PAGE

Symbolic Interval Inference Approach for Subdivision Direction Selection in Interval Partitioning Algorithms

Chandra Sekhar Pedamallu
, Linet Özdamar, Tibor Csendes

Abstract

In bound constrained global optimization problems, partitioning methods utilizing Interval Arithmetic are powerful techniques that produce reliable results. Subdivision direction selection is a major component of partitioning algorithms and it plays an important role in convergence speed. Here, we propose a new subdivision direction selection scheme that uses symbolic computing in interpreting interval arithmetic operations. We call this approach Symbolic Interval Inference Approach (SIIA). SIIA targets the reduction of interval bounds of pending boxes directly by identifying the major impact variables and re-partitioning them in the next iteration. This approach speeds up the interval partitioning algorithms because it targets the pending status of sibling boxes produced. The proposed SIIA enables multi-section of two major impact variables at a time. The efficiency of SIIA is illustrated on well-known bound constrained test functions and compared with established subdivision direction selection methods from the literature.

Key Words: Box-constrained global optimization, interval branch and bound methods, symbolic computing, subdivision direction selection

1. Introduction

Interval Partitioning Algorithms (IPA) use interval arithmetic (Moore 1966) to produce reliable results for constrained and unconstrained optimization (for an overview, see Hansen 1992, and Ratschek and Rokne 1995). Due to their reliability, interval applications take place in a wide scope of scientific fields (Kearfott and Kreinovich 1996). In bound constrained global optimization problems, IPA subdivides the given domain into smaller subspaces (boxes) that are assessed according to their function range calculated by using an approximating inclusion function. Based on the function range bounds and a known best solution that is updated during the search, some subspaces are deleted reliably, because they cannot hold the global optimum solution (Hammer et al. 1993, Pinter 1992). Subdivision continues in remaining boxes so that the location of the global optimum solution can be enclosed within a small box of a given tolerance. The final report contains all such boxes in the given function domain.

Convergence rate of IPA depends on the use of accelerating devices (such as monotonicity and concavity tests) that help in discarding boxes (Ratschek and Rokne 1988, Ratschek and Rokne 1995) and on the selection of subdivision direction (variable whose domain is to be re-partitioned) (Berner 1996, Csendes and Ratz 1996, Csendes and Ratz 1997, Csendes et al. 2000, Hansen 1992, Moore 1966, Neumaier 1990, Ratz and Csendes 1995). In IPA, the latter issue has a major impact on convergence rate because reducing the domain size of a specific variable might enhance the reduction in the overestimated function range of the sibling boxes to a significant degree. Thereby, boxes that cannot be discarded due to their promising overestimated upper bounds may become disposable in a few re-partitioning iterations with a good subdivision direction selection strategy.

Subdivision rules proposed up to date are based on criteria such as the width of variable intervals, or estimated function improvement by selected variables (gradient information). The performance of such rules is assessed extensively on standard test problems (Csendes and Ratz 1996, Csendes and Ratz 1997, Csendes et al. 2000, Ratz and Csendes 1995) resulting in the general conclusion that gradient based rules work much better.

In Berner (1996), these rules are converted into parallel multi-section rules by taking the first k number of variables from a list of variables sorted according to the rule (called k-best strategy here). Multi-section (subdivision of some variables in parallel) and multi-splitting (subdivision of a single variable’s width into s > 2 pieces) approaches are proposed in Csallner et al. (Csallner et al. 2000a, Csallner et al. 2000b). The latter studies investigate the efficiency related to specific values of s with regard to each subdivision rule. Casado et al. (Casado et al. 2001) proposed multi-section / multi-splitting hybrids by subdividing intervals of all variables into 2 or more pieces (sn) in parallel. The authors propose a parametric method that involves the comparison of a box assessment criterion with given constants used in deciding which hybrid parallel scheme should be used for a given box. In Casado et al. (Casado et al. 2001) the authors use the box assessment criterion as a box selection rule and utilize multi-section subdivision rules based on k-best strategy found in Berner (1996).

Here, we propose a symbolic computing - interval partitioning cooperation scheme for enhancing the process of subdivision direction selection. In the literature, symbolic-interval cooperation frameworks are proposed mostly for solving constraint satisfaction problems (Ceberio and Granvilliers 2000, Granvilliers et al. 2001, Granvilliers 2004, Lhomme et al. 1998, Sam-Haroud and Faltings 1996). In particular, consistency techniques (Sam-Haroud and Faltings 1996) and interval propagation through multiple constraints are proposed to reduce variable domains so that feasible regions can be identified (see hull and box consistency techniques (Granvilliers et al. 2001, Sam-Haroud and Faltings 1996)). Here however, symbolic-interval cooperation is developed to propagate intervals through different subexpression complexity levels of a function. While past symbolic-interval cooperation was based on the full function expression, the proposed cooperation propagates intervals at hierarchically recursive subexpression levels. The propagation is exhaustive and it identifies a couple of major impact variables (source variables) that provide exactly the relevant bound of the function’s interval over a given box (in unconstrained maximization, this bound is the upper bound of function range). We call this identification procedure Symbolic Interval Inference Approach (SIIA). The subdivision direction selection rule developed from SIIA is called Symbolic Inference Rule (SIR). SIR’s goal is to reduce the domain of the source variables with a guarantee of function range overestimation narrowed down in sibling boxes.

In this framework, SIR is integrated with IPA and it is activated at every box assessment during execution. Here, to enable such a symbolic propagation, we develop three basic components: a parser, a tree builder, and a rule operator. The tree builder constructs a binary tree that represents a given function after parsing. The rule operator uses the binary tree for propagating intervals at the above-mentioned subexpression levels in order to make an inference on the source variables. Source variables are subdivided in parallel in the next iteration. Hence, the proposed method also includes a multi-section method that subdivides along 2 variables at a time (an exception occurs when all variables but one have too small interval widths to be subdivided). In our implementation, source variable intervals are bisected in sibling boxes, however, multi-splitting can be applied easily depending on the specific impact of each source variable.

In the following sections, the essential components of SIIA, the convergence property of SIR and its implementation in IPA are described. Then, numerical experiments are conducted on well-known test problems from the literature in order to assess the performance of SIR against k-best (for a fair comparison, 2-best) parallel version of established subdivision direction selection rules and against the standard 2n multi-section rule. It is shown that SIR is effective in improving the convergence rate of IPA.

2. Interval Partitioning Algorithms: Proposed convergence criterion

2.1. Basics of IPA and terminology

Bound constrained global optimization problems are expressed as:

max ((x): x (X (ℝn

(2.1)

where X (ℝn is the search box and ((x): X (ℝ, is the objective function. The search box is assumed to be a closed interval and it is denoted as X=[
[image: image1.wmf]X,X

], where
[image: image2.wmf]j

X

= min
[image: image3.wmf]j

X

 and
[image: image4.wmf]j

X

= max
[image: image5.wmf]j

X

, for j=1,2…n. A subset of X (or subbox) is denoted as Y=[
[image: image6.wmf]Y,Y

] (X, and the global maximizer(s) as x*. The definition of an inclusion function and its fundamental properties are provided below.

Definition 1. Let f(Y) ={f(x): x (Y} be the range of f over Y(II (X), where II is the set of n-dimensional compact intervals in X. A function F: II (X)(II is an inclusion function for f, if f(Y) (F(Y) for any Y(II (X).
Definition 2. An interval function F is said to be inclusion isotone if for any pair of boxes Y and Z (II (X), Y (Z implies F(Y) (F(Z).

It is assumed that for the studied functions the natural interval extension of f over Y is always defined in the real domain. Furthermore, F is (-convergent over X, that is, for all Y(II (X), w(F(Y))-w(f(Y)) (c(w(Y))(where c and (are positive constants and w() is the width of the argument.
IPA subdivides X into smaller boxes that are assessed with respect to their potential of holding a global optimal solution. Basically, IPA is categorized as a Branch and Bound technique in the real domain. The following section summarizes box assessment.

2.2. Optimality status of boxes and convergence criterion

In a partitioning algorithm, each box Y is assessed for its optimality status by calculating F(Y)’s bounds with an Interval Library such as PROFIL (Knüppel 1994). The concepts related to a box’s optimality status are discussed below.
Suppose that the objective function value of a known solution is available as a Current Lower Bound (CLB) for f(x). We denote the lower and upper bounds of the function interval F(Y) over box Y as
[image: image7.wmf]F(Y)

 and
[image: image8.wmf]F(Y)

, respectively. Boxes are classified according to the following rules.

Definition 3. (Cut-off test:) If
[image: image9.wmf]F(Y)

(CLB, then box Y is called a suboptimal box and it is deleted because it cannot contain x*.

Definition 4. If
[image: image10.wmf]F(Y)

 (CLB and
[image: image11.wmf]F(Y)

> CLB, then Y is called a pending box. A pending box holds the potential of containing x*.

Definition 5. The pending status or potential of a pending box is defined as:

PY =
[image: image12.wmf]F(Y)

-CLB.

(2.2)

When a box is pending, more advanced optimality tests (accelerating devices) such as monotonocity, and nonconvexity test can be applied to discard it (Jansson and Knüppel 1995, Ratschek and Rokne 1988, Ratschek and Rokne 1995).

In each box assessment, the function range estimate F(M) over a sufficiently small box M enclosing the mid-point (m) of Y is calculated. In the assessment of the first box, min f(M) becomes the current lower bound (CLB) and each time a better mid-point solution is found, CLB is updated.

IPA continues to subdivide available pending boxes until either they are all deleted or interval sizes of all variables in existing boxes are less than a given tolerance, (. All such boxes are reported that may contain x*. In Figure 1, a generic pseudocode is provided for IPA.
In essence, IPA aims to discard suboptimal boxes and reduce the number of pending boxes with as few function calls as possible. This is facilitated by partitioning appropriate variables and generating subboxes whose overestimation in PY is reduced. Then, the algorithm converges fast by discarding suboptimal boxes early and also by partitioning promising boxes in a fitting direction to reach the global basin of attraction. While variable selection is made according to this criterion, box selection is carried out following a worst-first strategy, i.e. the box with the maximum PY is selected first. We would like to mention that PY is a traditional box selection index used in IPA. A normalized version of this index (the RejectIndex) is obtained by dividing PY by w(F(Y)) (Casado et al. 2001). The RejectIndex aims at reducing the overestimation in smaller boxes with greater uncertainty whereas we target at discarding boxes as large as possible. Below, we define a convergence criterion based on the pending status of boxes and show that IPA is convergent with respect to the latter.
Lemma 1.

IPA reduces the pending status of boxes by nested partitioning as the interval partition algrithm proceeds.

Proof of Lemma 1.

Consider a pending box Y. Suppose a variable is re-partitioned to result in two sibling boxes V and W. By the isotone inclusion property of F, the following is true for any of the siblings (we take an arbitrarily sibling V):

[image: image13.wmf]F(Y)

(
[image: image14.wmf]F(V)

.
(2.3)
In the worst case, even if CLB does not improve in sibling boxes, i.e., CLBV = CLBY, since (2.3) holds and since PY is a function of
[image: image15.wmf]F(Y)

,

PY – PV (0.
(2.4)
Hence, the reduction in the pending status of siblings is always non-negative, and given a box Y that contains x*, the pending status goes to zero in the limit as the number of nested re-partitioning iterations, j, increases (utilizing the (-convergence). That is,

 lim
[image: image16.wmf]F(Y)

 (CLB.

(2.5)

 j((
While boxes that do not contain x* are discarded by the cutoff test due to the reduction in their pending status, the optimal box has
[image: image17.wmf]F(Y)

(f(x*) in the limit. ■

Convergence properties of subdivision rules proposed in the literature are generally based on balanced bisection, e.g. on bisection along the largest width interval variable. Convergence of those rules are guaranteed in the sense that in the limit, as re-partitioning iterations increase, a sufficiently fine partition provides an enclosure for the global optimum (Ratschek and Rokne 1988). Some rules based on gradient information require the application of monotonicity test in IPA to guarantee convergence (Ratz and Csendes 1995). The proposed criterion only uses the property of inclusion isotonicity, the (-convergence, and it does not require any additional assumptions.

3. Symbolic Interval Inference Approach (SIIA) for subdivision direction selection

The proposed SIIA has three enabling components: a parser, a tree builder, and a rule operator. The parser is activated once before IPA is executed. It dissects the function expression and passes the output to the tree builder. A binary tree that represents the function with all its subexpressions is then constructed. The contribution of subexpressions and atomic elements (variables) to the function range are recursively calculated by calling an Interval Library at each (molecular) level of the hierarchical binary tree so that the impact of all terms can be assessed in descending order of complexity. At each box assessment, SIR activates a tree traversal or labeling procedure to identify the pair of variables to be re-partitioned. Since PY is a function of
[image: image18.wmf]F(Y)

, SIR labels
[image: image19.wmf]F(Y)

 to reduce PY at the root node (function expression). Then, SIR labels the interval bound resulting in the label value at the root node and goes down the tree until the first atomic element (variable) having the maximum impact on
[image: image20.wmf]F(Y)

 is reached. Then, a backward traversal is activated to identify the coupling maximum impact (source) variable. This couple is re-partitioned in the next iteration to form 22 siblings in parallel. A second variant of SIR is obtained by selecting the subexpression with the largest interval width rather than the maximum bound one. In case of ties among subexpression nodes, the one with the maximum bound can be chosen. Both variants of SIR have been tested in this paper.
3.1. The tree builder: Binary tree representation

Binary tree representation of expressions enables the execution of SIR. Leaves of the binary tree are atomic elements, i.e. they are either variables or constants. All other nodes represent binary expressions of the form (Left (Right). (can be a binary arithmetic operator (. , +, -, /) having two branches (“Left”, “Right”) or a unary mathematical function such as ln, exp, sin, etc. having the argument of the function always placed in the “Left” branch. We provide the following expression (Eq 3.1.) as an example to be used throughout this paper for illustrating the mechanics of SIIA’s three components.

[image: image21.wmf]123413

(()*())()

xxxxsinxx

++++

.

(3.1)

In (3.1), the partial expression “
[image: image22.wmf]13

()

sinxx

+

” contains one unary operator (Sine) that always branches out to its left, however, the addition operator within the Sine operator is a binary operator connecting x1 and x3. The binary tree pertaining to this example is illustrated in Figure 2.

3.2. Rule operator: Interval propagation through a binary tree

Interval bounds for subexpressions (intermediate nodes) are calculated with a bottom-up tree traversal. First, the interval ranges of each leaf (variable or constant) are substituted into the subexpressions at the next higher level by using the connecting operators. This process is repeated by accessing the next higher level until the root node is reached. The pseudocode of the rule is given in Figure 3 and propagated intervals for the expression in Eq (3.1) are illustrated in Figure 2.

This recursive propagation is realized using the monotonicity property of elementary interval operations (binary operator) and functions (unary operator). Given the fact that Q., G, and H are isotone inclusion functions, for any recursive definition of arithmetical expression q = h (g, the range q(Y) is accurately represented by Q(Y) = G(Y) (H(Y). Consequently, interval propagation over a binary tree results in an accurate calculation of subexpression intervals.

3.3. Symbolic Inference Rule (SIR) and Labeling Procedure SIR_Tree
In the maximum bound variant of SIR (SIR-bounds), one interval bound is labeled at a time at each level of the tree by executing forward and backward chaining to end up with the pair of source variables (leaves) that contribute most to
[image: image23.wmf]F(Y)

. The couple of source variables identified are subdivided in the next iteration.
Suppose we proceed to identify a source variable on the binary tree of a function, starting from the root node. There are two possible branches to take from any parent node. From here on, we denote a parent at tree level k as Dk, and the nodes Left and Right that are its subbranches, as Lk+1 and Rk+1. Further, we define (k as labeled bound at level k.

Let us also denote the interval bounds of parent node Dk by
[image: image24.wmf][]

kk

D,D

, and those of the subbranches as
[image: image25.wmf][]

k+1k+1

LL

,

 and
[image: image26.wmf][]

k+1k+1

RR

,

. As mentioned before, we label
[image: image27.wmf]0

D

, i.e.,
[image: image28.wmf]()

FY

, at root level (level zero) of the tree so as to reduce PY and result in a convergent rule.
For the root node, we determine which pair of interval bounds (
[image: image29.wmf]{

Θ}

11

LR

,
[image: image30.wmf]{}

11

L

ΘR

,
[image: image31.wmf]{}

11

L

ΘR

,
[image: image32.wmf]{}

11

L

ΘR

) results exactly in
[image: image33.wmf]0

D

 when connected by their operator. Then, we compare the absolute values of individual bounds in the pair and take their maximum to choose the corresponding L or R branch. For instance, if
[image: image34.wmf]{

Θ}

11

LR

 =
[image: image35.wmf]0

D

, and when |
[image: image36.wmf]1

L

| = max{|
[image: image37.wmf]1

L

| , |
[image: image38.wmf]1

R

|}, then we take the Left branch and label |
[image: image39.wmf]1

L

| to go down to the next level (level 2). This procedure is recursively applied from top to bottom, each time searching for the bound pair resulting in the labeled bound at the upper level till a leaf is hit. (Note that when a leaf is a constant, its counterpart is always selected, that is, a pair of subbranches that include a constant is treated as a unary operator.). Once this forward tree traversal is over, all leaves in the tree corresponding to the variable selected are set to “Closed” status. The procedure then backtracks to the next higher level of the tree to identify the other leaf in the couple of variables that produce the labeled bound. Backtracking ends when the first “Open” leaf is encountered in this search. Hence, the couple of variables that contribute most to PY are identified. A formal procedure of SIR-bounds is given in Figure 3. The pseudocode of the labeling algorithm, SIR_Tree, is given in Figure 4. The start node is initialized as the root node. Before procedure SIR_Tree is called for any box Y, all variables that have reached their positive tolerance widths (relative to the largest width of the variables that are used in the computation on the pending list) and that cannot be subdivided in the next iteration are set to “Closed” status. This is necessary, since otherwise the direction selection rule could choose only some of the possible subdivision directions, and that may endanger the convergence of the IPA.

As an alternative to the above described rule, SIR–bounds, we have also investigated another one (called SIR- widths), that chooses that branch of the computation tree which has the largest width of the expression inclusion related to the given node. In case the two widths are equal, we followed that branch which belonged to the above given symbolic inference.

3.4. An illustration of SIR and SIR_Tree procedures

Suppose we have the example given in Figure 2 with the expression interval [-166, 451]. Then, “451” is selected as the labeled bound (0 at the root node. In SIR-bounds, we next determine which pair of interval bounds (
[image: image40.wmf]{+}

11

LR

,
[image: image41.wmf]{}

11

L+R

,
[image: image42.wmf]{}

11

L+R

,
[image: image43.wmf]{}

11

L+R

) results exactly in
[image: image44.wmf]0

D

. The pair of interval bounds that provides 451 is (450, 1) since “450+1= 451”. Hence,
[image: image45.wmf]11

L

ΘR

=
[image: image46.wmf]0

D

. We then compare the absolute values of individual bounds in this pair and take their maximum as the label at level k+1. (k+1=max {
[image: image47.wmf]11

L,R

}=
[image: image48.wmf]1

L

= 450. All steps of SIR_Tree for SIR-bounds and SIR-widths are provided below in detail and decisions are illustrated in Figure 5 and Figure 6 with bold arrows respectively.

	SIR-bounds
	SIR-widths

	Level 0:
[image: image49.wmf][]

00

DD

,

= [-166, 451]

(0 =
[image: image50.wmf]0

D

.

a (b = {(-165+1) or (450+1) or (-165-1) or (450-1) }

 = 451.
Hence, a (b=
[image: image51.wmf]11

L+R

, and

(1 = max {|
[image: image52.wmf]1

L

|, |
[image: image53.wmf]1

R

|} = max {|450 |, |1|}

 = 450 =
[image: image54.wmf]1

L

.

Level 1:
[image: image55.wmf][]

11

DD

,

= [-165, 450]

a (b = {(-11*2) or (30*2) or (-11*15) or (30*15)}

 = 450
(a (b =
[image: image56.wmf]22

L*R

,

(2 = max {|
[image: image57.wmf]2

L

|, |
[image: image58.wmf]2

R

|} = max {|30|, |15|} = 30 (
[image: image59.wmf]2

L

.

Level 2:
[image: image60.wmf][]

22

DD

,

 = [-11, 30]

a (b = {(-1-10) or (-1+20) or (10+20) or (10-10)}

 = 30
(a (b =
[image: image61.wmf]33

L+R

,

(3 = max {|
[image: image62.wmf]3

L

|, |
[image: image63.wmf]3

R

|} = max {|10|, |20|} = 20 (
[image: image64.wmf]3

R

.
	Level 0:
[image: image65.wmf][]

00

DD

,

= [-166, 451], (0 =
[image: image66.wmf]0

D

.

w(L1) = 615 and w(R1) = 2. Hence,

(1 = max { w(L1), w(R1) } = 615 = L1.

Level 1:
[image: image67.wmf][]

11

DD

,

= [-165, 450]

w(L2) = 41 and w(R2) = 13.

(2 = max { w(L2), w(R2) } = 41 = L2.

Level 2:
[image: image68.wmf][]

22

DD

,

 = [-11, 30]

w(L3) = 11 and w(R3) = 10.

(3= max { w(L3), w(R3) } = 11 = L3.

In case of SIR-bounds, this leads to
[image: image69.wmf]3

R

, a bound of leaf x2. The leaf pertaining to x2 is “Closed” from here onwards, and the procedure backtracks to Level 2. Then, SIR-bounds leads to the second source variable, x1.
In case of SIR-widths, this leads to L3, a bound of leaf x1. The leaf pertaining to x1 is “Closed” from here onwards, and the procedure backtracks to Level 2. Then, SIR-widths leads to the second source variable, x2.
As a final remark on this example, we would like to mention that the two 2-best parallel gradient based rules from the literature (Berner 1996) (Rules B/C) select x2 and x4 in parallel for re-partitioning this box. This results in a 10% lower reduction in the total pending status of all four siblings as compared to the reduction achieved by SIR-bounds and SIR-widths.
3.5. Convergence of SIR

First, we briefly summarize the major points in the convergence proofs. In the next two Lemmas, we show two exceptional subexpression forms where SIR may not be able to identify the source bounds at a given level k of the binary tree. In Corollaries 2 and 3, rules that deal with these exceptional cases are described. It is shown that the latter rules ensure the convergence for SIR. Theorem 1 is the basic convergence proof for SIR..

The following Lemmas (Lemmas 2 and 3) discuss even power, abs and trig operators (trig denotes any trigonometric function) where SIR cannot label an interval bound at level k+1 symbolically if some ambiguous conditions hold on subexpression intervals at the relevant levels of the binary tree.

Lemma 2.

Let the operator at any level k of a binary tree be (= “^m” (m is even) or (= “abs”, and let (k =
[image: image70.wmf]k

L

= 0. Further, let
[image: image71.wmf]k+1

L

< 0. Then, SIR cannot identify (k+1.

Proof of lemma 2.

The proof is constructed by providing a counter example showing that SIR cannot identify (k+1 when the operator at level k is an even power and (k = 0. Suppose that at level k we have the interval [0,16] and (k =
[image: image72.wmf]k

L

=0. Let the operator at level k be ^2. Since power is a unary operator, there is a single Left branch to this node at level k+1. Assume that the Left branch at level k+1 is a subexpression interval [-4, 2]. It is obvious that neither
[image: image73.wmf]1

k

L

+

nor
[image: image74.wmf]1

k

L

+

 results in (k. The case for the absolute value is similar. ■

Lemma 3.

Let trig denote any trigonometric function. Define maxtrig and mintrig as the maximum and the minimum values trig can take during one complete cycle. Further, let the operator at any level k of a binary tree be (= “trig”, and maxtrig ([
[image: image75.wmf]k

L

,
[image: image76.wmf]k

L

] ({-(, (} or mintrig ([
[image: image77.wmf]k

L

,
[image: image78.wmf]k

L

] ({-(, (}. Then, SIR may not be able to identify (k+1.

Proof of lemma 3.

Similar to Lemma 2, a counter example is sufficient for a proof. Suppose we have the (= “sin” operator at level k and the interval [
[image: image79.wmf]k

L

,
[image: image80.wmf]k

L

]= [0.5, 1]. Let the interval of the unary Left branch at level k+1 be [
[image: image81.wmf]1

k

L

+

,
[image: image82.wmf]1

k

L

+

] = [(/6, 2(/3]. Both
[image: image83.wmf]1

k

L

+

and
[image: image84.wmf]1

k

L

+

 might result in
[image: image85.wmf]k

L

 and none result in
[image: image86.wmf]k

L

. The other stated cases can be proven similarly. ■

Lemma 4 shows that SIR symbolically identifies the correct pair of bounds resulting in (k at any tree level k as long as the ambiguities indicated in Lemmas 2 and 3 do not exist in a function expression.

Lemma 4.

For function expressions excluding the ambiguous subexpressions indicated in Lemmas 2 and 3, SIR identifies the correct couple of bounds at level k+1 that result exactly in (k at level k.

Proof of lemma 4.

True by the monotonicity property of the remaining elementary interval operations and functions. ■

We now describe convergent rules that can be applied by SIR_Tree in case labeling ambiguities described in Lemma 2 and Lemma 3 arise during tree traversal. Assume that there exist a subexpression of the type indicated in Lemma 2 at level k of a binary tree with (k =
[image: image87.wmf]k

L

=0 and an interval bound at level k+1,
[image: image88.wmf]1

k

L

+

< 0. The bound labeling rule to be applied by SIR_Tree at level k+1 is (k+1 =
[image: image89.wmf]1

k

L

+

. Assume that there exist a trig type subexpression at level k of a binary tree with maxtrig ([
[image: image90.wmf]k

L

,
[image: image91.wmf]k

L

] or mintrig ([
[image: image92.wmf]k

L

,
[image: image93.wmf]k

L

]. Assume that the bound labeling rule to be applied by SIR_Tree at level k+1 is (k+1 = max {
[image: image94.wmf]1

k

L

+

,
[image: image95.wmf]1

k

L

+

}.
THEOREM 1.
The IPA algorithm is convergent both with the SIR-bounds and with the SIR-widths interval subdivision selection rules in the sense that the sequence of leading intervals converge only to global maximizer points.
Proof of theorem 1.
Consider first the case when the SIR-bounds rule is applied. Assume that there exists such a subsequence {Xi} of the leading boxes that Xi is a subset of Xi-1, and there exist a point x’ in the search interval such that f(x’) < f(x*), and x’ is in each Xi. We demonstrate that it will imply a contradiction.

Prove first that during the subdivision in the subsequence {Xi} every such variable will be halved that appears in the computation tree. It is so since otherwise when a variable that is used during computation would keep the original width while the width of others converge to zero. As a consequence, then {Xi} converge to a point regarding those variables that appear in the computed expression. This fact provides the contradiction, since the selection of the subinterval with the largest upper bound on the objective function cannot converge to a point x’ in the search interval such that f(x’) < f(x*), due to the (-convergence assumed.

For the case of the SIR-widths subdivision direction selection rule the proof is similar, but it is more straightforward that the respective interval subsequence has such intervals the width of which converge to zero for all variables used within the computation.

Note that the leading interval subsequences do not necessarily converge to points of the search space. It may happen when there is at least a variable that does not contribute to the objective function, i.e. it is not used in the computation tree. In such cases there is a continuum of global maximizer points and the result intervals will highlight this phenomenon, since such variables will keep their width in the original search interval. This is true for both introduced selection rules, and this indicates that these are as sophisticated as the rules B and C that also have this feature. ■

Note that the proposed interval subdivision direction selection rules can be well inserted into the directed acyclic graph framework developed by the COCONUT project (Schichl and Neumaier, 2005).

4. Numerical Experiments

4.1. Comparison Basis

We compare the performance of SIR with two well established and efficient gradient-based subdivision direction selection rules (Rules B/C) from the literature (Ratschek and Rokne 1995, Csendes et al. 2000). These rules have become standard benchmarks because they have been identified as best performing among others after extensive testing. For a fair comparison with our multi-section approach, Rules B/C are also converted into multi-section rules by applying 2-best subdivision strategy (Berner 1996), i.e. the first two variables from the list (sorted according to Rules B/C) are partitioned. We describe these rules briefly below.

Rule B (Hansen 1992). Rule B chooses variables according to a maximal index consisting of variable interval width multiplied by the width of its respective first order derivative, w(Fi((X)), i.e.

Select xk: Ck = maxi=1...n{Ci }, where Ci =w(Xi)w(Fi((X)).
(4.1)

Rule C (Ratz 1992). The first order derivative of each variable is multiplied by the difference between its interval and its midpoint, Mi. The variable with the maximum index value is selected by Rule C.

Select xk: Ck = maxi=1...n{ Ci }, where Ci =w(Fi((X) (Xi - M i)).
(4.2)

4.2. Test Functions

27 well-known test functions from the literature are selected to compare performance of SIR against Rules B/C multi-section approach. The number of test instances becomes 34 as some functions such as Levy, Griewank and Schwefel are run with increasing number of dimensions (up to 30). The test functions are provided with their references and features in Table 1. The complexities and features of these test functions are discussed in detail in previous comparisons (e.g., Özdamar and Demirhan 2000) and they present a balanced portfolio from easy (such as Schwefel 3.1, Box), through moderate (e.g. Griewank) to difficult (e.g. Schwefel 3.7) problems with topological properties discussed in many global optimization references.
4.3. Results

Performance is measured in terms of the number of function and gradient calls, (indicated by FE and GE, respectively in Table 2), the CPU time in seconds, and the absolute deviation from the global optimum value. Positive absolute deviations occur in cases where methods fail to converge within 300 CPU seconds. The latter test instances are indicated at the end of Table 2. In SIR runs FE does not include calls at subexpression levels because they are partial expression calls, and the latter are assumed as computational overhead. FE indicated for SIR is equal to the number of tree traversals. Rules B and C are supported by the monotonicity test since it does not require additional gradient calls. Finally, all methods use the cut-off test.
A run is completed when for all non-discarded pending boxes the difference of the function upper bound over the box to the current lower bound is less than 1 x 10-13. The runs were executed on a PC with 2 GB RAM, 2.4 GHz Intel Xenon CPU, under Windows OS system. All codes were developed with Visual C++ 6.0 interfaced with the PROFIL interval arithmetic library.

In the last 5 rows of Table 2, we can observe that Rule B and C were not able to converge on 4 test functions within the CPU time limit imposed, but they are able to converge for the 5th one in 0.141 seconds. Similarly, the SIR-bounds rule does not converge for the first 3 functions, but it was able to converge in the 4th and 5th functions within 6.153 seconds, and 0.282 seconds respectively. However, SIR-widths does not converge for first 3 test functions and the 5th test function, but it was able to converge in 4th one within 6.374 seconds. The performance of SIR is notable in the function S288 where Rules B/C end up very far from the global optimum.
Considering all 34 test functions, the results obtained by Rules B and C are not significantly different. When the first part of Table 2 is analyzed, we observe that the average number of function calls for SIR is larger than those of Rules B and C (including their gradient calls). Despite this fact the average CPU time required for SIR-bounds is almost half of those of Rules B and C. That of SIR-widths is almost one-fourth of Rules B/C. The tree traversal overhead in SIR that can be compared with the task of calculating the gradient in the other rules. The number of best solutions obtained by SIR-widths compares very well with others. Hence, we can conclude that SIR’s symbolic methodology of selecting the maximum impact variables is more efficient than that of the function rate of change based rules.

In Table 3, we provide a summary of total CPU times taken by all rules for functions with less than five dimensions and for those greater than 5 dimensions. In the first part of Table 3, we observe that SIR’s performance is inferior in test functions up to 5 dimensions. In problems with larger dimensions, its performance is significantly superior as compared to Rules B and C. When the outlier CPU time (Griewank 20D) was removed from this set, we have found the difference in performance statistically significant (at a 5% significance level). In Table 3, the total CPU time needed by all three methods is given for the first 29 test problems (split into less than or greater than 5 dimensions) where all methods converge. This outcome is expected because the sequence of variables to be partitioned gains more importance in larger dimensional problems. Both Rules B and C are affected by the width of variable domains, and this tends to push the selected variable sequence into a more balanced manner in terms of box size. However, the size of variable domains has a more implicit impact on the choice of variables in SIR.

	Dimension
	SIR-bounds
	SIR-width
	RULE B
	RULE C

	n < 5
	16.973
	6.231
	2.594
	2.765

	n >= 5
	44.173
	22.447
	100.914
	100.911

Table 3. Total CPU times in seconds for small and larger size problems.

5. Conclusion

A new Symbolic Interval Inference Approach (SIIA) has been developed to improve the convergence rate in Interval Partitioning Algorithms (IPA). The proposed subdivision direction selection rule, SIR (Symbolic Inference Rule) stems from SIIA. SIIA is based on parsing a function into its sub-expressions, converting it into a binary tree where every subexpression is a node, and calculating their interval contributions to the total function range. SIR is a labeling procedure that traverses the sub-expressions tree to identify a pair of maximum impact variables. The impact of the variables need not be quantified in this approach. Hence, the inherent uncertainty that exists in interval gradient ranges is eliminated in SIIA. SIR targets a reduction in the overestimation of a parent box’s function range with its variable selection scheme.
Two versions of SIR are proposed here: SIR-bounds and SIR-widths. While the first version identifies and labels the maximum impact interval bounds at subexpression levels, the second version labels subexpressions with largest interval widths. The labeling procedure SIR_Tree, traverses through labeled subexpressions and finally reaches the maximum impact variables in the function expression.

SIR’s efficiency is illustrated by numerical tests and compared with function rate of change based rules from the literature. It is also possible to utilize SIR in any interval partitioning algorithm that is used in the fields of constrained optimization (COP) and continuous constraint satisfaction problems (CCSP). Currently, work is conducted to improve the solvability of standard CCSP using SIIA.

Acknowledgements

The present work has been partially supported by the grants OTKA T 048377, and T 046822. The authors are grateful for Hermann Schichl for his valuable comments and suggestions.
References

Bäck, T. (1996), Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms, Oxford University Press, New York.
Berner, S.(1996), New Results on Verified Global Optimization, Computing 57, 323-343.

Breiman, L. and Cutler, A., (1993). A deterministic algorithm for global optimization. Mathematical Programming 58, 179-199.
Casado, L.G., Martinez, J.A., and Garcia, I. (2001), Experiments with a new selection criterion in a fast interval optimization algorithm, J. Global Optimization 19, 247-264.

Ceberio, M. and Granvilliers, L. (2000), Solving Nonlinear Systems by Constraint Inversion and Interval Arithmetic, Lecture Notes in Artificial Intelligence 1930, 127-141.

Csallner, A.E., Csendes, T., and Markot, M.C. (2000a), Multi-section in interval branch and bound methods for global optimization I. Numerical Tests, J. Global Optimization 16, 219-228.

Csallner, A.E., Csendes, T., and Markot, M.C. (2000b), Multi-section in interval branch and bound methods for global optimization II. Theoretical Results, J. Global Optimization 16, 371-392.

Csendes, T. and Ratz, D. (1996), A review of subdivision selection in interval methods for global optimization, ZAMM Z. Angew. Math. Mech. 76, 319-322.

Csendes, T. and Ratz, D. (1997), Subdivision direction selection in interval methods for global optimization, SIAM J. Numerical Analysis 34, 922-938.

Csendes, T., Klatte, R., and Ratz, D. (2000), A Posteriori Direction Selection Rules for Interval Optimization Methods, CEJOR Central European J. Operations Research 8, 225-236.

CUTEr: A Constrained and Unconstrained Testing Environment, revisited. http://cuter.rl.ac.uk/cuter-www/problems.html
Hammer, R., Hocks, M., Kulish, U., and Ratz, D. (1993), Numerical Toolbox for Verified computing I, Springer-Verlag, Berlin.

Granvilliers, L., Monfroy, E., and Benhamou, F. (2001), Symbolic-interval cooperation in constraint programming, Proceedings of the 2001 International Symposium on Symbolic and Algebraic Computation, London, Ontario, Canada.
Granvilliers, L. (2004), An Interval Component for Continuous Constraints, J. Computational and Applied Mathematics 162, 79–92.

Hansen, E. (1992), Global Optimization Using Interval Analysis, Marcel Dekker Inc, New York.

Jansson, C. and Knüppel, O. (1995), A Branch and Bound Algorithm for Bound Constrained Global Optimization, J. Global Optimization 7, 297-331.

Kearfott, B. (1979), An efficient degree-computation method for a generalized method of bisection. Numerical Mathematics 32, 109-127.

Kearfott, R.B. and Kreinovich, V. (1996), Applications of Interval Computations, Applied Optimization, Kluwer, Dordrecht, The Netherlands.

Knüppel, O. (1994), PROFIL/BIAS – A Fast Interval Library, Computing 53, 277-287.

Levy, A.V., Montalvo, A., Gomez, S., and Calderon, A. (1982), Topics in Global Optimization, Lecture Notes in Mathematics 909, 18-33.
Lhomme, O., Gotlieb, A., and Rueher, M. (1998), Dynamic Optimization of Interval Narrowing Algorithms, Journal of Logic Programming 37, 165-183.

Moore, R.E. (1966), Interval Analysis, Prentice-Hall, Englewood Cliffs, New Jersey.

Moré, J. J., Garbow, B.S., and Hillstrom, K.E. (1981), Testing unconstrained optimization software, ACM Trans. Mathematical Software 7, 17-41.

Neumaier, A. (1990), Interval Methods for Systems of Equations, Encyclopedia of Mathematics and its Applications 37, Cambridge University Press, Cambridge.

Özdamar, L. and Demirhan, M. (2000), Experiments with new probabilistic search methods in global optimization, Computers and Operations Research 27, 841-865.

Pinter, J. (1992), Convergence qualification of adaptive partitioning algorithms in global optimization, Mathematical Programming 56, 343-360.

Ratschek, H. and Rokne, J. (1995), Interval Methods, R. Horst and P.M. Pardalos, (eds.), Handbook of Global Optimization, Kluwer Academic Publisher, Dordrecht, The Netherlands, 751-828.

Ratschek, H. and Rokne, J. (1988), New computer Methods for Global Optimization, John Wiley, New York.

Ratz, D. and Csendes, T. (1995), On the selection of subdivision directions in Interval Branch-and-Bound Methods for Global Optimization, J. Global Optimization 7, 183-207.

Ratz, D. (1992), Automatische Ergebnisverifikation bei globalen Optimierungsproblemen, Dissertation, Universitaet Karlsruhe, Germany.

Rosenbrock, H.H. (1970), State-Space and Multivariable Theory, Wiley Interscience Division, New York.

Sam-Haroud, D. and Faltings, B. (1996), Consistency techniques for continuous constraints, Constraints 1, 85–118.

Schichl, H. and Neumaier, A. (2005), Interval Analysis on Directed Acyclic Graphs for Global Optimization, J. Global Optimization, to appear.

Schittkowski, K. (1987). More Test Examples for Nonlinear Programming Codes, Lecture Notes in Economics and Mathematical Systems 282, Springer-Verlag, Berlin.

Schwefel, H.P. (1981), Numerical Optimization of Computer Models, Wiley & Sons, Chichester.

Törn, A. and Žilinskas, A. (1989), Global Optimization, Lecture Notes in Comput. Sci. 350, Springer-Verlag, Berlin.

FIGURES

Notation :
WLB: Working List of Boxes; M : Point interval at the mid-point of a box;

F(M) : range estimate at M ; (: tolerance for final interval length

Void IPA:

{

 Construct tree structure for f(x);

 Initialize: initial box = II (X); CLB = -(; WLB = I I (X);

 While WLB ((do

 {

 Select a box Y(WLB; Calculate F(Y);

 if (
[image: image96.wmf]()

FY

 > CLB) AND (At least for one variable interval, w(xi) >()

 {

 if (
[image: image97.wmf]F(Y)

> CLB), then CLB =
[image: image98.wmf]F(Y)

;

 Calculate the mid-point function value, F(M);

 if (F(M) > CLB), then CLB = F(M);

 Select subdivision direction;
// Activate Symbolic Interval Inference Rule;

 Subdivide Y to obtain four sibling boxes: S1, S2, S3, S4; // Multisection - 4 siblings
 WLB = WLB – {Y}; WLB = WLB + {S1, S2, S3, S4};

 } // endif
 else

 {

 if (w(xi)< (, (i), then store Y; WLB = WLB – {Y};

 }

 } // endwhile

 Report all stored boxes;

} // endprocedure
Figure 1. Generic pseudocode for IPA.

Level 0

Level 1

Level 2

Level 3

Figure 2. Interval propagation for “((x1+x2)*(x3+x4))+sin(x1+x3)”.

Node_Type SIR (Node_Type Node) {

 if (node_level k = 0), bnd =
[image: image99.wmf]F(Y)

;

 else bnd = (k;
 Identify the pair a (b (
 {
[image: image100.wmf]11

{}

kk

L

ΘR

++

,
[image: image101.wmf]{}

k+1k+1

L

ΘR

,
[image: image102.wmf]{}

k+1k+1

L

ΘR

,
[image: image103.wmf]{}

k+1k+1

L

ΘR

} : a (b = bnd;

 (k+1 = MAX {|a|, |b|};

 if (k+1 = | a |, then return the Left branch node as labeled at level k+1;

 else return the Right branch node as labeled at level k+1;

 }

Figure 3. Pseudocode for SIR-bounds (Input: node at level k; Output: labeled node at level k+1).

Node_Type SIR _Tree (Node_Type Start_Node) {

 If ((Count > 2) OR (All leaves are “Closed”)) then exit;

 Select_Node = SIR (Start_Node); // calls procedure SIR
 If (Select_Node. Status = “Open Node”)

 Start_Node = SIR_Tree(Select_Node);

 Else if (Select_Node. Status = “Open Leaf”) // found a source variable

 {

 Store source variable “Open Leaf”;

 Close all leaves of type “Open Leaf”;

 Count++;

 Start_Node = SIR_Tree (Next_Up(Select_Node)); // backtrack to identify second source

 }

 Else Start_Node = SIR_Tree (Next_Up(Select_Node)); // backtrack to identify second source

 Return Start_Node;

}

Figure 4. Procedure SIR _Tree: Recursive tree traversal of SIR. (Input: Root node; Output: pair of source leaves - variables).

Figure 5. Demonstration of the run of SIR_bounds on the example.

Figure 6. Demonstration of the run of SIR-widths on the example.

TABLES

Table 1. Description and references of the test functions.

	PROBLEM (DIMENSION)
	DESCRIPTION
	REFERENCE

	Ackley (4)
	Multimodal trigonometric function
	Website MATLAB / TEST/Lazauskas

	Brownal (10)
	Twice differentiable Sum of Squares.
	CUTEr

	Box 3D (3)
	Singular problem with manifold of solutions
	Schwefel (1981)

	Cos 4 (4)
	Multimodal trigonometric function
	Breiman, Cutler (1993)

	Dixon3dq (10)
	Twice differentiable quadratic function
	CUTEr

	Djong’s Function 2 (8)
	Global optimum inside a long, narrow, parabolic shaped flat valley, slow convergence in the valley
	De Jong (1975)

	Eg1 (3)
	Twice differentiable trigonometric function
	CUTEr

	Exp 6 (6)
	Exponential function
	Breiman, Cutler (1993)

	Extended Kearfott (4)
	Polynomial function
	Kearfott (1979)

	Extrosnb (10)
	Twice differentiable Sum of Squares.
	CUTEr

	Genhumps (5)
	Twice differentiable Sum of Squares.
	CUTEr

	Griewank (5, 10, 20)
	Wide spread regularly distributed maxima, trigonometric
	http://iridia.ulb.ac.be/langerman/ ICEO.html

	Hartman (6)
	4 local minima
	Törn and Zilinskas (1989)

	Hs045 (5)
	Twice differentiable geometric function
	CUTEr

	Levy 14,16,18 (3, 5,7)
	2700, 105, 108 local minima, trigonometric
	Levy et al. (1981)

	Levy 10,11,12 (5, 8, 10)
	105 , 108 , 1010 local minima, trigonometric
	Levy et al. (1981)

	Michalewicz (5)
	Multimodal trigonometric function, function values around narrow peaks give little information
	http://iridia.ulb.ac.be/langerman/ ICEO.html

	Powell (4)
	Singular, Hessian at origin
	Moré et. al, (1981)

	Rastrigin (8)
	Highly multimodal trigonometric, regularly distributed local maxima
	Website MATLAB / TEST/Lazauskas

	Rosenbrock (10)
	Long curved only slightly decreasing valley
	Rosenbrock (1970)

	S271 (6)
	Twice differentiable quadratic function
	Schittkowski, K., (1987).

	S288 (20)
	Twice differentiable quadratic function
	Schittkowski, K., (1987).

	Schwefel 1.2 (4)
	Continuous unimodal function
	Schwefel (1981)

	Schwefel 3.1 (3)
	Unimodal function
	Schwefel (1981)

	Schwefel 3.7 (15, 30)
	Singular Hessian at x* = 0
	Schwefel (1981)

	Shekel (4; m=10)
	Multimodal test function
	Törn and Žilinskas (1989)

	Sphere (7)
	Unimodal
	http://iridia.ulb.ac.be/largerman/ ICEO.html

Table 2. Comparison of numerical results.

[image: image104.emf]RULE B RULE C

FE CPU FE CPU FE GE CPU FE GE CPU

Box 3D(3D) 180 0.407 164 0.296 140 141 0.313 140 141 0.312

Eg1 (3D) 414 0.203 292 0.125 12 13 0.016 12 13 0.016

Levy 14 (3D) 324 0.142 156 0.095 164 165 0.172 164 165 0.188

Powell (4D) 1224 0.875 1224 0.859 1000 1004 1.141 1060 1061 1.297

Ackley (4D)

$

4260 2.950 416 0.312 - - - - - -

Cos4 (4D) 5460 6.771 4664 4.263 276 277 0.391 276 277 0.391

Extended Kearfott (4D) 296 0.125 296 0.156 432 433 0.421 432 433 0.421

Schwefel 1.2 (4D) 1488 5.500 260 0.125 200 201 0.140 200 201 0.140

hs045 (5D) 320 0.375 512 0.530 20 21 0.015 20 21 0.047

Griewank (5D) 316 0.359 252 0.234 240 241 0.390 240 241 0.391

Levy 10 (5D) 316 0.453 304 0.423 236 237 0.719 236 237 0.874

Levy 16(5D) 416 0.469 340 0.155 268 269 0.594 268 269 0.594

Genhumps (5D) 10556 11.384 496 0.593 416 417 1.155 416 417 1.155

Exp 6 (6D) 624 0.671 572 0.514 28 29 0.062 28 29 0.062

S271 (6D) 932 0.719 524 0.344 520 521 0.781 520 521 0.781

Sphere (7D) 384 0.281 384 0.281 108 109 0.203 108 109 0.203

Levy 18 (7D) 416 0.500 532 0.765 364 365 1.624 364 365 1.624

Rastrigin (8D) 538 1.187 492 0.765 488 489 2.140 488 489 2.140

Levy 8 (8D) 568 1.311 580 1.483 380 381 3.156 380 381 3.156

Djong's Function 2(8D) 488 0.717 488 0.750 484 485 2.219 488 489 2.220

Rosenbrock (10D) 652 1.410 652 1.389 720 721 6.156 708 709 6.047

Griewank (10D) 640 2.017 572 1.110 488 489 3.578 484 485 3.484

Extrosnb (10D) 572 1.141 572 1.145 552 553 4.437 544 545 4.338

Dixon3dq (10D) 616 1.297 616 1.329 644 655 3.859 588 589 3.687

Levy 12 (10D) 672 1.915 564 1.529 472 473 6.422 472 473 6.422

Brownal (10D) 648 3.393 608 2.184 484 485 5.422 484 485 5.516

Schwefel 3.7 (15D) 128 0.172 128 0.203 124 125 1.313 124 125 1.313

Griewank (20D) 1332 13.590 1120 5.891 960 961 39.482 972 973 39.733

Schwefel 3.7 (30D) 252 0.812 252 0.830 244 245 17.187 244 245 17.124

Average 1208 2.108 622 0.989 374 375 3.697 455 456 3.703

Standard Deviation 2141 3.283 815 1.266 255 256 7.832 259 259 7.865

No. of Best - 8 - 16 - - 6 - - 5

RULE B RULE C

FE Abs. Dev FE Abs. Dev. FE GE Abs. Dev. FE GE Abs. Dev.

Shekel (4D - m=10) 10712 0.008 10656 0.000 17182 17183 0.000 17182 17183 0.000

Michalewicz (5D) 10112 2.884 14292 0.000 17506 17507 0.000 17274 17275 0.000

Hartman (6D) 9636 0.163 12144 0.002 9484 9485 0.000 9484 9485 0.000

S288 (20D) 1356 0.000 135 0.000 6196 6197 3000.000 10576 10577 3000.000

Function (Dimension)

SIR - Bounds

SIR-Widths

Function (Dimension)

SIR - Bounds SIR - Widths

Problems not converged within 300 CPU secs.

$: indicates problem in computing Gradient value

[1, 5]

[

+

+

sin

+

*

+

3

x

1

x

4

x

3

x

2

x

1

x

[-1, 10]

[-11, 30]=[-11, 10+20]

[-165, 450]=[-165, 30*15]

[-1, 1]

[-166, 451]=[-166, 450+1]

[1, 10]

[-166, 451]

[-165, 450]

[-1, 1]

[0, 15]

[2, 15]

[-11, 30]

[1, 5]

[-1, 10]

[1, 10]

[1, 5]

[-10, 20]

[-1, 10]

+

sin

+

*

+

+

x3

x1

x4

x3

x2

x1

[-1, 10]

[0, 15]

[-1, 10]

w([-11, 30]) = 41

w([-165, 450]) = 615

w([-1, 1]) = 2

[-166, 451]=[-166, 450+1]

[-1, 10]

[0, 15]

[2, 15]

[1, 5]

[1, 10]

[1, 5]

20]

-10,

[

+

+

sin

+

*

+

3

[2, 15] =13

[1, 5]

x

1

x

4

x

3

x

2

x

1

x

20]

-10,

� Nanyang Technological University, School of Mechanical and Aerospace Engineering, Systems and Engineering Management Division, 50 Nanyang Avenue, Singapore 639798.

� Institute of Informatics, University of Szeged, H-6701 Szeged, P.O. Box 652, Hungary. Corresponding author, email address: csendes@inf.u-szeged.hu

26
1

_1172752593.unknown

_1172752882.unknown

_1172753296.unknown

_1172753533.unknown

_1172753673.unknown

_1172753729.unknown

_1186240399.xls
Result

		

								Function (Dimension)		SIR - Bounds				SIR - Widths						RULE B						RULE C

										FE		CPU		FE		CPU		FE		GE		CPU		FE		GE		CPU

								Box 3D(3D)		180		0.407		164		0.296		140		141		0.313		140		141		0.312

								Eg1 (3D)		414		0.203		292		0.125		12		13		0.016		12		13		0.016

								Levy 14 (3D)		324		0.142		156		0.095		164		165		0.172		164		165		0.188

								Powell (4D)		1224		0.875		1224		0.859		1000		1004		1.141		1060		1061		1.297

								Ackley (4D)$		4260		2.950		416		0.312		-		-		-		-		-		-

								Cos4 (4D)		5460		6.771		4664		4.263		276		277		0.391		276		277		0.391

								Extended Kearfott (4D)		296		0.125		296		0.156		432		433		0.421		432		433		0.421

								Schwefel 1.2 (4D)		1488		5.500		260		0.125		200		201		0.140		200		201		0.140

								hs045 (5D)		320		0.375		512		0.530		20		21		0.015		20		21		0.047

								Griewank (5D)		316		0.359		252		0.234		240		241		0.390		240		241		0.391

								Levy 10 (5D)		316		0.453		304		0.423		236		237		0.719		236		237		0.874				16.973		6.231		2.594		2.765

								Levy 16(5D)		416		0.469		340		0.155		268		269		0.594		268		269		0.594

								Genhumps (5D)		10556		11.384		496		0.593		416		417		1.155		416		417		1.155

								Exp 6 (6D)		624		0.671		572		0.514		28		29		0.062		28		29		0.062

								S271 (6D)		932		0.719		524		0.344		520		521		0.781		520		521		0.781

								Sphere (7D)		384		0.281		384		0.281		108		109		0.203		108		109		0.203

								Levy 18 (7D)		416		0.500		532		0.765		364		365		1.624		364		365		1.624

								Rastrigin (8D)		538		1.187		492		0.765		488		489		2.140		488		489		2.140

								Levy 8 (8D)		568		1.311		580		1.483		380		381		3.156		380		381		3.156

								Djong's Function 2(8D)		488		0.717		488		0.750		484		485		2.219		488		489		2.220

								Rosenbrock (10D)		652		1.410		652		1.389		720		721		6.156		708		709		6.047

								Griewank (10D)		640		2.017		572		1.110		488		489		3.578		484		485		3.484

								Extrosnb (10D)		572		1.141		572		1.145		552		553		4.437		544		545		4.338

								Dixon3dq (10D)		616		1.297		616		1.329		644		655		3.859		588		589		3.687

								Levy 12 (10D)		672		1.915		564		1.529		472		473		6.422		472		473		6.422

								Brownal (10D)		648		3.393		608		2.184		484		485		5.422		484		485		5.516

								Schwefel 3.7 (15D)		128		0.172		128		0.203		124		125		1.313		124		125		1.313

								Griewank (20D)		1332		13.590		1120		5.891		960		961		39.482		972		973		39.733

								Schwefel 3.7 (30D)		252		0.812		252		0.830		244		245		17.187		244		245		17.124

								Average		1208		2.108		622		0.989		374		375		3.697		455		456		3.703

								Standard Deviation		2141		3.283		815		1.266		255		256		7.832		259		259		7.865

								No. of Best		-		8		-		16		-		-		6		-		-		5

								Problems not converged within 300 CPU secs.

								Function (Dimension)		SIR - Bounds				SIR-Widths						RULE B						RULE C

										FE		Abs. Dev		FE		Abs. Dev.		FE		GE		Abs. Dev.		FE		GE		Abs. Dev.

								Shekel (4D - m=10)		10712		0.008		10656		0.000		17182		17183		0.000		17182		17183		0.000

								Michalewicz (5D)		10112		2.884		14292		0.000		17506		17507		0.000		17274		17275		0.000

								Hartman (6D)		9636		0.163		12144		0.002		9484		9485		0.000		9484		9485		0.000

								S288 (20D)		1356		0.000		135		0.000		6196		6197		3000.000		10576		10577		3000.000

								Schwefel 3.1(3D)		308		0.000		21072		0.000		220		221		0.000		220		221		0.000

								*: converged in 6.374 secs.				**: converged in 0.282 secs.								***: converged in 6.153 secs.

								****:converged in 0.141secs.				$: Problem in computing gradient

_1172753591.unknown

_1172753359.unknown

_1172753516.unknown

_1172753336.unknown

_1172752936.unknown

_1172752947.unknown

_1172752892.unknown

_1172752856.unknown

_1172752866.unknown

_1172752613.unknown

_1172731551.unknown

_1172732104.unknown

_1172752574.unknown

_1172732102.unknown

_1172731889.unknown

_1172732050.unknown

_1172732079.unknown

_1172732087.unknown

_1172732062.unknown

_1172731903.unknown

_1172731563.unknown

_1172730350.unknown

_1172731392.unknown

_1172731516.unknown

_1172731542.unknown

_1172731477.unknown

_1172731486.unknown

_1172731458.unknown

_1172731258.unknown

_1172731300.unknown

_1172731288.unknown

_1172731199.unknown

_1172731046.unknown

_1172730927.unknown

_1172730941.unknown

_1172730561.unknown

_1172730576.unknown

_1172730696.unknown

_1172730749.unknown

_1172730669.unknown

_1172730568.unknown

_1172730553.unknown

_1172729593.unknown

_1172729945.unknown

_1172730135.unknown

_1172730320.unknown

_1172730343.unknown

_1172730245.unknown

_1172730071.unknown

_1172729988.unknown

_1172730012.unknown

_1172729697.unknown

_1172729867.unknown

_1172729890.unknown

_1172729753.unknown

_1172729654.unknown

_1172729669.unknown

_1172729616.unknown

_1172729377.unknown

_1172729440.unknown

_1172729530.unknown

_1172729546.unknown

_1172729515.unknown

_1172729400.unknown

_1172729426.unknown

_1172729388.unknown

_1172729138.unknown

_1172729185.unknown

_1172729353.unknown

_1172729160.unknown

_1172729092.unknown

_1172729124.unknown

_1166711841.unknown

_1172729083.unknown

_1166711798.unknown

