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Abstract
The purpose of angiographic procedures used in cardio-

vascular interventions is to classify the patient’s potential of
regeneration after strokes caused by dead blood cells in the
main arteria. The flow of blood into heart’s capillaries is
measured using x-ray radiometry with contrastive fluids.

Our task was to fit a 5-parameter Gamma function to
the intensity samples extracted from the x-ray angiogramms.
The estimation of this function’s parameters is hard given
that the raw data set is heavily polluted with several different
types of noise.

Our complete solution has four main parts which have
also been successfully verified and validated. First, we pro-
pose a solution for eliminating the noise by applying a spe-
cially designed moving window Gauss filter. Secondly, we
have designed an algorithm for computing a good initial
guess for the Levenberg-Marquardt optimizer in order to
achieve the required precision. Third, an algorithm is pro-
posed for selecting significant points on the smoothed data
set with an interval-based classification method. Finally we
apply the LM algorithm to compute the solutions in a non-
linear least squares way.

We have also designed an algorithm which can be used
for comparing different results and assign goodness values
based on their residuals. This method has been used for mea-
suring improvements during the development.

We must emphasize that the proposed algorithms are dis-
tinct, they can be used in other applications together or sepa-
rately since they are generally applicable, they do not depend
on specialties of specific presented application.
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1 Problem addressed
The digital substraction angiography [14] used in medi-

cal surgery is one kind of an image recording and processing
method where panoramic x-ray images are taken while con-
trastive x-ray fluid [6] is injected into the patient’s heart’s
main arteria. The goal is to estimate the probability of car-
diac muscle regeneration of a patient who has recently sur-
vived a stroke, being dead blood cells removed by means of a
surgery intervention. The x-ray fluid flow is similar to blood-
flow [9], thus the amount of blood that can reach the critical
region can be measured.

Given the images, the intensity of the x-ray fluid can be
computed [2] by selecting the critical cardiac muscle region
as the Region of Interest (ROI) [17] and calculating the av-
erage intensity of the pixels in it. In this way, we have an
intensity value for each image which is going to be our ini-
tial sample (M(t)).
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Figure 1. A typical initial intensity sample

1.1 Modelling flow dynamics
Our main task was to characterise the x-ray fluid flow in

blood vessels by means of numerical values. To achieve this
goal we had to pick a well-known and widely used [4] func-
tion which is appropriate for modelling flow dynamics. Our
choice is the 5 parameter Gamma function [11] defined by



the equation

G(t) =





Zl | AT < t

Ks(t −AT)αe

−(t −AT)
β +Zl | AT ≥ t



 ,

whereKs > 0 is a scaling factor,AT,Zl > 0 are offsets and
α,β > 0 are the rising and descending slope shape parame-
ters.

In our application these values have biological meanings
[11]. The AT parameter specifies the time when the con-
trastive fluid has been injected whileZl andKs are the base
intensity and intensity scaling values of the x-ray device.The
slope parameters describe the way blood can enter and exit
the cardiac muscle in question, so our model can tell valuable
information to surgeons.

Then, the objective was to efficiently fit this model to any
kind of measurement with high confidence regarding the na-
ture of the consequences our results could introduce. For this
task we used the Levenberg-Marquardt method [12], [16],
with a proper line-search minimizing the difference between
the model and sample values in a nonlinear least squares way
[5], [13]:

Zres=
n

∑
i=1

(G(ti)−M(ti))
2 → min. (1)

1.2 Normalizing residual squares
To declare a fit good or bad, the sole sum of the residuals

(Zres) are not good enough, since a better fit can have higher
Zres values than a worse one because of heavy noise or badly
scaled sample. SinceZres can be of arbitrarily large, we pro-
pose a method for scaling these values into a properly chosen
interval.

Let F be the vector of our fitted values,M the measure-
ment vector,Fl ,Ml lower andFu,Mu upper bounds. Then
∀i ∈ 1, . . . ,n

mi ∈ [Ml ,Mu], Ml ≤ Mu, Ml ,Mu ∈ [0,255],

fi ∈ [Fl ,Fu], Fl ≤ Fu, Fl ,Fu ∈ [0,255],

and

( fi −mi) ∈ [Fl ,Fu]− [Ml ,Mu] = [Fl −Mu,Fu−Ml ].

Now the natural interval extension ofZres is:

Zres =
n

∑
i=1

(F(ti)−M(ti))
2 ∈

n

∑
i=1

([Fl −Mu,Fu−Ml ])
2

∈
n

∑
i=1

(
[0,max

(
(Fl −Mu)

2,(Fu−Ml)
2)]

)

∈ [0,nmax
(
(Fl −Mu)

2,(Fu−Ml)
2)].

SinceFl ,Fu,Ml ,Mu values are computable,Zres can be
normalized:

Ẑres=
Zres

nmax((Fl −Mu)2,(Fu−Ml)2)
∈ [0,1]. (2)

2 Results on the initial samples
To evaluate our solution we had 66 real life, anonymous

medical samples at our disposal. We must underline that
these samples contain noises from different sources [8] (un-
precise recording, unprecise fluid injection [6], [7] x-rayde-
vice’s auto-intensity regulation, image processing bugs [15])
and our effort in figuring out suitable noise models was a
fool’s errand.
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Figure 2. Normalized results on the test database

Our first results were generated by fitting our model on
the raw samples with a constant initial guess vectorP0 =
(Ks,AT,α,β,Zl ) = (0.02,34.0,3.3,11.1,106.0). Since the
results were really bad (concerning either performance or
precision), we classified each fit in a graphical way intoap-
propriate and inappropriate fit classes (see Figure 2) and
computed the normalized residuals. This is our control set
for measuring the upcoming algorithm’s improvements. On
Figure 2 a somewhat sharp interface could be seen between
bad and good fits meaning our normalization algorithm per-
forms really well.

3 Noise filtering
In order to achieve better results, we have decided to ap-

ply a noise filtering algorithm whose primary goal was to
eliminate spikes and produce a smoothed sample. Filters like
median filters, arithmetic mean filters did not perform well
on all types of measurements. The chosen filtering algorithm
is a general Gaussian moving window average type [10] filter
with specially designed weights and variable length window
size. The weights are designed to be precomputable given
an initial sample, and not to introduce undesired offsets and
scaling on the input values:

M∗(ti) =
i+Lw

∑
j=i−Lw

M(t j )

2Lw+1
wj if Lw ≤ ti ≤ |M(t)|−Lw,

where∀ j ∈ [i −Lw, i +Lw], and the weights are:

wj = e−(t j−ti )2/(2Lw+1) 2Lw+1
i+Lw

∑
j=i−Lw

e−(t j−ti)
2/(2Lw+1)

. (3)



By selecting the weights in this way, it is guaranteed that
∀i ∈ [1,n]:

i+Lw

∑
j=i−Lw

wj = 2Lw+1.

Generally speaking our proposed weighting method gives
us a (not arithmetic) mean moving window filter with Gaus-
sian weights.
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Figure 3. Filtering result with optimal window size

The second task was to determine a widely usable win-
dow size which eliminates local spikes but does not alters
too much the initial sample’s core. We have done an exhaus-
tive search by computing the filtered sampleM∗(t) for each
initial sampleM(t) with all possible usable window sizes
(3− 100). Then each filtered sample have been evaluated
as good or bad resulting a histogram for appropriate window
sizes having a maximum at 33.

Our proposed filtering algorithm can successfully be used
on any one-dimensional sample since weights depend only
on the measurement vector and the optimal window size can
also be found in the above way.

3.1 Results on the filtered samples
When we modified the NLLS minimizer’s objective func-

tion as to minimize the difference between the model and
thefiltered sample, significant improvements were achieved
concerning theprecision:

M(t) min max mean median
iterations: 3 9999 3796.09 46

Zres : 121.84 35815.86 7010.51 2811.72
CPU time (s): 0.01 7.22 2.03 0.21

M∗(t) min max mean median
iterations: 4 9998 2158.71 45

Zres : 122.09 30084.45 3730.36 2480.72
CPU time (s): 0.01 7.34 1.13 0.07

One can see that when usingM∗(t) as reference, on aver-
age approximately half the time is required to achieve dou-
ble precision. When plotting the normalized residual values
(Figure 4), the bad fit count decreased, also the interface be-
tween good and bad fit classes sharpened.
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Figure 4. Normalized results on filtered samples

4 Initial guess computation
Given the nature of the source experiment (cardiovascu-

lar angiography), real solution vectors are expected to be
scattered in the search space rather than in a certain clus-
ter. Scattering means greater search space, which indicates
that a static initial vector for the LM algorithm is in general
a bad choice.

Now we propose an algorithm which is able to dynam-
ically compute a really good approximation of the solution
vector based on the filtered sample in O(1) time and O(n)
space. This can also be used in other applications where our
model is used.

It is known, that fluid injection is scheduled to be one
second after the start of the recording, so the estimation of
theZl parameter is trivial, we had to compute the arithmetical
mean of the first 15 values of M(t).

To estimate the other parameters, we have completed the
functional analysis of the unscaled and unconditional model

H(t) = (t −AT)αe
−

t−AT
β +Z, (4)

computed the first orderH ′(t) and second orderH ′′(t)
derivatives and solved theH ′(t) = 0 andH ′′(t) = 0 equations
for identifying minimizer, maximizer and inflection points.
The results showed thatH has only a single maximum point
(at tmax), and two inflection points (atti,1 andti,2). The inter-
esting part is that these points can be computed simply using
the model parameters:

tmax= αβ+AT, (5)

ti,1 = αβ−
√

αβ+AT, (6)

ti,2 = αβ+
√

αβ+AT. (7)

In this way, if we are able to produce a good estimation
for tmax, ti,1 andti,2, by solving the above nonlinear systems
of equations we got good estimations forAT, α andβ. How-
ever the solution of this NLP problem is hard, complex NLP
solvers are likely to introduce further errors, that is why we
have chosen a simpler and faster heuristic method. Taking
the above three equations the following expressions can be



derived:

α =
(tmax−AT)2

(tmax− ti,1)2 =
(tmax−AT)2

(ti,2− tmax)2 , (8)

β =
(tmax− ti,1)2

tmax−AT
=

(ti,2− tmax)
2

tmax−AT
. (9)

Since theAT parameter – the starting time of the rising
slope of the model – can easily be detected on the filtered
sample, and given thetmaxand one of theti,1 andti,2 values,α
andβ are quickly computable using the equations (8) and (9).
The estimation of theAT parameter is done by combining
zero and first order assumptions on the ideal model:

AT ≈ 1
3

max
t

(
M∗′(t) = 0

)
+

1
3

max
t

(M∗(t) = Z)+

+
1
3

min
t

(M∗(t)> Z) .

Last but not least, an estimation for theKs parameter must
be given. This scaling is determined by the maxima ofH
(equation 4) andG. Since

H(tmax) = (αβ)αe
− αβ

β +Z = (αβ)αe−α +Z,

an approximation forKs can be given by

Ks ≈
max(M∗(t))−Z

(αβ)αe−α .

Figure 5 shows one output of our proposed algorithms in
case of a quasi-bad measurement vector.
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Figure 5. One result of the proposed algorithm

Our proposed algorithm performs really well, the initial
guess that are computed could have been also accepted as
the overall result of the fit! Using this algorithm, the resi-
duals and the required time resources drastically decreased
as compared to the previous approaches:

min max mean median
Zres : 235.88 17085.28 4009.98 343.64
Ẑres : 0.0090 0.2379 0.0436 0.02719

CPU time(s): 0.01 0.26 0.025 0.02

Note that the above values are just the results of the initial
guess computation algorithm, not the fit. When applying also

the LM algorithm and fed it with the pre-computed initial
vector, more improvements has been achieved:

min max mean median
Zres : 120.45 11245.8 3210.77 134.66
Ẑres : 0.007 0.231 0.0316 0.0187

CPU time(s): 0.01 2.54 0.42 0.05
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Figure 6. Normalized results with dynamic initial vector

On Figure 6 – showing the normalized residuals –, each fit
has been classified as appropriate, the higher values indicate
wrong samples which must be dropped or rerecorded. Figure
7 shows a bad measurement vector with its smoothed curve
and the output of our algorithm which is a constant vector
for every measurement of this kind.

We must note that our proposed algorithms have also been
verified numerically to prove their correctness and usability.
At this point, the required efficiency and precision has been
achieved and having the verifications completed, the results
can be trusted.
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Figure 7. A typical wrong sample

5 Significant point selection
Furthermore, we wanted to compress the filtered sample

[1], since an average of 200 values are too much for our
model’s 5 parameters [3]. Using less values (about 20), we
expected that our fitting would be even more accurate and
faster. The results showed a positive feedback.

Our basic idea was to classify the filtered sample’s values
assignificantor non-informationalpoints. To select thesig-
nificant ones, we must detect those points where there are
sudden changes in theM∗(t) sample values. This is done



using its first order discrete derivative sample∂M∗(t) and di-
viding its codomain into a pre-defined number of intervals.
Then, running through∂M∗(t) we track some history on the
previously seen values and note those points where the pre-
vious point was located in another interval than the current
one.
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Figure 8. Significant point selection algorithm

The scheme of this method is shown on Figure 8, where
the bottom graph shows the codomain of∂M∗(t) divided
into 4 equidistant intervals. The blue squares are the se-
lectedsignificantpoints which are then projected onto the
top graph. Also, special care was taken for avoiding multi-
ple point selection around interval borders – when oscillation
in the∂M∗(t) sample occurs.

Generally speaking, our algorithm approximates the
curve with a polyline, and does its job really well (see Fig-
ures 9 and 10).
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Figure 9. Significant point selection result number 1.

The proposed algorithm is designed to be driven by only
one parameter – thetarget significant point count– and in-
side, everything is done to select as many points as requested,
so more requested points mean more accurate approximation
but less compression and vice versa.
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Figure 10. Significant point selection result number 2.

Take note that our third proposed algorithm can also be
used on any kind of a discrete sample in any dimensions.

6 Final results
Finally, our complex solution consists of a special filter,

a pure mathematical initial guess computation algorithm, a
measurement compression method and last but not least a
NLLS Levenberg-Marquardt solver. This is also the order of
their application, so after getting the initial sample, we apply
our filter, compute an appropriate initial vector and select
significant points using the filtered sample, and apply the LM
optimizer with the pre-computed vector and using only the
significant data points in the objective function.
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Figure 11. Composite result of a particular fit

Our composite solution technique is able to determine the
validity of the measurement, then if it proves to be valid, we
provide guaranteed results on any kind of input sample with
high precision using no more than 2 seconds of computation
time1!

Comparing our solution with the time requirements of ar-
ranging the patient into the examination room, recording the
x-ray video, image processing and ROI selection, we can
surely say that our solution is really efficient and also ef-
fective enough to incorporate it into real-world devices.

1Using an Intel Core 2 T2300, 4 GB RAM based PC



7 References

[1] S. M. Ahmedaa and M. Abo-Zahhad. A new hy-
brid algorithm for ecg signal compression based on the
wavelet transformation of the linearly predicted error.
Medical Engineering and Physics, 23:117–126, 2001.

[2] L. G. Brown. A survey of image registration tech-
niques.ACM Computing Surveys, 24:325–376, 1992.

[3] P. de Graaf, J. v. Goudoever, and K. Wesseling. Com-
pressed storage of arterial pressure waveforms by se-
lection of significant points.Medical and Biological
Engineering and Computing, 35:510–515, 1997.

[4] Y. Deuerling-Zheng, J. Boese, S. Achenbach, and
J. Ludwig. Angiographic assessment of myocardial
perfusion using correlation analysis. InBildverar-
beitung f̈ur die Medizin 2007, Informatik aktuell, pages
409–413. 2007.

[5] M. Ghogho, A. Swami, and K. Asoke. Non-linear
least squares estimation for harmonics in multiplicative
and additive noise. InSignal Processing, pages 43–60,
1999.

[6] C. Gibson, M. Anshelevich, and S. Murphy. Impact
of injections during diagnostic coronary angiography
on coronary patency in the setting of acute myocar-
dial infarction from the timi trials. Am J Cardiol.,
86(12):1378–1379, 2000.

[7] C. Gibson, A. Kirtane, and S. Murphy. Impact of
contrast agent type (ionic versus non-ionic) used for
coronary angiography on angiographic, electrocardio-
graphic and clinical outcomes following thrombolytic
administration in acute mi.Catheter Cardiovasc In-
terv., 53:6–11, 2001.

[8] C. Gibson and A. Schmig. Coronary and myocar-
dial angiography: angiographic assessment of both
epicardial and myocardial perfusion.Circulation,
109(25):3096–3105, 2004.

[9] G. T. Gobbel, D. Christopher, E. Cann, and
R. Fike John. 768 measurement of regional cerebral
blood flow using ultrafast computed tomography theo-
retical aspects.

[10] R. Haddad and A. Akansu. A class of fast gaussian bi-
nomial filters for speech and image processing.IEEE
Transactions on Acoustics, Speech and Signal Process-
ing, 39:723–727, 1991.

[11] J. Howard K. Thompson, C. Frank Starmer, R. E.
Whalen, and H. D. McIntosh. Indicator transit time
considered as a gamma variate.Circulation Research,
American Heart Association, 15:502–515, 1964.

[12] M. I. A. Lourakis and A. A. Argyros. Is levenberg-
marquardt the most efficient optimization algorithm for
implementing bundle adjustment?, 2005.

[13] K. Madsen, H. Bruun, and O. T. Imm. Methods for non-
linear least squares problems. Technical report, 2004.

[14] E. Meijering, W. Niessen, and M. Viergever. Retro-

spective motion correction in digital subtraction an-
giography: A review. IEEE Transactions on Medical
Imaging, 18:2–21, 1999.

[15] E. Meijering, K. Zuiderveld, and M. Viergever. Im-
age registration for digital subtraction angiography.In-
ternational Journal of Computer Vision, 31:227–246,
1999. 10.1023/A:1008074100927.
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