
myjournal manuscript No.
(will be inserted by the editor)

A reliable area reduction technique for solving

circle packing problems

Mihály Csaba Markót1, Tibor Csendes2

1 Advanced Concepts Team, ESTEC, European Space Agency. Keplerlaan 1,
2201 AZ Noordwijk, The Netherlands.

2 University of Szeged, Institute of Informatics. H-6701 Szeged, P.O. Box 652,
Hungary.

Received: date / Revised version: date

Abstract We are dealing with the optimal, i.e. densest packings of con-
gruent circles into the unit square. In the recent years we have built a nu-
merically reliable, verified method using interval arithmetic computations,
which can be regarded as a ‘computer-assisted proof’. An efficient algorithm
has been published earlier for eliminating large sets of suboptimal points of
the equivalent point packing problem. The present paper discusses an in-
terval arithmetic based version of this tool, implemented as an accelerating
device of an interval branch–and–bound optimization algorithm. In order
to satisfy the rigorous requirements of a computational proof, a detailed
algorithmic description and a proof of correctness are provided. This elim-
ination method played a key role in solving the previously open problem
instances of packing 28, 29, and 30 circles.

Key words circle packing, interval arithmetic, area reduction, computer-
assisted proof

AMS subject classification 52C15, 52C26, 65G30, 90C30, 90C57

1 Introduction

The original circle packing problem is the following: place a given number n

of congruent circles without overlapping into a unit square maximizing the

diameter of the circles. It is easy to see that an equivalent problem is given
by placing a given number n of points into the unit square maximizing the

minimal squared distance between the pairs of points [14]. We call the latter
problem setting as point packing. An optimal solution of the circle packing
problem is determined by an optimal solution of the point packing problem,
and vice versa.

2 Mihály Csaba Markót, Tibor Csendes

Formally, we are looking for all optimal solutions of

maximize min
1≤i6=j≤n

(xi − xj)
2 + (yi − yj)

2
, (1)

s.t. 0 ≤ xi, yi ≤ 1, i = 1, 2, . . . , n,

where [0, 1]2 is the unit square, and we place the ith point at (xi, yi).
The objective function of the point packing problem can be written as

fn : R
2n → R, fn(x, y) = min

1≤i6=j≤n
(xi − xj)

2
+ (yi − yj)

2
, (2)

with 0 ≤ xi, yi ≤ 1, i = 1, 2, . . . , n.
Among other results obtained on this field, Locatelli and Raber has pub-

lished a DC based deterministic algorithm for the solution of circle packing
problem [5]. At one hand they could only locate approximate solutions, and
the other hand, their technique was not a reliable one: the errors commit-
ted e.g. by the roundings were not handled in a verified way. In this sense
their results for the n = 28, 29, and 30 cases was not the final word. Actu-
ally much better approximative results were known earlier. Our approach
is aimed to provide proven optimal solutions to these problem instances.

In order to handle the inaccuracies emerging in floating point computa-
tions, we apply interval computations [3,10,13]. The set of nonempty, real,
compact intervals is denoted by I, where each interval A ∈ I is given by A =
[A, A] = {a ∈ R | A ≤ a ≤ A}. Here A ∈ R and A ∈ R are called the lower
and upper bounds of A, respectively. The vector X = (X1, X2, . . . , Xn),
X ∈ I

n, and Xi ∈ I for i = 1, 2, . . . , n is called an n-dimensional box. The
basic arithmetic operations can be extended to intervals in such a way that
they fulfill the set theoretical definition A◦B := {a◦b | a ∈ A, b ∈ B}. Simi-
larly, the interval extension of a real-valued, continuous elementary function
ϕ (e.g. sin, abs, log) is given by Φ(A) := {ϕ(a) | a ∈ A}. In practice, the
result of an interval operation can be computed simply by using only the
lower and upper bounds of the argument intervals, while the result of an
elementary function call can be evaluated by applying monotonicity consid-
erations (and thus, often using the function values attained at the endpoints
of the argument interval).

In interval software libraries, the rounding errors of the common floating
point computations are controlled by directed outward rounding procedures
when computing the lower and upper bounds of interval-type results [2,4].

Interval arithmetic is a straightforward tool for providing lower and up-
per bounds for the range of a real, continuous function over a set of points.
(Note, that these enclosures usually overestimate the exact range.) This ob-
servation led to the development of interval branch–and–bound optimization
algorithms [3,9,13]. An important feature of such algorithms is the applica-
tion of the so-called accelerating tests. These tools discard those parts of the
search space (typically boxes), for which it is guaranteed that they cannot
contain global optimizer points.

A reliable area reduction method for circle packing 3

In [9] we designed and tested an interval B&B global optimization pro-
gram based on the commonly used interval packages Toolbox for C–XSC
[2] and PROFIL/BIAS [4]. This program has several possibilities for con-
trolling the branching process and involves sophisticated accelerating tools
for general use. Nevertheless, when we investigated its suitability for solving
circle packing problem instances, it turned out that we also need specific
accelerating tools to discard large, non-optimal search regions efficiently.
This can be achieved by utilizing the geometric properties of the prob-
lem class. In addition, we have learned that further features are needed to
carry out the global phase of the optimization process – e.g. to handle the
symmetric and equivalent packing configurations (resulting otherwise in an
astronomical number of equivalent optimizers). The first notable result of
this study was a reliable, validated method [6] available to verify the ear-
lier known global optimizers for n ≤ 27 with some exceptional problem
cases (where the number of subintervals turned out to be prohibiting). This
method included an accelerating test for the ‘method of active areas’ (see
below) using rectangular approximations of the search areas still of interest,
and applied a method called ‘tiling’ [1,11,12] during the global phase. (In
the tiling procedure the unit square is divided into non-overlapping regions.
The optimization algorithm can then be run on sets of tile combinations.)

In our second, improved algorithm [7,8], a more advanced method of
the active areas was implemented using a polygon approximation of the
non-discarded regions. Moreover, we proposed a new method for handling
the so-called free points (or free circles when packing circles), i.e. points that
can be slightly moved while keeping optimality. Such points are indicating
a positive measure set of global minimizers. Finally, we introduced an en-
hanced multiphase tiling method. As a result, we have managed to develop
a fully interval arithmetic based computer assisted technique for finding all

optimal point packings in a square, and we have successfully solved the ear-
lier unsolved problem instances of n = 28, 29, and 30. (Figure 1 shows the
found and verified solutions. The shaded circles show the above mentioned
free circles.)

Instead of enumerating the astronomical number of all possible tile com-
binations, the above, improved algorithm deals with sets of lower dimen-
sional subproblems (subsets of tile combinations). For each such subproblem
we start a branch-and-bound search that is not allowed to complete a big
number of steps, but instead, it is carefully checked whether all possibilities
of shrinking the regions of uncertainty for the position of global minimizer
points have been utilized. The substantial decrease in the size of the set of
points to be checked was always caused by the method of active areas. It is
why the details of the B&B frame algorithm, such as the stopping criterion
were not important: with the exception of the very last, high precision re-
finement phase (see [8]) we have never made more than 5 B&B iterations;
this was enough to exclude subproblems leading to suboptimal solutions.

In [7], the first results for n = 28 were reported with a substantial de-
crease of the uncertainty in circle centers. In [8] a more detailed description

4 Mihály Csaba Markót, Tibor Csendes

n = 28 n = 29 n = 30

Fig. 1 Verified optimal packing of 28, 29, and 30 circles into the unit square.

of the whole method was given – still without technical details w.r.t. the
new method of the active areas. However, since we present a computer-aided
proof, we must emphasize that a detailed algorithmic description of this tool
together with a proof of correctness is essentially required in order to allow
checking for correctness and reproducing the results. The present paper is
intended to complete this algorithmic description.

The hardware and software environment of the solution procedure was
a Pentium IV 1800 MHz computer with 1 GB RAM, using Linux, GNU
C/C++, and the interval libraries C–XSC Toolbox and PROFIL/BIAS
[2,4]. The bounds and their widths obtained and first published in [8] for
the respective optimal values of (2) were

F ∗
28 = [0.2305354936426673, 0.2305354936426743], w ≈ 7 · 10−15,

F ∗
29 = [0.2268829007442089, 0.2268829007442240], w ≈ 2 · 10−14,

F ∗
30 = [0.2245029645310881, 0.2245029645310903], w ≈ 2 · 10−15.

The total running time was approximately 53, 50, and 21 hours, respectively
— in contrast to the anticipated execution time of around ten years required
by the earlier best technique. The solution needed the storage of around one
million of subintervals. According to the calculation of the volumes of the
respective sets the uncertainty in the location of the optimal packing circles
has been decreased by as much as 711, 764, and 872 orders of magnitude,
respectively. The next problem cases for n = 31 to n = 33 mean closely a
thousand times more tile combinations to be checked, and in this way they
do not seem to be solvable by the present method in a short time.

In the sequel we describe the already mentioned interval ‘method of
active areas’ as the most effective interval accelerating tool of our B&B
algorithm. The proof of correctness of the algorithms is also given.

A reliable area reduction method for circle packing 5

2 Method of active areas using polygons

Our accelerating tests are based on a guaranteed lower bound of the max-
imum of (1), denoted by f̃ . This value is often called as cutoff value, since
it enables us to erase points in the investigated box for which the objective
function value is less than f̃ . On the other hand, we often need a validated
f̃0 lower bound for the maximum of the minimal pairwise distance between
the pairs of points, i.e. for the maximum of the square root of the objec-
tive function. Assuming the existence of a proper f̃ cutoff value, f̃0 can be
obtained simply by an interval square root evaluation:

fs :=

√

f̃ ∈ I, f̃0 := fs. (3)

The ‘method of active areas’ or ‘active regions’ is known from the liter-
ature (e.g. [1,11,12]) as a part of non-interval type methods. The key idea
of this method is the following: Assume that we have a validated f̃0 lower
bound for the maximum of the minimal pairwise distance between the pairs
of points. Considering (X, Y) ⊆ [0, 1]2n as a subbox of the search space
[0, 1]2n, from each (Xi, Yi) (corresponding to a rectangle enclosing the ith
point to be packed) one can iteratively delete those points which have a
distance smaller than f̃0 to all points of another rectangle (Xj , Yj), i 6= j.

First we outline a possible basis algorithm for the method of active areas
(see Algorithm 1): Consider a box (X, Y) ⊆ [0, 1]2n. The ith component of X

and Y ((Xi, Yi) ⊆ [0, 1]2) is called the ith initial active region, i = 1, . . . , n.
During the procedure the active regions Ri of the different components are
reduced iteratively, until either one of the active regions becomes empty
or a pre-given iteration limit Itmax is reached. In the first case the whole
box (X, Y) can be erased (Step 5). In the latter case a new box (X ′, Y ′)
containing the remaining regions will be stored (Steps 7 and 8). The most
important part of Algorithm 1 is Step 4 in which we delete some points
(forming a so-called inactive region) of Ri having a distance smaller than
f̃0 from each point of Rj .

One crucial part of the algorithm is the representation of the intermedi-
ate active areas (i.e. the regions Ri). One can easily show that a set of points
within a 2-dimensional geometrical object having a distance of at least f̃0

from all points of another object may be non-convex or non-connected. Nev-
ertheless, a good approximation of the active and inactive point sets is vital
to erase as large inactive sets as possible. In [1], the initial active regions
were quantized into many rectangular pieces applying splittings both in hor-
izontal and in vertical directions, and the set of eliminated and remaining
pieces represented the inactive and active point sets, respectively. In [11], a
similar approach was applied but using only splittings in one direction. Un-
til now, the most effective realization is the one of Nurmela and Österg̊ard
[12], which approximates the active and inactive regions by polygons. Al-
though in a method working basically with multidimensional intervals the
latter solution is more difficult to implement, we found that this extra effort

6 Mihály Csaba Markót, Tibor Csendes

Algorithm 1 Method of active areas

Inputs: – f̃0: a validated lower bound of the square root of the global
maximum of (1),

– (X, Y) ⊆ [0, 1]2n: the box to be reduced,
– Itmax: the iteration limit.

Output: – (X ′, Y ′) ⊆ [0, 1]2n: a box containing the remaining areas.

1: for i := 1 to n do Ri := (Xi, Yi);
2: for k := 1 to Itmax do

3: for all (i, j), 1 ≤ i, j ≤ n, i 6= j do

4: R′
i := Diminish ij((Ri, Rj), f̃0); {comment: reduce Ri to R′

i}
5: if (R′

i = ∅) then return “(X ′, Y ′) is empty”;
6: Ri := R′

i;
7: for i := 1 to n do (X ′

i , Y
′
i) := Rectangular enclosure(Ri);

8: return (X ′, Y ′);

resulted in an outstanding improvement in the computational efficiency as
compared to the method using rectangular approximations. (Notice, that
the branching step of the B&B algorithm generates rectangular splittings
in a moderate way, thus, it is mixing the advantages of the different approx-
imation techniques.)

The method of [12] is based on the following Lemma and Theorem, and
demonstrated in Figure 2.

Lemma 1 [12]: If a point p is at a distance less than f̃0 from all the vertices

of a polygon R, it is at a distance less than f̃0 from all points of R.

Theorem 1 [12]: Assume that p1, . . . , pk are distinct points on the boundary

of a polygon Ri, such that the line segments plpl+1 for 2 ≤ l ≤ k − 2 are

edges of Ri, and that p1p2 and pk−1pk lay on the edges of Ri. If the points

pi, 1 ≤ i ≤ k are at a distance less than f̃0 from all vertices of Rj (i 6= j),
then the points in the polygon formed by p1, p2, . . . , pk are at a distance less

than f̃0 from all points of Rj .

Let the polygon Ri be determined by the vertices b1, . . . , bs, s ≥ 1. By
Theorem 1, the polygon formed by the convex hull of the points p1, . . . , pk

contains only inactive points, i.e. it can partly or fully be eliminated.

Definition 1 We call a polygon with consecutive vertices p1, . . . , pk, k ≥ 3,
and with edges p1p2, . . . , pk−1pk, pkp1 to be a ‘simple’ polygon, if each pair

of edges has at most one joint point as the joint endpoint of two consecutive

edges.

Invariance criterion: during the whole running of the interval imple-

mentation of Algorithm 1, each Ri, i = 1, . . . , n is either a point p1,

or a line segment p1p2, or a ‘simple’ polygon with consecutive vertices

(p1, . . . , pk), k ≥ 3.

A reliable area reduction method for circle packing 7

f

f
~

~p

p

p

5

4

1

6 p

p
p3 ~

f
2

l f
~

<

l

0

j

i

f
~

l

l

R

R

Fig. 2 A basic elimination procedure using polygons (s = 6, k = 6) with exact
arithmetic. The shaded region of Ri can be considered as the inactive region to
be eliminated.

In the sequel we will use the term ‘polygon’ for figures satisfying the
above invariance criterion.

Assuming exact computations, one can easily prove that if the polygons
Ri, i = 1, . . . , n are initialized as convex sets (as it is in the current method,
see Algorithm 1, Step 1), then they remain convex after each elementary
elimination step based on Theorem 1. But with finite precision arithmetic
the points p1 and pk cannot be evaluated exactly. In the method of Nurmela
and Österg̊ard the evaluated points p1 and pk are corrected by estimating
the possible computation error, while in the present method proper rec-
tangles as the guaranteed enclosures of p1 and pk are computed. However,
both methods may result in concave, or even self-intersecting Ri polygons.
To avoid the difficulty of representing and handling extremely irregular sets,
we have to make some restrictions for the shape of the polygons. This was
the reason of formulating the above invariance criterion.

The pseudo code of the proposed interval version of an elementary poly-
gon elimination step is given by Algorithm 2. In Algorithm 2 we consider
several cases depending on s: s = 1 is handled in Steps 4 and 5, while s = 2
and s ≥ 3 are considered in Steps 7 to 10, and Steps 11 to 17, respectively.
Note, that p0 = pk+1 may hold in Steps 12 and 13 of Algorithm 2; in this
case we construct R′

i without duplicating this point in the result polygon.

We represent polygons commonly as a sequence of consecutive vertices,
but we must assume that the coordinates of the vertices are machine num-
bers. (We start the elimination procedure with such polygons, see Algorithm
1, Step 1.) Each execution of Algorithm 2 results in either an empty set (Step
4), if we can provide a guarantee that each vertex of Ri is at a distance less

8 Mihály Csaba Markót, Tibor Csendes

Algorithm 2 Diminish ij – an interval version

Inputs: – Ri = Ri(b1, b2, . . . , bs): the polygon to be reduced,
– Rj = Rj(a1, a2, . . . , at): the polygon used for reducing Ri,

– f̃0: a validated lower bound of the square root of the global
maximum of (1).

Output: – R′
i: the remaining polygon of Ri.

1: for l := 1 to s do

2: if (it is guaranteed that d(bl, am) < f̃0, ∀m = 1, . . . , t) then mark bl

with a ‘−’ flag;
3: else mark bl with a ‘+’ flag;
4: if (all the bl have ‘−’) then return “R′

i is empty”;
5: else if (all the bl have ‘+’) then return R′

i := Ri;
6: Find a longest sequence of consecutive vertices bl with ‘−’, denoted by

p2, . . . , pk−1.
7: if (s = 2) then {comment: Ri is a line segment}
8: Denote the node of Ri differing from p2 by p0;
9: Find an enclosure P1 ∈ I

2 of a point p1 such that p1 is on the line
segment p0p2, and d(p1, am) < f̃0, ∀m = 1, . . . , t.

10: Build R′
i from P1, p2;

11: else {comment: s ≥ 3}
12: Denote the preceding node of p2 in Ri by p0;
13: Denote the succeeding node of pk−1 in Ri by pk+1;
14: Find an enclosure P1 ∈ I

2 of a point p1 such that p1 is on the line
segment p0p2, and d(p1, am) < f̃0, ∀m = 1, . . . , t.

15: Find an enclosure Pk ∈ I
2 of a point pk such that pk is on the line

segment pk−1pk+1, and d(pk, am) < f̃0, ∀m = 1, . . . , t.
16: Let d1 = pk+1, . . . , ds−k+2 = p0 be the consecutive vertices of Ri not

chosen in Step 6;
17: Build R′

i from P1, Pk, d1, . . . , ds−k+2;
18: return R′

i;

than f̃0 from Rj ; or a polygon (Step 5 or 18) which contains the polygon
that would be obtained assuming exact arithmetic.

Remark 1 Notice, that we need not assume any special properties of the
sequence p2, . . . , pk−1 of Step 6, the only requirement is that it consists of
consecutive vertices of Ri marked with ‘−’. For example, if S is such a
sequence, then each subsequence S ′ of consecutive vertices in S can also be
considered.

The first problem to be solved when implementing Algorithm 2 is that
with the usual floating point arithmetic one cannot decide reliably whether
the distance between two points (represented by machine numbers) is less
than a given machine number. Instead, we use interval arithmetic as follows:

A reliable area reduction method for circle packing 9

Algorithm 3 Step 9 and Step 14 of Algorithm 2

Inputs: – p0, p2: consecutive vertices of Ri. p0 has the flag ‘+’ and p2

has the flag ‘−’ (by interval computations),
– Rj = Rj(a1, . . . , at): the reducing polygon,

– F = f̃2
l ∈ I such that f̃l < f̃0.

– (Xi, Yi) ∈ I
2: the ith initial active region.

Output: – an inclusion P1 of an appropriate point p1.

1: for m := 1 to t do

2: if (D(p0, am) < F) then Cm := p0;
3: else Cm := ComputeC(p2, p0, am, F);
4: ind := argmint

m=1 D(Cm, p2);
5: P1 := Cind;
6: for m := 1 to t do

7: if (D(Cind, p2) ≥ D(Cm, p2)) then P1 := Comp Hull(P1, Cm);
8: P1 := Intersection(P1, (Xi, Yi));
9: return P1;

Marking the vertices of Ri by interval computations. Consider an arbitrary
vertex bl(xbl

, ybl
) of Ri, and denote the vertices of Rj by a1(xa1

, ya1
), . . . ,

at(xat
, yat

), t ≥ 1. Moreover, consider a machine number f̃l less than f̃0.
Such an f̃l can be determined by a direct downward rounding procedure
offered by most interval packages. Now compute D(bl, am) := (xbl

−xam
)2+

(ybl
−yam

)2 ∈ I, m = 1, . . . , t by natural interval extension considering each
coordinate as point interval and compute F := f̃2

l ∈ I also as an interval
inclusion. If

D(bl, am) < F, ∀m = 1, . . . , t,

then mark bl with ‘−’, otherwise mark bl with ‘+’. Clearly, bl receives the
flag ‘−’ only in cases when it is guaranteed that bl is at a distance less than
f̃l, and thus less than f̃0 from all the vertices of Rj . This guarantee has its
cost: the resulted set of nodes having the flag ‘−’ may only be a subset of the
set of nodes with flag ‘−’ obtained assuming exact computations. However,
in accordance with Remark 1 this fact has no effect on the correctness of
Algorithm 2.

Computing inclusion rectangles for p1 and for pk. The second problem to
be solved is to find a reliable alternative of the inaccurate floating-point
computation of p1 and pk. This is done at Steps 9, 14 and 15 of Algorithm
2. We consider only the case of p1, a similar process can be introduced for
pk. Clearly, with exact computations, our aim would be to find a point on

the line segment p0p2 which still can be eliminated, but which is as far from

p2 as possible. Obviously, p2 is a suitable choice for P1 (since it has ‘−’
flag), thus, if problems (due to the overestimation) occur while computing
P1, Step 9 and 14 can still return with P1 := p2. In the algorithm below we
evaluate an inclusion (i.e. a rectangle) P1 ∈ I

2 of an appropriate p1 point,

10 Mihály Csaba Markót, Tibor Csendes

2

p

(−)

0
1

c2

2

p

(−)

0

p

C =1
C2,2

C3,2

c

a3 a3
a1 1a

a2 a2

2,1C

C 3,1= C3

= C2

c3 = p1

p

(a) (b)

Fig. 3 Algorithm 3 with exact (left) and interval (right) arithmetic.

thus, we assume that p1 is on the line determined by p0 and p2, and it is at
a distance less than f̃0 from Rj .

A procedure implementing Algorithm 3 with exact computations would
work as follows (Figure 3/a): consider the half line H with endpoint p2 and
including p0p2. For each am compute a point cm lying on H , where the
distance of am and cm is exactly f̃l (such cm points must exist since p2

has the ‘−’ flag). Then find the cm which is the closest to p2 and set p1

to cm. The case of Figure 3/a results in p1 := c3. In contrast to the exact
computation, the interval algorithm evaluates for each m either

(i) a two dimensional point interval Cm on H which is not farther from p2

than the exact cm, or
(ii) a rectangle Cm containing the exact cm.

Figure 3/b shows the interval version of Algorithm 3, where C1 is deter-
mined by Step 2, while C2 and C3 are determined by Step 3.

The aim of the function call ComputeC(p2, p0, am, F) is to produce an
enclosure of the exact cm when D(p2, am) < F (this holds since p2 has a ‘−’
flag), and additionally, D(p0, am) ≥ F (thus, when the condition of Step 2
does not hold). In this case the exact cm must lay on the line segment p0p2,
and p2 6= cm. Step 3 of Algorithm 3 is always executed at least once, since
p0 has the flag ‘+’. Denoting the coordinates of the corresponding points
in the usual way, we have to solve the following system of equations for
cm(xcm

, ycm
) in interval way:

(ycm
− yp0

)(xp2
− xp0

) = (yp2
− yp0

)(xcm
− xp0

)

(xcm
− xam

)2 + (ycm
− yam

)2 = f̃2
l .

Here the first equation is equivalent to the statement that cm lays on the line
determined by p0 and p2 (when p0 6= p2) and the second equality expresses
that the distance of cm to am is f̃l.

This system can be solved in the common way but using interval compu-
tations (and handling the possibly different cases arising from the interval
valued discriminant). The intermediate computations can be reduced in
many steps. Since the basic ideas are clear, the technicalities of solving this

A reliable area reduction method for circle packing 11

system are not presented in the current paper. Since the interval evalua-
tions may result in significant overestimation (e.g. when one of the result
rectangles Cm,1, Cm,2 contains p2 or when the result boxes are overlapping)
we accept the result of the solution procedure only in cases when Cm,1 and
Cm,2 are disjunct, only one of them contains points from the half line H ,
and this solution does not contain p2. (One can easily check the above cri-
teria by comparing the bounds of Cm,1, Cm,2, p0, and p2.) In all other cases
the algorithm returns Cm := p2 as a ‘safety solution’. In Figure 3/b, both
for m = 2 and for m = 3 the result rectangles C2 := C2,1 and C3 := C3,1

can be accepted.

Remark 2 In a very extreme situation the accepted Cm may not contain
any points of the line segment p0p2. In that case Cm is set to p0 and as a
side effect we may obtain P1 = p0 as a result of Algorithm 3. This means
that although p0 obtained the flag ‘+’ by simple computations during the
marking, it would obtain the flag ‘−’ after a more complicated process
including ComputeC(). Obviously, this can happen very rarely in practice
and did not happen at all in our numerical studies. Consequently, in order
to keep our whole method to be as simple as possible, we do not reverse the
marking of p0 in such cases.

Steps 4 to 7 of Algorithm 3 determine P1 on the basis of the following
principle: consider all the possible sets of a number of t points where exactly
one point is chosen from each Cm. Then for each set find the element clos-
est to p2 and give a rectangular enclosure of those closest points. Such an
enclosure is given by a componentwise union of several rectangles after we
have executed Step 7 a few times. (The function call Comp Hull(P1, Cm)
gives the componentwise hull of its 2-dimensional interval arguments.) Steps
4 to 7 of Algorithm 3 implement the procedure above correctly due to the
following: Assume that there exists a point combination having its closest
point to p2 within Cm1

, m1 6= ind, where Cm1
is not added to P1. Then

D(Cind, p2) < D(Cm1
, p2) by Step 7. This means that all the points in

Cind are closer to p2 than any points in Cm1
, which contradicts the orig-

inal assumption. In Figure 3/b ind can be set to 3, and additionally, if
D(C3, p2) ≥ D(C2, p2) and D(C3, p2) < D(C1, p2) hold, then P1 is deter-
mined by the componentwise hull of C2 and C3.

Step 8 of Algorithm 3 does the rest of the work: since the ith initial active
region is the rectangle (Xi, Yi) (Algorithm 1, Step 1), the result polygon of
the exact version of Algorithm 2 is included in (Xi, Yi). Thus, P1 can be
intersected with this rectangle. Note that the intersection of Step 8 is not
empty: we know that p0p2 ⊆ (Xi, Yi) must contain a possible result point
p1.

Computing the result polygon R′
i. The only remaining problem to be solved

for the interval version of the method of active areas is the determination
of R′

i, i.e. the implementation of Steps 10 and 17 of Algorithm 2. First we
consider the more complicated Step 17:

12 Mihály Csaba Markót, Tibor Csendes

Algorithm 4 Step 17 of Algorithm 2

Inputs: – d1(= pk+1), . . . , ds−k+2(= p0): the nonempty set of consec-
utive vertices not selected in Step 6 of Algorithm 2,

– p2, pk−1: the first and the last element of the sequence of
vertices selected in Step 6 of Algorithm 2,

– P1, Pk: inclusions of p1 and pk, respectively,
– Ri: the polygon to be reduced.

Output: – R′
i: the result polygon.

1: K := ConvexHull(P1, Pk);
2: if (p0 6= pk+1) then

3: if (Separate({d2, . . . , ds−k+1}, {P1, Pk}, p0pk+1)) then

4: if (K ′ := ConvexHull(p0, pk+1, K) is determined) then

5: Let K ′ be denoted by K ′(p0, e1, . . . , eu, pk+1);
6: R′

i := R′
i(e1, . . . , eu, d1, . . . , ds−k+2);

7: return R′
i;

8: if (Separate({d2, . . . , ds−k+1}, {p2, pk−1}, p0pk+1)) then

9: R′
i := R′

i(p2, pk−1, d1, . . . , ds−k+2);
10: return R′

i;
11: else {comment: p0 = pk+1}
12: if (p0 6∈ K) then

13: if (R′
i := ConvexHull(p0, K) is determined) then return R′

i;
14: return Ri;

Implementation of Step 17 of Algorithm 2: We have the rectangles P1 and
Pk as inclusions of the points p1 and pk, respectively, where p1 and pk are
two suitable points (but not necessarily the same as for the exact algorithm)
of a result polygon of Algorithm 2. For our interval implementation we will
define a result polygon having vertices represented by machine numbers.
This polygon includes all the possible result polygons where p1 and pk are
chosen arbitrarily from P1 and Pk, respectively. Our implementation is given
by Algorithm 4. The essence of the algorithm is demonstrated by Figure 4.

The key function call of Algorithm 4 is performed in Steps 3 and 8 and
is called Separate(). It has three parameters: the first one is a set of points,
the second one can be a set of points or a pair of rectangles, and the third
one is a line L defined by two points. Separate() returns a true value only
if it is guaranteed that all the elements of the first parameter are located
on the one half plane determined by L and all the elements of the second
parameter are located on the other half plane. We do not allow touching
the line L. The above criterion looks to be a strict restriction, however, it
helps us to obtain polygons satisfying the required invariance criterion in
an easy way. During the computations Separate() returned true in almost
all cases. Note that the first parameter set of Separate() is allowed to be
empty.

A reliable area reduction method for circle packing 13

(−)

(−)

p 4

p 3

p 2

P5

1P

e 1

2e

4e 3e

p 6=

2d

3d
0p=4d

1d

(−)

Fig. 4 An example of Algorithm 4 for s = 7, k = 5, u = 4. The result polygon is
determined by the vertices e1, . . . , e4, d1, . . . , d4.

The other important function in Algorithm 4 is ConvexHull(), which
returns the convex hull polygon of its argument. In general, this could be
a difficult problem, especially with finite precision arithmetic. Nevertheless,
since both P1 and Pk are machine representable rectangles (or line segments
or points in special cases) with horizontal and vertical bounds, in Step 1
ConvexHull() can easily be determined. In Figure 4 the convex hull of P1

and P5 is determined by the two dotted line segments and the appropriate
edges of P1 and P5.

The evaluation of the convex hull in Step 4 is a slightly harder task.
Since it was called a large number of times, we decided to code it for this
particular purpose instead of using standard interval tools. If {cv} denotes
the set of vertices of K, we have to select that of the e1 := cj point, for
which the directed line segment −−→p0cj has one of the following properties for
all −−→p0cl, l 6= j: either −−→p0cj is in clockwise direction compared to −−→p0cl, or

p0, cj , and cl are collinear and p0cl ⊂ p0cj .

Moreover, we need an other vertex of K (denoted later by eu) as a result
of a similar process but considering pk+1 and counter clockwise orientation.
To solve these subproblems, we invoke the basic element of a general method
for generating convex hull sets (applied of course with interval arithmetic):
consider e.g. −−→p0cj and −−→p0cl as two vectors in the 3-dimensional space fitting
to the plane z = 0. Evaluate the interval inclusion of the third component

of the vector product (cj − p0)× (cl − p0) with point interval arguments and
arithmetic operations. Let P (−−→p0cj ,

−−→p0cl) ∈ I denote this inclusion. Now,

(i) if P (−−→p0cj ,
−−→p0cl) < 0, then it is ensured that −−→p0cj is located in counter

clockwise direction compared to −−→p0cl;
(ii) if P (−−→p0cj ,

−−→p0cl) > 0, then it is ensured that −−→p0cj is located in clockwise
direction compared to −−→p0cl;

14 Mihály Csaba Markót, Tibor Csendes

(iii) if P (−−→p0cj ,
−−→p0cl) = [0, 0], then it is ensured that p0, cj and cl are collinear.

If this is the case, but p0cl ⊂ p0cj cannot be proved, then we define the
convex hull to be undetermined;

(iv) in all the other cases we define the convex hull to be undetermined.

If the condition in Step 2 of Algorithm 4 holds, then the line segment
p0pk+1 is defined. If the condition of Step 3 is false or K ′ is undetermined
by the above, then we try to produce a solution polygon in Steps 8 to 10
using p2 and pk−1 instead of P1 and Pk.

If p0 = pk+1, then L is undefined. In this case (Steps 11 to 13) the set
{d2, . . . , ds−k+1} should necessarily be empty (due to the invariance prop-
erty of Ri). In Step 12 we test a property similar to the function Separate():
if p0 is guaranteed to be outside of K, then try to determine the convex hull
of p0 and K by a similar process as it was introduced for Step 4.

Finally, if the creation of R′
i was not possible, in Step 14 we return the

original Ri active region.
Implementation of Step 10 of Algorithm 2: Notice, that this step can be
realized as a special case of Algorithm 4: we have to determine the convex
hull of a point p2 and the inclusion rectangle P1. Obviously, Steps 11 to 14
of Algorithm 4 implements this correctly with K := P1.

3 The correctness of Algorithms 1 and 2

Theorem 2 The interval implementation of Algorithm 2 eliminates only

those points from Ri, which are guaranteed to be at a distance less than f̃0

from all points of Rj .

Proof. At first, notice that the result polygons satisfy the required invari-
ance property: the initial Ri (Algorithm 1, Step 1) is either a point or a line
segment or a rectangle. Assume that the input polygon Ri of Algorithm 2
satisfies the invariance property. If Ri is a point then the output of Algo-
rithm 2 is either a point or an empty polygon (Algorithm 2, Steps 4 and 5).
When Ri has more than one node, one can easily see that the separation
tests and the properties of obtaining convex hulls described in Algorithm
4 guarantee that the edges of the output polygon can only touch in the
required way. (Recall, that we allow concave shapes as result polygons.)

Let Ri = Ri(b1, . . . , bs) be the input polygon of Algorithm 2 (satisfying
the invariance criterion) and let R′

i be the output polygon produced by the
interval version of Algorithm 2. Consider the following cases:

(1) R′
i is empty. This can be resulted in only by Step 4 of Algorithm 2,

i.e. when all nodes of Ri obtain the flag ‘−’. Due to the reliable marking
of the vertices, this statement holds only if the exact computations also
provide the ‘−’ flag for all vertices, thus, when the whole polygon can be
deleted by Theorem 1.

(2) R′
i = Ri. The interval algorithm variant returns this result either if

all vertices of Ri are labeled with ‘+’ (Algorithm 2, Step 5), or if a ‘safety

A reliable area reduction method for circle packing 15

P1

(−) p 8

(−)p 5

(−) p 3

(−)p 6

9P

P1

9p

1p
3

d 2

(−)

(+)p 0

p 2iR’

1p

p=d1 10

(−) p 2

p 0=d4

(−)p 7

(−)4p

d

(a) (b)

Fig. 5 Proof of correctness of Theorem 2. Case (3b) for s = 2 (left) and case (3c)
for s ≥ 3 with s = 11, k = 9 (right).

solution’ is produced due to the overestimation or due to some technical
difficulties (see Algorithms 4 and 5). This time we do not erase any possible
inactive points from Ri.

(3) R′
i 6= Ri and R′

i is not empty. We investigate this case for different
values of s:

(3a) The case s = 1 cannot occur here since it is covered by the parts
(1) and (2) of the proof.

(3b) If s = 2, we perform Steps 11 to 14 of Algorithm 4 during Step
10 of Algorithm 2, as it was discussed above. In these steps we find that
p0 6∈ P1 and then successfully determine R′

i as the convex hull of a point
p0 and a rectangle P1 (see Figure 5/a). Here P1 is either a rectangle (with
p0, p2 6∈ P1) or P1 ≡ p2 (a ‘safety solution’) produced by Algorithm 3, and
it is ensured, that P1 contains a point p1 which is at a distance less than
f̃0 from Rj . Thus, only the line segment p0p1 must belong to the remaining
region. Clearly, this holds by the definition of the convex hull.

(3c) If s ≥ 3, we perform Algorithm 4 as Step 17 of Algorithm 2. Con-
sider the input polygon Ri with a nonempty set of consecutive vertices
p2, . . . , pk−1 labeled by ‘−’. The remaining nonempty set of nodes are de-
noted by d1 = pk+1, d2, . . . , ds−k+2 = p0. Here p0 = pk+1 is also possible
(see Steps 11 to 14 of Algorithm 4).
By our assumption, P1 and Pk are successfully generated by Algorithm 3.
Consequently, P1 is either a rectangle (with p2 6∈ P1) or P1 ≡ p2, and it is
guaranteed, that P1 contains a point p1 which is at a distance less than f̃0

from Rj . Obviously, similar statements hold for Pk (with pk−1).
Moreover, the required separation properties tested in Algorithm 4 are sat-
isfied (implying p0 6∈ P1 and pk+1 6∈ Pk , respectively) and a reliable convex
hull of the set {p0, pk+1, P1, Pk} is determined. Figure 5/b shows an example
demonstrating the case s ≥ 3.

16 Mihály Csaba Markót, Tibor Csendes

Denote P+ the polygon determined by its consecutive vertices p1, pk, d1,

. . . , ds−k+2. Similarly, denote P− the (general) polygon determined by the
consecutive vertices p1, p2, . . . , pk. At first, P+ satisfies the invariance prop-
erty (since p1 and pk are separated from the half plane containing all the dj

points) and by the construction of Algorithm 4 P+ ⊆ R′
i holds. Secondly,

consider a point p ∈ Ri, p 6∈ P+. Notice, that P− can be a self-intersecting
polygon, however, in P− only p1pk can cross some other edges (by the in-
variance property of Ri). Thus, p must be located in one of the pieces
determined by the possible intersecting points and the vertices of P−. Nev-
ertheless, p ∈ Conv(P−) must hold where Conv(P−) denotes the convex
hull of P−. We obtained

Ri ⊆ P+ ∪ Conv(P−) ⊆ R′
i ∪ Conv(P−). (4)

Assume now that a point p ∈ Ri is eliminated by the interval implemen-
tation of Algorithm 2, i.e., p 6∈ R′

i. Then p ∈ Conv(P−) by (4). Recall,
that p2, . . . , pk−1 have the flag ‘−’, and that p1 and pk can also receive ‘−’
by definition. By Theorem 1 this means that Conv(P−) can fully be elim-
inated (assuming exact computations). In other words, p is eliminated by
the interval method correctly. ut

Corollary 1 Algorithm 1 deletes only those (x, y) ∈ R
2n feasible points for

which fn(x, y) < f̃ holds.

Proof. Consider the remaining regions Rk, k = 1, . . . , n at any time while
executing Algorithm 1, and assume that (x′

i, y
′
i) ∈ Ri is deleted by Algo-

rithm 2, i.e. (x′
i, y

′
i) is at a distance less than f̃0 from an Rj , j 6= i region.

This means that we delete all the feasible solutions (x, y) ∈ [0, 1]2n, for
which (xi, yi) = (x′

i, y
′
i) and (xk , yk) ∈ Rk, ∀k = 1, . . . , n, k 6= i holds. By

Theorem 2, the distance between (xi, yi) and (xj , yj) is less than f̃0, thus,
from (3), the squared distance between them is guaranteed to be less than
f̃ . Consequently, fn(x, y) ≤ (xi −xj)

2 +(yi −yj)
2 < f̃ , which completes the

proof. ut

4 Summary

We have introduced an area elimination method designed for the problem
of finding the densest packings of equal circles in a square. Our algorithm is
fully based on reliable, interval arithmetic computations. The procedure was
applied as an accelerating device in our recent interval branch–and–bound
global optimization algorithm [8], and it had a fundamental role in solving
the earlier open problem instances of packing 28, 29, and 30 circles in the
unit square.

5 Acknowledgments

This work was supported by the Grants OTKA T 032118, T 034350, T
048377, and T 046822, Grants OMFB D-30/2000, and by OMFB E-24/2001.

A reliable area reduction method for circle packing 17

References

1. C. de Groot, M. Monagan, R. Peikert, and D. Würtz, Packing circles in a

square: review and new results, in P. Kall (ed.): System Modeling and Opti-
mization (Proc. 15th IFIP Conf. Zürich, 1991), Lecture Notes in Control and
Information Services 180 (1992), pp. 45–54.

2. R. Hammer, M. Hocks, U. Kulisch, and D. Ratz, Numerical Toolbox for Ver-

ified Computing I., Springer-Verlag, Berlin, 1993.
3. E. Hansen, Global Optimization Using Interval Analysis, Marcel Dekker, New

York, 1992.
4. O. Knüppel, PROFIL – Programmer’s Runtime Optimized Fast Interval Li-

brary, Bericht 93.4., Technische Universität Hamburg-Harburg, 1993.
5. M. Locatelli and U. Raber, Packing Equal Circles in a Square: a Determinis-

tic Global Optimization Approach, Discrete Applied Mathematics 122 (2002),
pp. 139–166.

6. M.Cs. Markót, An Interval Method to Validate Optimal Solutions of the

“Packing Circles in a Unit Square” Problems, Central European Journal of
Operations Research 8 (2000), pp. 63–78.

7. M.Cs. Markót, Optimal Packing of 28 Equal Circles in a Unit Square — the

First Reliable Solution, Numerical Algorithms 37 (2004), pp. 253–261.
8. M.Cs. Markót and T. Csendes, A New Verified Optimization Technique for

the “Packing Circles in a Unit Square” Problems, SIAM J. Optimization 16

(2005), pp. 193–219.
9. M.Cs. Markót, T. Csendes, and A.E. Csallner, Multisection in Interval Meth-

ods for Global Optimization II. Numerical Tests, Journal of Global Optimiza-
tion 16 (1999), pp. 219–228.

10. R.E. Moore, Interval Analysis, Prentice–Hall, Englewood Cliffs, 1966.
11. K.J. Nurmela and P.R.J. Österg̊ard, Optimal packings of equal circles in a

square, in Y. Alavi, D.R. Lick, and A. Schwenk (eds.): Combinatorics, Graph
Theory, and Algorithms (Proc. 8th Quadrennial International Conference on
Graph Theory, Combinatorics, Algorithms, and Applications, 1999), pp. 671–
680.

12. K.J. Nurmela and P.R.J. Österg̊ard, More Optimal Packings of Equal Circles

in a Square, Discrete and Computational Geometry 22 (1999), pp. 439–457.
13. Ratschek H. and Rokne J., New Computer Methods for Global Optimization,

Ellis Horwood, Chichester, 1988.
14. P.G. Szabó, Some New Structures for the “Equal Circles Packing in a Square”

Problem, Central European Journal of Operations Research 8 (2000), pp. 79–
91.

