction d
4: xnew ← x+ h · d
5: if f(xnew) < f(x) then
6: x← LineSearch(f, xnew, x, d, h)
7: h← 0.5 · h
8: continue
9: end if

10: d← −d
11: xnew ← x+ h · d
12: if f(xnew) < f(x) then
13: x← LineSearch(f, xnew, x, d, h)
14: h← 0.5 · h
15: continue
16: end if
17: h← 0.5 · h
18: end while
19: return x, f(x)
20: end function

B. The modified UNIRANDI algorithm

Probably one of the oldest and simplest optimization method
is the cyclic coordinate method. The method alters the value of
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Fig. 1. Contour map of the 2-dimensional Rosenbrock function.
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Fig. 2. Search on direction x2 − x0 for speed up.

one decision variable at a time, while all other variables remain
fixed. Basically in each step a line search is performed in the
direction of the actual coordinate axe. This type of methods
perform well on separable problems, but many interesting,
practical problems do not possess this feature. In order to
handle the non-separability, modified versions of the cyclic
coordinate method appeared like the Rosenbrock method [13],
the Powell’s method [10], and so on. The Rosenbrock method
makes after n coordinate searches a coordinate rotation in
order to improve the optimization process. The method is
implemented to deal with problems whose contour map have
long, narrow, turning valleys. Such a problem is the well-
known banana or Rosenbrock function (Fig. 1). Similar to
the Rosenbrock algorithm, the Powell’s method also starts
the search along the coordinate axes. In each iteration one
direction is discarded and replaced by a new, more promising
direction. Both the presented methods have a common feature
that includes the direction of greatest advance from the
previous stage in the search directions.

The original UNIRANDI method was modified so that after
n successful line searches along random directions, another
line search is performed in the direction of the ”greatest
advance” similar to the Rosenbrock and Powell’s methods.
These steps can be followed in two-dimensions on the Fig.
2. After two searches along random directions (rd1 and rd2),
we take a line search along the direction x2 − x0 in order to
speed up the optimization process.

III. COMPUTATIONAL EXPERIMENTS

We have performed two computational tests: first we empiri-
cally tested the UNIRANDI local search method on unimodal
test functions, while in the second experiment we analyzed
the performance of the UNIRANDI method as part of the
GLOBAL algorithm on a testbed whith multimodal functions.

The GLOBAL method with the new UNIRANDI algorithm
was also compared with some global optimization algorithms
developed recently.

The GLOBAL and the UNIRANDI methods were coded
in MATLAB, hence the experiments were performed in the
MATLAB environment. In the case of the other algorithms
(C-GRASP, HJPCA, OSCARS), the data were collected from
the literature (see Subsection D.).

A. General experimental settings

We considered two comparison criteria: the average number
of function evaluations (NFE), and the success rate (SR) to find
the global minimum, during 100 independent runs. A trial is
considered successful if the following inequality holds:

|f∗ − f | ≤ 10−4|f∗|+ 10−6, (1)

where f∗ is the know global minimum value, while f is the
best function value obtained by the algorithm. We mention
that when a trial fails to find the global minimum its function
evaluations are not counted.

The maximal allowed function evaluation budget during a
trial was set to 104 · n. The algorithms run until they find
the global optimum with the specified precision or when the
maximal number of function evaluations is reached.

B. Unimodal function optimization

Unimodal functions are those that have only one optimal
value within the domain. In our tests we considered 8 unimodal
functions with the following names: Booth, Branin, Cigar,
Powell, Rosenbrock, SumSquares, Trid, and Zakharov. Most of
the functions are tested in many dimensions, hence all together
18 instances were considered. These problems are well-known
from the literature and were considered by many researchers
(see e.g. [4]–[6]).

In general it is expected that a local solver can find the
optimum of a unimodal function started from an arbitrary
random point within the domain of availability. However even
in the unimodal case the problems may have properties that
make the solvers hard to optimize them. The aim of this
experiment is to check the robustness and efficiency of the
new UNIRANDI method (UNIR2) on the unimodal instances,
and compare it with the old version (UNIR1) too. Each of
the local search methods was started 100 times with different
random starting points. We used the same starting points for
the two methods. The average number of function evaluations
and the success rates are summarized in Table I.

Considering the success rates, we can observe that all the
trials were successful for all problems in the case of UNIR2,
while UNIR1 fails for Cigar-10, Powell-16, and Powell-24.
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Fig. 3. Contour plot of the Powell function.

TABLE I
COMPARISON OF THE TWO VERSIONS OF THE UNIRANDI METHOD IN

TERMS OF NFE AND SR OVER THE UNIMODAL TESTBED.

Function UNIR1 UNIR2

dim NFE SR(%) NFE SR(%)

Booth 2 117 100 111 100
Branin 2 92 100 91 100
Cigar 2 502 100 244 100
Matyas 2 118 100 107 100
Rosenbrock 2 1,252 100 441 100
Powell 4 7,282 100 709 100
Cigar 5 41,457 92 895 100
SumSquares 5 285 100 290 100
Zakharov 5 406 100 405 100
Trid 6 465 100 353 100
Cigar 10 - 0 2,715 100
SumSquares 10 991 100 866 100
Trid 10 2,146 100 1,048 100
Zakharov 10 1,675 100 1,430 100
Powell 16 - 0 10,056 100
SumSquares 20 4,196 100 2,870 100
Zakharov 20 7,213 100 5,456 100
Powell 24 - 0 19,379 100

These failures are due to the features of these functions. The
Powell function (see Fig. 3) has a narrow valley while the
Cigar function is ill-conditioned, hence function reduction can
only be achieved along a ”few” number of directions. As
UNIRANDI is a stochastic local search method, generating
good directions in larger dimensions is even harder. Based on
the results, the new UNIRANDI method can tackle easily with
this type of problems.

Regarding the average number of function evaluations, the
general picture is that UNIR2 requires less number of function
evaluations than UNIR1. UNIR2 is much faster especially on
the ill-conditioned problems (Cigar) and on functions having a
long, narrow valley (such as Rosenbrock, Powell). The speed
up of UNIR2 is more pronounced in larger dimensions.

C. Multimodal function optimization

In the multimodal case a function may have multiple global
optima and many local minimizer points too. The multimodal
functions considered in this experiment are the following:
Ackley, Beale, Six Hump Camel Back, Colville, Dixon&Price,
Easom, Goldstein Price, Griewank, Hartman, Levy, Perm,
Rosenbrock, Shekel, and Shubert. For the function descriptions
see [5]. In this experiment we considered the generalized

version of the two-dimensional Rosenbrock function in the
following form:

f(x) =
n−1∑
i=1

[(1− x2
i ) + 100(xi+1 − x2

i )
2].

Although many researchers considered the generalized Rosen-
brock function as unimodal, note that for n ≥ 4 the function
has two local minimizer and some saddle points [7].

As the presented functions have many global and local
optima, a local search method cannot guarantee to find the
true global optimum. Hence it needs some exploratory steps
to help the entire optimization process. Here we use the
GLOBAL method [1], [2] which is a multistart type clustering
global optimization algorithm. In the first phase of the method
random points are sampled within the set of feasibility, while
in the second step local searches are started form appropriately
chosen points. Usually we apply either a derivative free
local solver inside GLOBAL or a quasi-Newton type one.
Recently we have conducted detailed investigations [8], [9]
on benchmarking the GLOBAL method using mostly gradient
type local search algorithms. The reader can find more details
about GLOBAL in [2].

The aim of the present experiment is to assess the perfor-
mance of the new UNIRANDI method inside GLOBAL in
terms of number of function evaluations and success rate.
As GLOBAL is a stochastic method, we performed 100
independent runs. Basically we used the default settings of
the method: 50 random points were sampled in an iteration
and the 2 best points were selected for the reduced sample.

Table II summarizes the performance of the GLOBAL
algorithm with the two versions of the UNIRANDI local
search method for the problems in the multimodal set.

The SR value of the UNIR2 method is 100% in most
of the cases except for three functions: Ackley, Griewank,
and Levy. These problems have many local minima and the
success rate can be increased by using a larger sample size
for the GLOBAL algorithm. The UNIR1 method performs
much worse than UNIR2, especially on the Colville (Fig.4)
and Rosenbrock functions. In the latter case for dimension
larger than 5, UNIR1 fails all the trials. Considering the NFE
values, a substantial speed up can be observed for UNIR2
on most of the functions, while on the easier functions (Six
Hump, Goldstein Price, Shekel, and Shubert) the NFE values
are similar to those obtained by UNIR1.

Summing up, the new direction selection procedure helps
the UNIRANDI local search method to be more robust es-
pecially on Rosenbrock-type problems. As we have expected,
the new method is faster than the old one in large dimensions.

D. Comparison with other global optimizer techniques

The GLOBAL method with the new UNIRANDI local
search algorithm was compared to several global optimization
algorithms on 14 test problems taken from [5]. The applied
global optimization methods were C-GRASP [5], HJPCA [12],
and OSCARS [11]. The first two have similar structure as
GLOBAL: in the first phase they perform a global search
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Fig. 4. Contour plot of the Colville function.

TABLE II
COMPARISON OF THE TWO VERSIONS OF THE UNIRANDI METHOD WITH
GLOBAL IN TERMS OF NFE AND SR OVER THE MULTIMODAL TESTBED.

Function UNIR1 UNIR2

dim NFE SR(%) NFE SR(%)

Beale 2 867 100 698 100
Easom 2 475 100 517 100
Goldstein-Price 2 137 100 132 100
Shubert 2 364 100 339 100
Six Hump 2 89 100 88 100
Hartmann 3 326 100 177 100
Colville 4 20,125 20 1,500 100
Perm-(4,10) 4 16,816 29 9,057 100
Shekel-5 4 671 100 574 100
Shekel-7 4 703 100 871 100
Shekel-10 4 804 100 830 100
Ackley 5 16,322 95 14,867 90
Levy 5 13,824 85 12,459 98
Rosenbrock 5 - 0 2,109 100
Hartmann 6 2,109 100 810 100
Dixon&Price 10 35,278 83 19,202 100
Griewank 10 44,781 39 36,945 49
Rosenbrock 10 - 0 7,595 100
Rosenbrock 20 - 0 26,038 100

while in the second phase they apply some refinement steps.
OSCARS, developed recently, is a variation of the accelerated
random search. All the methods use the same stopping crite-
rion (1) and the average number of function evaluations (over
100 independent runs) are listed in Table III. The results show
that the GLOBAL with the improved UNIRANDI method
is better than the other solvers. Exceptions are the Easom,
Goldstein Price, and Shubert functions where the differences
are not significant. The largest improvement can be observed in
the case of Hartman-6, Rosenbrock, and Zakharov functions,
where GLOBAL is much faster than the other methods.

IV. CONCLUSIONS AND FURTHER RESEARCH

An improved version of the UNIRANDI local search
method has been proposed in this paper. The new algorithm
combines the random directions with new directions that rely
on information from the previous iterations. The performance
in terms of mean number of function evaluations and success
rate is tested on unimodal and multimodal function testbeds.
The GLOBAL method with the new UNIRANDI local search
algorithm was also compared to three other global optimiza-
tion algorithms.

TABLE III
THE NUMBER OF FUNCTION EVALUATIONS OBTAINED BY DIFFERENT

GLOBAL OPTIMIZATION ALGORITHMS.

Function dim GLOBAL C-GRASP HJPCA OSCARS

Branin 2 105 10,090 256 143
Easom 2 517 5,093 1,084 154
Goldstein-Price 2 132 53 576 398
Rosenbrock 2 415 23,544 897 3,893
Shubert 2 339 18,608 421 246
Hartmann 3 177 1,719 572 361
Shekel-5 4 574 9,274 965 14,455
Shekel-7 4 871 11,766 1,174 5,047
Shekel-10 4 830 17,612 1,732 21,749
Rosenbrock 5 2,109 182,520 35,112 446,849
Zakharov 5 379 12,467 1,229 1,882
Hartman 6 810 29,894 1,251 55,350
Rosenbrock 10 7,595 725,281 423,560 4,058,216
Zakharov 10 1,226 2,297,937 15,825 9,562

The results show that the new local search method is
more reliable and efficient than the old one especially on ill-
conditioned problems and on functions having a long, narrow,
curved valley. The GLOBAL algorithm with the improved
UNIRANDI is also better than some well-known global opti-
mizer techniques.

As a future research we plan comparison including other
direct search methods like the Rosenbrock method, Powell’s
algorithm, and Hooke-Jeeves method.
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