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Summary. The paper provides an introduction to interval arithmetic based tech-
niques for the verification of mathematical models. Illustrative examples are de-
scribed from the fields of circle packing, chaotic behaviour dynamical systems, and
process network synthesis.

1 Interval arithmetic

Model verification, optimization, and especially global optimization is sen-
sitive on the reliability of the numerical computations. There exist practical
problems where good approximative solutions are more or less accepted as the
true solutions. Still there remain important application fields where the guar-
anteed reliability of the provided solution is of ample importance. The uncer-
tainties are mostly caused by the rounding errors. These are necessarily part of
the calculations when the algorithms are coded with floating point arithmetic
– which allows quick computation. To provide a remedy for these problems,
we shall apply interval arithmetic based inclusion functions [AH83, RR84].
These offer a theoretically reliable and computationally tractable means of
locating a feasible suboptimal interval.

Denote the real numbers by x, y, . . ., the set of compact intervals by I :=
{[a, b] | a ≤ b, a, b ∈ R}, and the set of n-dimensional intervals (also called
simply intervals or boxes) by I

n. Capital letters will be used for intervals. For
real vectors and interval vectors the notations

x = (xi), xi ∈ R, and X = (Xi), Xi ∈ I

are applied, respectively.

Definition 1. A function F : I
n → I is an inclusion function of the real

function f if for ∀Y ∈ I
n and ∀y ∈ Y f(y) ∈ F (Y ).

In other words, f(Y ) ⊆ F (Y ) where f(Y ) is the range of f over Y . We
assume that f is continuous, then f(Y ) is an interval. The lower and upper
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bounds of an interval Y ∈ I
n are denoted by Y and Y , respectively, and the

inclusion function of the gradient of f(x) by ∇F (X). The width of an interval
is w(Y ) = Y − Y , and w(Y ) = maxi(Yi − Yi) if Y ∈ I

n is an n-dimensional
interval vector (also called a box). The midpoint of the interval X is defined
by m(X) = (X + X)/2 if X ∈ I, and m(X) = (m(Xi)), if X ∈ I

n. I(X)
stands for all intervals in X . Three important possible properties of inclusion
functions are:

Definition 2. F is said to be an isotone inclusion function over X ⊆ R
n if

∀Y, Z ∈ I(X), Y ⊆ Z implies F (Y ) ⊆ F (Z).

Definition 3. We call the inclusion function F an α-convergent inclusion
function over X if for ∀Y ∈ I(X) w(F (Y )) − w(f(Y )) ≤ Cwα(Y ) holds,
where α and C are positive constants.

Definition 4. We say that the inclusion function F has the zero convergence
property, if w(F (Zi)) → 0 holds for all the {Zi} interval sequences for which
Zi ⊆ X for all i = 1, 2, . . . and w(Zi) → 0.

An inclusion function obviously provides more information over an inter-
val than could be conveyed with independent real function evaluations. The
inclusion function gives upper and lower bounds on the objective function
over the specified interval.

There are several ways to build an inclusion function (e.g. by using the
Lipschitz constant, if it is known). Interval arithmetic [AH83, HH93, H92,
RR88] is a convenient tool for constructing the inclusion functions. This can
be done for almost all functions that can be calculated by a finite algorithm
(i.e., not only for given expressions).

The idea of interval calculations is to extend the basic operations and the
elementary functions from the real numbers to intervals. Finding the range for
a function over an n-dimensional interval has in general the same complexity
as an optimization problem, because we have to find the extreme values of the
function over the interval. By using interval arithmetic it is possible to find
bounds on the function values more efficiently. The interval operations can be
carried out using only real operations. For the argument intervals [a, b] and
[c, d] the following expressions hold:

[a, b] + [c, d] = [a + c, b + d]

[a, b] − [c, d] = [a − d, b − c]

[a, b] ∗ [c, d] = [min{ac, ad, bc, bd}, max{ac, ad, bc, bd}]
[a, b] / [c, d] = [a, b] ∗ [1/d, 1/c] if 0 /∈ [c, d].

As an example, consider the range of x−x2: it is [−2, 0.25] on the interval
of [0, 2]. In contrast to that, the above interval arithmetic will provide the
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inclusion of [−4, 2], which is much wider. This too conservative estimation
can be improved at the cost of more computation with sophisticated numerical
techniques.

If outwardly directed rounding is also applied, then the interval calculated
by a computer contains every real number that can be a result of the given
function on real numbers inside the original intervals. The technique of pro-
ducing an inclusion function by replacing the real variables and operations by
their interval equivalent is called natural interval extension [AH83, RR84].

Natural interval extension provides an isotone inclusion function, that is
α-convergent with α = 1, and hence it has also the zero convergence property.
More sophisticated inclusion functions, such as the centered forms provide
quadratic convergence as interval width approaches zero to tight bounds, but
they are not necessarily isotone inclusion functions. The computational cost
of the inclusions for higher derivatives, Taylor models, or slopes is certainly
high, but this can pay off when solving difficult optimization problems. In
the present work we apply natural interval extension, and inclusions of the
gradient and the Hessian for the monotonicity and concavity tests, and also
within the interval Newton step.

Applying automatic differentiation or differentiation arithmetic in connec-
tion with interval arithmetic [HH93], we are also able to compute the inclusion
function for the gradient. Automatic differentiation combines the advantages
of symbolic and numerical differentiation and handles numbers instead of
symbolic formulas. The computation of the gradient is done automatically
together with the computation of the function value. The main advantage of
this process is that only the algorithm or formula for the function is required.
No explicit formulas for the gradient are needed.

Many programming languages are now available that support interval
datatypes and automatic differentiation with the corresponding operations
and intrinsic functions [BR87, J92, KK92, KK93]. Matlab also has an inter-
val extension package called Intlab [R99]. These programming environments
provide a convenient access to inclusion functions (with automatic outward
rounding), but one can also simulate interval operations and functions by sub-
routines in any algorithmic language. We used the natural interval extension
to calculate the inclusion functions. For more information about inclusion
functions and interval arithmetic, see [AH83, RR84].

An often heard question is, how can we characterize the maximal size or diffi-
culty of problems that still can be solved by interval inclusion function based
methods. The short answer is that the dimension of a problem is a wrong
measure, since low dimensional problems can be hopeless, and larger dimen-
sional ones can be solved in a short time. For interval techniques the most
dangerous is the large excess width, a bad estimation of the range of the re-
lated function on the studied intervals. It is most affected by the dependency
problem, that is caused by multiple appearances of the same variable in a
complex expression. According to this, the rule of thumb says that in case all
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n = 28 n = 29

n = 30

Fig. 1. The proven optimal circle packings into the unit square for 28, 29, and 30
circles.

involved variables appear only a few times in the expression of the objective
and constraint functions, then the overestimation will be small, and the op-
timization algorithms can be successful even for larger dimensional problems
(the number of variables can be up to 100).

A telling example for the capabilities of interval optimization methods is
the results on circle packing problems. Mihály Csaba Markót [M04, MC05]
was able to solve the problem cases of n = 28, 29, and 30, i.e. to find the
configuration of n congruent nonoverlapping maximal circles fitting into the
unit square. These problems were held before as hopeless, since the expected
CPU time necessary for their solutions with the last available techniques were
estimated to be around decades. The problems have 56, 58, and 60 variables,
respectively, and hundreds of nonlinear constraints. The difficulty of the prob-
lems is highlighted by the facts that (due to obvious geometrical reasons) there
are an astronomical number of equivalent, symmetric optimal solutions, and
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in the cases of n = 28, 29 there exist positive measure sets of global optimizer
points.

Standard interval optimization algorithms could not solve the problems. A
careful problem decomposition, and custom made built in acceleration devices
based on the understanding of the problem structure enabled the successful
solution. The running times were below 3 days, and ca. one million subintervals
were stored during the solution process. The uncertainty in the position of the
circles have been decreased by more than 700 orders of magnitude in each case.
Due to the controlled outward rounding mode applied, the obtained results
are reliable even in the sense of a rigorous mathematical theorem.

To demonstrate the capabilities of interval based computational methods,
the following sections discuss example application in the fields of tolerance
optimization and chaos verification for dynamic systems.

2 Tolerances in optimization and constraint satisfaction

Consider the nonlinear optimization problem (P)

minimize f(x)

subject to gj(x) ≤ 0 j = 1, 2, . . . , m,

where f : R
n → R and the constraint functions gj(x) : R

n → R are continuous
nonlinear functions, and n is the dimension of the problem. Let us denote the
set of feasible points by A, that is A := {x ∈ R

n : gj(x) ≤ 0 for each
j = 1, 2, . . . , m}. Also let x∗ be an optimal solution for problem (P). Notice
that we restrict now our investigations to continuous functions.

It may happen that the optimal solution x∗, or an approximation of it, is
known, yet this result is not suitable for practical use. For example, consider
an engineering design problem which is formulated as a constrained global
optimization problem, see for example those studied in [KF93], and [ZG92].
It is possible that the optimal design cannot be reproduced exactly with cur-
rent manufacturing processes, thus each variable has a specific manufacturing
tolerance, δ > 0.

Since the optimal solution x∗ may be on one or more active constraints,
then the n-dimensional interval [x∗

i −δ, x∗
i +δ] for i = 1, 2, . . . , n is not feasible.

From a practical point of view, it is preferable to find a feasible suboptimal
box instead of a single optimal point. Thus we seek a feasible n-dimensional
interval X∗ for which gj(x) ≤ 0, j = 1, 2, . . . , m, for all x ∈ X∗. It is also
desirable to have this feasible box as close to the optimum as possible. Thus
we also impose the constraint f(x) ≤ f(x∗) + ε for some ε > 0 for all x ∈ X∗.
Such an interval would also reflect the sensitivity of the objective function
[F76] because the size of the feasible box may vary as ε varies.

We restate our problem: find an n-dimensional interval X∗ such that for
all x ∈ X∗
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f(x) ≤ fε ≡ f(x∗) + ε, and (1)

gj(x) ≤ 0 for j = 1, 2 . . . , m. (2)

Methods discussed in earlier papers [C89, C90, CP93] study similar prob-
lems. In [C89, C90] an interval method was introduced to find a bounding
interval of the level set of an unconstrained nonlinear optimization problem.
The algorithm converges to the smallest n-dimensional interval containing
the specified level set. Another technique [CP93] locates the boundary of a
level set in a given direction. Kearfott discussed an interval branch and bound
method for bound constrained global optimization [K92]. In the study [RR93]
the solution of a difficult nonlinear optimization problem (in an alternate
form) was reported by using a customized interval subdivision scheme. These
methods provide a guaranteed reliable solution, although they are computa-
tionally tractable [C98]. They are based on inclusion functions and interval
arithmetic, which was shortly reviewed in the previous section.

2.1 The algorithm and its convergence

The suggested algorithm iteratively grows a box about a given seed point.
A seed point xseed, which lies interior to the region of feasibility and in the
ε-level set must be provided to start the algorithm. Thus the seed point, xseed,
must satisfy the following conditions:

f(xseed) < fε and (3)

gj(x
seed) < 0 for each j = 1, 2, . . . , m. (4)

This will imply that there exists a feasible box with a positive volume contain-
ing the seed point. It is possible to construct nonlinear optimization problems
for which no proper seed point exists which would satisfy (3) and (4). In such
cases the search for feasible suboptimal boxes makes no sense.

Seed points can be obtained in several ways. One is to find an approxi-
mation of x∗, and if it is interior to the feasible region, use it as xseed. If it
lies on an active constraint, search along the normal of the active constraint
to generate xseed. Another way is to sample randomly (a normal distribution
may be appropriate) around the optimal point until a feasible interior point is
found. This may also be used as xseed. A slight variation would be to sample
according to a uniform distribution in the interval hull of the feasible region
intersected with the ε-level set. The first feasible point with objective function
value less than fε would then be used as xseed.

We will call an interval X a feasible interval around xseed, if xseed ∈ X and
equations (1) and (2) are satisfied for all x ∈ X . An interval will be called
maximal regarding xseed, if it is a feasible interval around xseed, and there is
no other feasible interval that contains it. Note that there may exist many
maximal feasible boxes around a seed point. Also note that two different seed
points may be contained in the same maximal feasible box.
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.

. xseed

Fig. 2. Illustration of multiple maximal feasible boxes within the ε-level set (without
constraints).

It may appear disturbing that there is no one-to-one relationship between
xseed and a maximal feasible box around xseed. For an example, suppose the set
of feasible points with objective function values less than or equal to fε is an
ellipse. Suppose xseed is interior to the ellipse. Then there is an infinite number
of feasible boxes around xseed which do not contain one another (see Fig. 2). At
some point, it may be interesting to find the maximal feasible box around xseed

that has the largest volume. However at this point the algorithm does not find
the largest volume box around a seed point, but simply a maximal feasible box.
In our application to manufacturing tolerances this is not a disadvantage. It
is more desirable to compare trade-offs between coordinate lengths of various
maximal boxes, than it is to know the box with largest volume, as this has no
direct meaning for the application.

We call an interval Y strongly feasible, if f(y) < fε, and gj(y) < 0 for all
y ∈ Y (j = 1, 2, . . . , m).

The main algorithm, Algorithm 1 is presented below. The algorithm uses
parameters d(i, 1) and d(i, 2) for i = 1, 2, . . . , n and η, which are set at the
beginning to positive reals. To start, d(i, 1) and d(i, 2) must be larger than
η. The stopping criterion indicates that the algorithm should stop increasing
the size of the actual box X , when the change along each coordinate is less
than the threshold η in all directions.

The core of the algorithm is the checking procedure, Algorithm 2 called
in Steps 3 and 5 of Algorithm 1. This is a version of the interval subdivision
method modified to check whether the actual box Y lies entirely in the region
satisfying equations (1) and (2). The parameter θ is set to a small positive
real value. It is better when the relation d(i, j) ≥ θ holds (else the interval Y
can be quickly rejected in Step 1 of Algorithm 2). The checking procedure is
defined in detail in Algorithm 2.

If the checking routine indicates, that the checked interval is not strongly
feasible, this means more precisely that a very small not strongly feasible
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Algorithm 1 Main algorithm

0. Initialize interval vector Xi = [xseed

i , xseed

i ], and d(i, j) ≥ η > 0 for all i =
1, 2, . . . , n and j = 1, 2.

1. For i = 1 to n do:
2. Set Yj = Xj for j = 1, 2, . . . , n; j 6= i, and

Yi = [(Xi) − d(i, 1), (Xi)].

3. Use the checking routine to check whether f(y) < fε and gj(y) < 0 (j =
1, 2, . . . , m) for each y ∈ Y . If the answer is yes, then set X = X ∪Y . Otherwise
d(i, 1) = ((Xi) − (Zi))/2, where Z is the interval passed back by the checking
routine as not strongly feasible.

4. Set Yj = Xj for j = 1, 2, . . . , n; j 6= i, and

Yi = [(Xi), (Xi) + d(i, 2)].

5. Use the checking routine to check whether f(y) < fε and gj(y) < 0 (j =
1, 2, . . . , m) for each y ∈ Y . If the answer is yes, then set X = X ∪Y . Otherwise
d(i, 2) = ((Zi) − (Xi))/2, where Z is the interval passed back by the checking
routine as not strongly feasible.

6. End of i-loop
7. Stopping criterion: if the number of inclusion function calls is less than 100,000,

and there is an i = 1, 2, . . . , n such that either d(i, 1) ≥ η or d(i, 2) ≥ η then go
to Step 1.

8. Print X, and STOP.

Algorithm 2 Checking routine

0. Initialize the list L to be empty.
1. If the width of Y is less than θ, then go to Step 7.
2. Evaluate the inclusion functions F (Y ) and Gj(Y ) for each j = 1, 2, . . . , m.
3. If F (Y ) ≥ fε or Gj(Y ) ≥ 0 for any j = 1, 2, . . . , m, then go to Step 5.
4. If the list L is empty, then go to Step 6, else put the last item of the list L into

Y , delete this item from the list, and go to Step 1.
5. Subdivide Y into subintervals U and V , set Y = U , put V into the list L as the

last member, and go to Step 1. The subdivision should be made, such that the
largest side of Y is halved.

6. RETURN that the checked interval was strongly feasible.
7. RETURN Z = Y , and the message that it could not been proved that the

checked interval is strongly feasible.

subinterval was found. By properly setting θ, the place where the strong fea-
sibility is violated can be located.
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Convergence results

In this subsection the convergence properties of the algorithm introduced are
characterized to provide theoretical background for the numerical implemen-
tations. The proofs of the statements can be found in [CK95] and [C07]. First
the checking routine is studied.

Lemma 1. 1. If the checking routine accepts an interval Y as strongly feasible,
then f(x) < fε, and gj(x) < 0 for each x ∈ Y , and j = 1, 2, . . . , m.

2. If the checking routine rejects an interval Y as not strongly feasible, then
there exists a nested set of intervals, Y = Y 1 ⊃ Y 2 ⊃ . . . ⊃ Y p generated by
the routine, with the smallest interval having width less than θ, such that for
each Y i in the nested set of intervals one of the conditions max F (Y i) < fε

or max Gj(Y
i) < 0 was violated, where i = 1, 2, . . . , p and j = 1, 2, . . . , m.

Only the inclusion property of F and Gj was utilized in the proof of
Lemma 1, and no further requirement (like isotonicity or convergence order
of the inclusion functions involved) was necessary.

Lemma 2. Assume that

w(F (X)) → 0 as w(X) → 0, and (5)

w(Gj(X)) → 0 as w(X) → 0 (6)

for all j = 1, 2, . . . , m, i.e., F and Gj are zero convergent.
1. If f(x) < fε and gj(x) < 0 for every x ∈ Y and j = 1, 2, . . . , m, then

there exists a threshold value θT > 0 such that for all θ: 0 < θ < θT the
checking routine stops after a finite number of iteration steps and it states
that Y is strongly feasible.

2. If θ > 0 and there is a point x ∈ Y such that f(x) ≥ fε or gj(x) ≥ 0 for
any j = 1, 2, . . . , m, then the checking routine will stop after a finite number
of iteration steps and it states that Y is not strongly feasible.

Notice that Lemma 2 ensures that a not strongly feasible interval Y will
always be detected in a finite number of steps. However, it is possible that a
strongly feasible interval will be mistaken as not strongly feasible if θ is too
large. Thus it is important that θ be chosen with care.

Consider, again, a fixed constrained nonlinear optimization problem (P) as
given at the beginning of the present section. Denote the result box calculated
with the algorithm parameters θ and η by X∗

θ,η, and the level set belonging
to the function value fε by Sfε

. Denote the vector of the Gj functions by G.
The following theorems characterize the convergence properties of our main
algorithm, Algorithm 1 for the obvious case when the stopping criterion for
the number of function calls is deleted.



10 Tibor Csendes

Theorem 1. If the set Sfε
∩ A is bounded, the seed point xseed fulfils the

conditions (3) and (4), and the properties (5) and (6) hold for the inclu-
sion functions F (X) and G(X), then there exist suitable d(i, j) > 0 (i =
1, 2, . . . , n; j = 1, 2) values and threshold values θT > 0 and ηT > 0 such that
for all θ: 0 < θ < θT and η: 0 < η < ηT

1. the algorithm stops after a finite number of steps,
2. the result box X∗

θ,η has a positive measure, and
3. the result interval X∗

θ,η is strongly feasible, X∗
θ,η ⊂ Sfε

∩ A.

The strong feasibility of the accepted intervals was utilized only in prov-
ing the positive volume of the result intervals. With the exception of this,
the convergence results remain valid if the checking routine accepts feasible
intervals.

Theorem 2 describes the limit of the result boxes when the algorithm
parameters θ and η are equal and converge together to zero.

Theorem 2. Let the d(i, j) positive values be fixed. If the conditions of The-
orem 1 are fulfilled, then each accumulation interval X∗ of the interval se-
quence {X∗

θ,θ}limθ→0
is maximal in the sense that for every box X ′ the relations

X∗ ⊆ X ′ and X ′ ⊆ Sfε
∩ A imply X ′ = X∗.

The limiting interval X∗ is not necessarily strongly feasible. For example,
if Sfε

∩A is an n-dimensional interval, then this not strongly feasible interval
may be a limiting interval of a sequence of strongly feasible result intervals.

Theorem 1 suggests that for a problem satisfying its conditions, sufficiently
small positive θ and η values ensure a positive measure result interval in a
finite number of iteration steps, i.e., after a finite number of objective and
constraint function calls. Theorem 2 gives the basis that with θ and η values
close to the machine precision one may obtain a closely maximal result box.
It has to be stressed that beyond the given algorithm many others can be
given for the same problem, and that it is a very difficult problem to find a
maximal volume feasible interval (equivalent to a global optimization problem
cf. [C90]). In general, the location of a maximal volume feasible interval can
only be solved with a certain kind of backtracking.

2.2 Numerical testing and examples

Consider the following simple constrained quadratic problem to illustrate how
the algorithm discussed above proceeds. Let

f(x) = x2
1 + x2

2,

g1(x) = (3 − x1)
2 + (3 − x2)

2 − 18, and

g2(x) = 1 − (2 − x1)
2 − (2 − x2)

2.

The set of feasible points A is now the circle C1 with center at (3, 3) and
with a radius of 3

√
2 with the exceptions of the points of the circle C2 with
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f = 2.0

C 1

C 2

Fig. 3. Test problem and result intervals of the first and last lines of Table 1.

center (2, 2), and radius 1. The only global optimal point is at the origin, and
the optimal function value is f∗ = f(0, 0) = 0. The level sets Sfε

are circles
around the origin with radii of

√
fε, respectively. The constraint g1(x) ≤ 0 is

active at the global minimum, and its normal is parallel to the line x1 = x2.
The problem is illustrated on Fig. 3.

The inclusion functions are generated by natural interval extension:

F (X) = X2
1 + X2

2 ,

G1(X) = (3 − X1)
2 + (3 − X2)

2 − 18, and

G2(X) = 1 − (2 − X1)
2 − (2 − X2)

2.

The capital letters denote again intervals with the subscript indicating co-
ordinate direction. These inclusion functions are exact in the sense that the
so-called excess width (defined by w(F (X)) − w(f(X))) is zero for every ar-
gument interval. It is unfortunately not typical for interval calculations, yet it
makes the demonstration of the working of the algorithm more transparent.

Assuming exact arithmetic

Set the seed point to xseed = (0.5, 0.5)T . The conditions (3) and (4) are now
fulfilled for each fε > 0.5:

g1(x
seed) = −5.5 < 0,
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g2(x
seed) = −3.5 < 0,

f(xseed) = 0.5 < fε.

Choose the algorithm parameters d(i, 1) = d(i, 2) = 0.1 for i = 1, 2 and
η = 0.01. For fε = 2.0 the intersection set of feasible points and the level set
Sfε

is the intersection of the circles with centres (0, 0) and (3, 3), and with
radii

√
2 and 3

√
2, respectively. It is a convex set, and the maximal volume

inscribed box is X∗
1 = [0.0, 1.0], X∗

2 = [0.0, 1.0].
The starting interval is set to X1 = [0.5, 0.5] and X2 = [0.5, 0.5]. The first

check is made on the interval Y1 = [0.4, 0.5], Y2 = [0.5, 0.5]. The corresponding
inclusion function values are

F (Y ) = [0.4, 0.5]2 + [0.5, 0.5]2 = [0.16, 0.25] + [0.25, 0.25] = [0.41, 0.5],

G1(Y ) = [6.25, 6.76] + [6.25, 6.25]− 18 = [−5.5,−4.99],

and
G2(Y ) = 1 − [2.25, 2.56]− [2.25, 2.25] = [−3.81,−3.5].

The checking routine returns thus that Y is strongly feasible, and X is set
in Step 3 of the main algorithm to ([0.4, 0.5], [0.5, 0.5])T .

The next check is then made in Step 5 on the interval Y1 = [0.5, 0.6], Y2 =
[0.5, 0.5]. The corresponding inclusion function values are F (Y ) = [0.5, 0.61],
G1(Y ) = [−5.99,−5.5] and G2(Y ) = [−3.5,−3.21]. The actual interval is then
updated to X1 = [0.4, 0.6], X2 = [0.5, 0.5].

The actual interval is modified for i = 2 to ([0.4, 0.6], [0.4, 0.5])T , and
then to ([0.4, 0.6], [0.4, 0.6])T . The sequence of subsequent actual intervals is
as follows:

X = ([0.3, 0.7], [0.3, 0.7])T ,

X = ([0.2, 0.8], [0.2, 0.8])T ,

X = ([0.1, 0.9], [0.1, 0.9])T .

The final interval X was obtained after 48 inclusion function evaluations.
The calculation of inclusion functions involves on the average ca. two times
more computation than the corresponding real functions do. Until this point
was reached, the checking routine accepted all the extension intervals Y im-
mediately, without subdivision. Thus the value of the algorithm parameter
θ had no effect on this part of the result. In the next iteration the checked
intervals and the inclusion function values F (Y ) are as follows:

Y = ([0.0, 0.1], [0.1, 0.9])T , and F (Y ) = [0.01, 0.82],

Y = ([0.9, 1.0], [0.1, 0.9])T , and F (Y ) = [0.82, 1.81],

Y = ([0.0, 1.0], [0.0, 0.1])T , and F (Y ) = [0.00, 1.01],
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Table 1. The role of the seed point in locating maximal feasible boxes.

xseed Xres vol(Xres) NFE

(0.50, 0.50)T ([−0.000028, 1.046680], [0.000098, 0.951000])T 0.99532 1822

(0.10, 0.10)T ([−0.000056, 1.000066], [0.000069, 0.999902])T 0.99996 1945

(0.01, 0.01)T ([−0.003131, 1.034968], [0.003153, 0.963763])T 0.99721 2065

(0.90, 0.90)T ([−0.000028, 1.000160], [0.000098, 0.999805])T 0.99989 2118

(0.10, 0.90)T ([−0.400226, 0.556738], [0.462630, 1.300000])T 0.80133 1610

(0.00, 1.00)T ([−0.425529, 0.522607], [0.496856, 1.314084])T 0.77484 1669

(−0.01, 0.10)T ([−0.072507, 0.990052], [0.074328, 1.009826])T 0.99402 1996

(4.0, 4.0)T ([2.662546, 6.048340], [2.749031, 5.9508304)T 10.841 3015

(5.0, 5.0)T ([2.600000, 6.048340], [2.800000, 5.9508246)T 10.865 2677

(3.0, 6.0)T ([1.732192, 4.267773], [3.000000, 7.0487793)T 10.266 2801

Y = ([0.0, 1.0], [0.9, 1.0])T , and F (Y ) = [0.81, 2.00].

The last interval is not strongly feasible, and a new d(2, 2) < 0.05 is de-
termined (depending on the value of θ). And in this way the next X =
([0.0, 1.0], [0.0, 0.9])T .

With further calculations this actual interval may be refined to obtain a
maximal box X∗. We have a computational proof that each point x of the
result interval is feasible, and f(x) < fε.

Computer implementation with outward rounding

The main difference between the results of the last section and those obtained
by the computer program is that the latter is produced by operations with
outward rounding. For example, Y = ([0.0, 1.0], [0.9, 1.0])T would be found
feasible (but not strongly feasible) calculating with exact arithmetic (since
then F (Y ) = 2.0), while F (Y ) > 2.0 if it is evaluated with outward round-
ing. This is the reason why the results in the first line of Table 1 may be
slightly different from those discussed in the earlier subsection. It is worth
mentioning that if the stopping condition would be based on the difference
((X i) − d(i, 1)) − (X i) then this value could also attain zero because of the
computer representation of floating point numbers.

Table 1 contains details of the results on the numerical test that examines
how the place of the seed point affects the result box constructed by the
program. In the following, we use only one initial value for all d(i, j) step
sizes (i = 1, 2; j = 1, 2). All of the problem and algorithm parameters were
constant during this test (d(i, j) = 0.1 for i = 1, 2 and j = 1, 2, η = 0.0001 and
θ = 0.0001), only xseed and fε was changed. The latter was 2.0 for the first
7 lines and 72.0 for the last three. For the problem specified by fε = 2.0, the
maximal volume feasible box is X∗ = [0.0, 1.0]2. The result interval calculated
by the program is denoted by Xres, and vol(Xres) is its volume. The latter is
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found close to one (it is, of course, not greater than vol(X∗) = 1). NFE stands
for the number of function (F (X) and Gj(X) for j = 1, 2, . . . , m) evaluations.

The test results presented in Table 1 suggest that the seed point may be
chosen close to the normal of the active constraint at x∗, even if it is outside
of X∗. It is interesting that the center of the maximal volume inscribed box
is not an optimal seed point. It is also worth mentioning that in the first 7
lines (where Sfε

∩A is symmetric for the x1 = x2 line) the first component of
the result interval is always wider than the second one. The explanation for
it is that the actual interval is always enlarged first along the first coordinate
direction. Two result boxes are shown on Fig. 3 together with the constraint
functions and a corresponding levels.

The presented algorithm was also applied to a practical engineering design
problem to construct manufacturing tolerances for an optimal design of com-
posite materials [ZG92] that motivated our study. The numerical experi-
ences on this composite laminate design problem are reported in the papers
[KZ93, KZ96]. The methodology was also applied in civil engineering, for pro-
viding optimal designs with manufacturing tolerances for building and con-
struction problems [CC04]. All these computational studies confirmed that
the suggested algorithm is capable to provide applicable size suboptimal fea-
sible tolerance intervals for a wide set of problems using an acceptable amount
of computation.

In addition to our above mentioned applications, the related papers [CK95,
KZ93, KZ96] were cited by several scientific publications reporting on the
successful use of the introduced algorithms in several diverse application fields.
The tolerance optimization approach was also used to describe the set of
Hénon mapping parameters that allow chaotic behaviour [BC07, CG06].

3 Chaos verification in mathematical models of

dynamical systems

The last section is devoted to an optimization model and to the related al-
gorithms to locate chaotic regions of dynamic systems [CG06]. Computer-
assisted proofs for the existence of chaos are important for the understand-
ing of dynamic properties of the solutions of differential equations. These
techniques have been intensively investigated recently, see e.g. [GZ01, NR93,
RN94, Z97, Z03].

We study verified computational methods to check and locate regions the
points of which fulfill the conditions of chaotic behaviour. The investigated
Hénon mapping is H(x, y) = (1 + y − Ax2, Bx). The paper [Z97] considered
the A = 1.4 and B = 0.3 values and some regions of the two dimensional
Euclidean space: E = E1 ∪ E2 = {(x, y) | x ≥ 0.4, y ≥ 0.28} ∪ {(x, y) | x ≤
0.64, |y| ≤ 0.01}, O1 = {(x, y) | x < 0.4, y > 0.01}, O2 = {(x, y) | y < 0}.
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0.1

1.0
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Fig. 4. Illustration of the H7 transformation for the classic Hénon parameters
A = 1.4 and B = 0.3 together with the chaotic region of two parallelograms. The
a, b, c, and d sides of the parallelograms are depicted on the upper left picture of
Figure 5.

According to [Z97] Theorem 3 below ensures the chaotic behaviour for the
points of the parallelograms Q0 and Q1 with parallel sides with the x axis (for
y0 = 0.01 and y1 = 0.28, respectively), with the common tangent of 2, and x
coordinates of the lower vertices are xa = 0.460, xb = 0.556; and xc = 0.558,
xd = 0.620, respectively. The mapping and the problem details (such as the
transformed sides of the parallelograms, H7(a), H7(b), H7(c), and H7(d)) are
illustrated on Figure 4.

Theorem 3. Assume that the following relations hold for the given particular
Hénon mapping:

H7(a ∪ d) ⊂ O2, (7)

H7(b ∪ c) ⊂ O1, (8)

H7(Q0 ∪ Q1) ⊂ R
2 \ E, (9)

then chaotic trajectories belong to the starting points of the regions Q0 and
Q1.

The present section provides a method to verify chaos for certain mappings
and regions. We discuss first how to check the set theoretical conditions of the
above theorem in a reliable way by computer programs. Then we introduce
optimization problems that provide a model to locate chaotic regions. We
check the correctness of the earlier published chaotic region, the correctness
of the underlying checking algorithms, and prove the optimization model.
We also give new chaotic places located by the new technique. The papers
[BC07, CB07] provide additional new chaotic regions located by the present
method.

The main difficulty of checking conditions (7) to (9) is that one has to
prove these for a continuum of points. In [Z97] the author calculated the
Lipschitz constant, gave an upper bound for the rounding error committed
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and thus reduced the whole task to investigating a finite number of points
of a dense enough grid. This method works only with human interaction. To
search chaotic regions an automated checking routine is more appropriate.
The technique we applied combines interval arithmetic and adaptive branch-
and-bound subdivision of the region of interest. It is basically a customized
version of the technique introduced in Section 2.

This algorithm first encloses the sets Q0 and Q1 in a 2-dimensional closed
interval I, the starting interval. Then to prove subset relations an adaptive
branch-and-bound technique generates such a subdivision of the starting in-
terval that either:

• for all subintervals the given conditions of chaos hold – in case they contain
points of the respective sets, or

• it is shown that a small subinterval (of a user set size) exists that contains
at least one point of the respective set, and it contradicts at least one of
the relations.

Now the sets O1, O2, and R2 \ E in the conditions (7) to (9) are all open
sets, and the union of a finite number of closed sets is closed. It is why the
algorithm should check whether the transformed subintervals are subsets of
the respective sets.

Our algorithm is capable of recognizing that a region satisfies the condi-
tions of chaos. We have proven the correctness of the procedure in [CG06].

3.1 A global optimization model for locating chaotic regions

Once we have a reliable computer procedure to check the conditions of chaotic
behavior of a mapping it is straightforward to set up an optimization model
that transforms the original chaos location problem to a global optimization
problem.

The chaotic regions have several parameters that identify them. In the
early phase of our investigation we have restricted the search to locate two
parallelograms similar to that used in the article [Z97]: we are allowed to
change the vertical and horizontal positions and also the common tangent,
but the parallelograms always had two sides parallel to the x axis. It is also
possible to find fitting parameter values for the Hénon mapping, i.e., for the
mapping parameters A and B, and furthermore also for parameters of the
aimed sets of the underlying theorem, e.g. the border coordinates of the set
E.

The search for a chaotic region was modelled as a constrained global opti-
mization problem, subsequently the constraints were represented by a penalty
function approach. The original objective function was constant, still the pos-
sibility exists to extend it to a more complex form that expresses further aims,
e.g. to locate a second chaotic region, different from the known one.

The key question for the successful application of a global optimization
algorithm is how to compose the penalty functions. On the basis of earlier
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experiences collected solving similar constrained problems, we have decided
to add a nonnegative value proportional to how much the given condition was
violated, plus a fixed penalty term in case at least one of the constraints was
not satisfied.

As an example, consider the case when one of the conditions for the trans-
formed region was hurt, e.g. when (8), i.e., the relation Hk(b ∪ c) ⊂ O1 does
not hold for a given kth iterate, and for a region of two parallelograms. For
such a case the checking routine will provide a subinterval I that contains
at least one point of the investigated region, and which contradicts the given
condition. Then we have calculated the Hausdorff distance of the transformed
subinterval Hk(I) to the set O1 of the right side of the condition,

max
z∈Hk(I)

inf
y∈O1

d(z, y),

where d(z, y) is a given metric, a distance between two two-dimensional points.
Notice that the use of maximum in the expression is crucial, with minimization
instead our optimization approach could provide (and has provided) result
regions that do not fulfill the given conditions of chaotic behaviour. On the
other hand, the minimal distance according to points of the aimed set (this
time O1) is satisfactory, since it enables the technique to push the search
into proper directions. In cases when the checking routine answered that the
investigated subinterval has fulfilled the given condition, we have not changed
the objective function.

Summing it up, we have considered the following bound constrained prob-
lem for the T inclusion function of the mapping T :

min
x∈X

g(x), (10)

where

g(x) = f(x) + p

(

m
∑

i=1

max
z∈T (I(x))

inf
y∈Si

d(z, y)

)

,

X is the n-dimensional interval of admissible values for the parameters x
to be optimized, f(x) is the original, nonnegative objective function, and
p(y) = y + C if y is positive, and p(y) = 0 otherwise. C is a positive constant,
larger than f(x) for all the feasible x points, m is the number of conditions to
be fulfilled, and Si is the aimed set for the i-th condition. In this discussion
I(x) is the subinterval returned by the checking routine (or the empty set).
The interval I(x) depends implicitly on the parameter x to be optimized.

For more complicated cases the fixed sets given in Theorem 3 should also
be changed subject to certain structural constraints, e.g. the xa, xb, xc, and
xd coordinates of the parallelograms have to follow this order. These new
conditions can also be represented in a similar way, following the penalty
function approach of (10).

We have proved for our optimization model fits the chaos location prob-
lem, and the suggested global optimization method is capable to find chaotic
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places [CG06]. The interval arithmetic based checking routine provides a com-
putational proof for the existence of the chaos there.

3.2 Numerical results

For the computational experiments we have applied the C-XSC programming
language [KK93] supporting interval arithmetic. The results were obtained
both in Linux and in the Cygwin environment, on an average personal com-
puter. In the present subsection we just provide some demonstrative examples
for the functioning of the introduced technique. First we have checked the re-
ported chaotic region [Z97] by our checking routine.

1. We have investigated the seventh iterate of the Hénon mapping with the
classic parameters of A = 1.4 and B = 0.3. The checked region consists of
two parallelograms with sides parallel to the x-axis, the first coordinates of
the lower corner points were 0.460, 0.556, 0.588, and 0.620, while the second
coordinates were the same, 0.01. The common y coordinate for the upper
corner points was 0.28, and the tangent of the sides was 2. We have set the ε
threshold value for the checking routine to be 10−10.

First the algorithm determined the starting interval that contains the re-
gion to be checked:

[0.46000, 0.75500]× [0.01000, 0.28000].

Then the three conditions were checked one after the other. All of these
proved to be valid – as expected. The number of function evaluations (for the
transformation, i.e., for the seventh iterate of the Hénon mapping in each case)
were 273, 523, and 1,613, respectively. The algorithm stores those subintervals
for which it was impossible to prove directly whether the given condition holds;
these required further subdivision to achieve a conclusion. The depth of the
stack necessary for the checking was only 11, 13, and 14, respectively. The
CPU time used was negligible, a few seconds.

The results are demonstrated in Figure 5 (together with the parallelo-
grams). The density of the subintervals indicates that in the related subre-
gion the given condition was just fulfilled, the overestimation involved in the
interval calculations required much refinement.

Summarizing the results, we were able to prove with an acceptable amount
of computation and human overhead that the published system is chaotic in
the given, known regions. This confirms the result of Zgliczynski.

2. As a second step, randomly chosen A and B values were checked close to
the classical parameters. The following ones ensured chaos for the H7 Hénon
system with unchanged other region and algorithm parameters:
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a b c d

Q1Q0

Fig. 5. The parallelograms and the starting interval covered by the verified subin-
tervals for which the given condition holds (in the order of mentioning in Theorem
3).

A B

1.3555400848181643, 0.32668379383472889

1.3465721096594685, 0.32450555140362324

1.4403201855906845, 0.22585009468060412

1.4136297518450903, 0.26880306437090162

1.3702743902664050, 0.30756016043366862

Notice that without our automatic checking of the conditions for chaos it
could have been very difficult when not even impossible to arrive at the above
results, since the human interaction and insight necessary plus the required
overhead could be prohibitive.

3. As a third way of applying the checking routine, we have determined pa-
rameter intervals around A = 1.4 and B = 0.3 for which mapping H7 still
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has chaos on the same pair of parallelograms. The obtained intervals were
A ∈ [1.377599, 1.401300] and B ∈ [0.277700, 0.310301]. Notice that these in-
tervals do not contain all the A, B pairs given on the previous page.

The technique with which this result was obtained is the one discussed
in Section 2. The key feature necessary for this algorithm is that the check-
ing routine can accept interval valued parameters for the calculated mapping.
More solved chaotic region location problems are reported with technical de-
tails in [BC07].
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