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Abstract

The convergence properties of interval global optimization algo-
rithms are studied which select the next subinterval to be subdivided
with the largest value of the indicator pf(fk, X) = fk−F (X)

F (X)−F (X)
. This

time the more general case is investigated, when the global minimum
value is unknown, and thus its estimation fk in the iteration k has
an important role. A sharp necessary and sufficient condition is given
on the fk values approximating the global minimum value that ensure
convergence of the optimization algorithm. The new theoretical result
enables new, more efficient implementations that utilize the advantages
of the pf∗ based interval selection rule, even for the more general case
when no reliable estimation of the global minimum value is available.
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1 Introduction

The present paper extends the results of an earlier one [5] for the more
general case, when the global minimum value is not previously known.
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Consider the bound constrained global optimization problem [10, 19]

min
x∈X

f(x) (1)

where the n-dimensional interval X is the search region, and f(x) : R
n → R

is the objective function. We assume that there exists at least one global
minimizer point in X, that is also a stationary point. Problems that have
only not stationary global minimizer points on the boundary of the search
region, can be recognized by interval optimization methods, and they can
be solved usually in a relatively easy way, since then the monotonicity test
is usually efficient.

The algorithm considered is based on inclusion functions calculated by
interval arithmetic [15]:

Definition 1 A function F : I
n → I is an inclusion function of the objective

function f if for ∀Y ∈ I
n and ∀y ∈ Y f(y) ∈ F (Y ), where I stands for the

set of all closed real intervals.

In other words, f(Y ) ⊆ F (Y ) where f(Y ) is the range of f over Y .
The lower and upper bounds of an interval Y ∈ I

n are denoted by Y and
Y , respectively. The width of an interval is w(Y ) = Y − Y if Y ∈ I, and
w(Y ) = maxi(Yi − Yi) if Y ∈ I

n is an n-dimensional interval vector (also
called a box). I(X) stands for all intervals in X. Three important types or
possible properties of inclusion functions are:

Definition 2 F is said to be an isotone inclusion function over X if for

∀Y,Z ∈ I(X), Y ⊆ Z implies F (Y ) ⊆ F (Z).

Definition 3 We say that the inclusion function F has the zero convergence
property, if w(F (Zi)) → 0 holds for all the {Zi} interval sequences for which

Zi ⊆ X for all i = 1, 2, . . . and w(Zi) → 0.

Denote the global minimum value of the function f(x) on the search
region X by f ∗. Assume that we have an isotone inclusion function F (X)
for f(x).

Several Branch-and-Bound (B&B) type algorithms have been suggested
and studied for the solution of (1) utilizing inclusion function information
on the problem [9, 11, 15]. To allow a general discussion, we study the
following algorithm framework that can incorporate most of the features of
the present procedures.
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Algorithm

Step 1 Let L be an empty list, the leading box A := X, and the iteration
counter k := 1. Set f̃ = F (X).

Step 2 Subdivide A into s subsets Ai, (i = 1, . . . , s) satisfying A = ∪Ai

so that int(Ai) ∩ int(Aj) = ∅ for all i 6= j where int denotes the
interior of a set. Evaluate the inclusion function F (X) for all the new
subintervals, and update the upper bound of the global minimum:
f̃ := min{f̃ , F (A1), . . . , F (As)}.

Step 3 Let L := L ∪ {(Ai, pf(fk, Ai))} for all i ∈ {1, ..., s}.

Step 4 Use the accelerating devices: delete parts of the subintervals stored
in L that cannot contain a global minimizer point.

Step 5 Set A to be the that subinterval from the list L which has the largest
pf value, and remove the related pair from the list.

Step 6 While termination criteria do not hold let k := k+1 and go to Step
2.

In Step 4, so called accelerating devices can be used that delete or shrink
subintervals without discarding a global minimizer point. Such accelerating
devices can be for example the cut-off test (for some implementations it is
called midpoint test), the monotonicity test, the interval Newton step and
the concavity test. It is important that no global minimizer point is lost in
this process.

In [5] the effects of the application of

pf(fk, Y ) =
fk − F (Y )

F (Y ) − F (Y )
,

as an indicator that gives which interval is to be selected for subdivision were
investigated. In the related algorithm that interval Y was chosen which had
the maximal pf(fk, Y ) value. Here fk is the approximation of the global
minimum value in the iteration k, and in this way pf(fk, Y ) is a variant of

the RejectIndex, pf ∗ = f∗−F (Y )

F (Y )−F (Y )
[1, 2, 3, 4].

In that earlier paper [5] the author investigated the convergence prop-
erties, and it was found that the necessary and sufficient conditions for the
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convergence to a set of global minimizer point were that the sequence {fk}
converges to the global minimum value f ∗ and there exist at most a finite
number of fk values below f ∗.

Now we investigate such an algorithm that can utilize the new interval
selection rule without knowing a priori the global minimum value. Its ap-
proximation, the real value fk in the k-th iteration is between the known
best lower and upper bounds of f ∗:

f
k

= min{F (Y l), l = 1, ..., |L|} ≤ fk < f̃k = fk,

where |L| stands for the cardinality of the elements of the list L. Here the
list L is always the actual list, i.e. the one available at the iteration number
k.

2 Convergence condition

To investigate the convergence properties of the introduced algorithm, we
assume that the stopping conditions are either deleted, or they cannot be
fulfilled, and that the subdivision direction selection is balanced [7].

Theorem 1 Assume that the inclusion function of the objective function

is isotone and it has the zero convergence property. Consider the inter-

val branch-and-bound optimization algorithm that uses the cut-off test, the

monotonicity test, the interval Newton step and the concavity test as accel-

erating devices, and that selects as next leading interval Z from the working

list which has the maximal pf(fk, Z) value.

1. The algorithm converges exclusively to global minimizer points if

f
k
≤ fk < δ(f k − f

k
) + f

k

holds for each iteration number k, where 0 < δ < 1.
2. The above condition is sharp in the sense that δ = 1 allows conver-

gence to not optimal points.

Proof. 1. Notice first that the maximal pf(fk, Y ) values are always
nonnegative, since fk is not less than the minimal lower bound of F . Due to
fk < f̃ , the numerator of pf is less than f̃ − min{F (Y l), l = 1, ..., |L|}. f

k
is conservative, i.e. it is monotonically nondecreasing (based on the isotone
inclusion functions). A similar property is ensured for f k by the isotonicity
of F (X), and by the updating of f̃ . Thus f

k
is monotonically nondecreasing,
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and fk is monotonically nonincreasing. The sequence f
k

converge to a value
in [F (X), f ∗] depending on the actual problem instance.

Consider now an arbitrary point x′ ∈ X in such a way that f(x′) > f∗,
and that there is a subsequence {Ykl

} of the leading boxes that converges to
x′. For this point x′ the sequence of lower bounds F (Ykl

) converges to f(x′)
due to the zero convergence property, and obviously the sequence of upper
bounds f̃k = fk on the minimum value converges to a value not greater than
f(x′). Now the fk values must be below f(x′) from a certain iteration index,
since they fulfill the condition

f
k
≤ fk < δ(f k − f

k
) + f

k

with a 0 < δ < 1, and the difference between f k and fk is larger than
(1 − δ)(fk − f

k
) which is at least (1 − δ)(f(x′) − f∗) > 0 (since an f̃ below

f(x′) would inhibit a convergence to x′). Then the respective pf values are
negative from an index.

If there are more such points x1, x2, ... ∈ X for which f(xi) > f∗, and for
each of them there exist a subsequence of the leading boxes that converges
to the given point, then the above reasoning holds for each of them. In other
words, also in this case from a certain index all pf values are negative.

On the other hand, there is always at least one global minimizer point,
a stationary point in one of the subintervals in the list L. The respective
subinterval cannot be deleted by an accelerating step, and thus its pf(fk, Y )
value is nonnegative. But this contradicts that a subinterval with a nega-
tive pf value is selected, i.e. no subsequence of the generated intervals can
converge to a not optimal point of the search region.

2. The second statement is a consequence of Theorem 3 and Corollary 2
in [5] that require the convergence of f̃ to the global minimum value to have
the interval B&B optimization algorithm with the pf(fk, Y ) based interval
selection rule to converge exclusively to global minimizer points. �

Notice that if we set fk = min{F (Y l), l = 1, ..., |L|} then we have actually
the Moore-Skelboe algorithm, since then always that subinterval is selected
which has the minimal lower bound, since for these intervals the pf value
will be zero while for each other interval it will be negative. In this sense
the present theorem is a generalization of the convergence assertion on the
Moore-Skelboe algorithm. Theorem 1 remains true when some or all of the
accelerating devices are not used in the algorithm.

The required isotonicity is easy to achieve also for non-isotone inclusion
functions by intersecting the new inclusion function value F (Y i) with that
of the direct ancestor interval Y (for which Y = ∪iY

i).
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3 Implementation and numerical test results

The goal of the present computational test was to demonstrate the effect
of the new interval selection rule (utilizing the approximate optimum value
known with 4 digit precision obtained by a traditional optimization algo-
rithm as the starting f̃ value) compared to the old algorithm variants stud-
ied in [6]. This precision is usually not difficult to achieve, and it costs about
1,000 to 10,000 additional function evaluations (not counted in the corre-
sponding table). To have a reliable method, the approximate value must be
validated by an interval based evaluation. The algorithm can improve the
set starting f̃ value.

In the paper of [6] the numerical efficiency of several algorithm vari-
ants was investigated on 40 standard test functions. Three procedures were
compared:

• the Moore-Skelboe algorithm that selects that subinterval for subdivi-
sion which has the lowest lower bound on the objective function,

• the one that selects the subinterval with the maximal pf ∗ value, and

• a procedure that selects the subinterval with the maximal pf(fk, X)
value, where fk = (f

k
+ fk)/2.

The studied algorithms utilized only the cutoff test. For the investigated
procedures no derivative information was necessary. We used the traditional
bisection and the subdivision was made along the coordinate direction with
the longest edge. The algorithms were stopped when the diameter of a
candidate interval was smaller than 0.01, or if the length of the working list
reached 20,000. This memory limitation is far from the physical one, still
above this level, a larger and larger part of the computation must be spent
on administration in contrast to function evaluations.

The conclusion of the paper [6] was that when the global minimum value
is known it is the best to use it in the form of the pf ∗ based interval selec-
tion criterion. If it is not available, then the fk = (f

k
+ fk)/2 estimation

can be used, and the resulting algorithm will be more efficient for hard to
solve problems than the Moore-Skelboe algorithm. The results based on the
known global minimum value were so much better than the others, that it
seems to be reasonable to use a good approximation of the minimum value
(e.g. obtained by a real arithmetic based traditional optimization).

The present numerical tests were also carried out on a Pentium-IV com-
puter (1,4 Ghz, 1 Gbyte RAM) under the Linux operating system. The
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Table 1: The maximal list length needed for the solution of the test problems.

Problem MLL

name dim. F (fk + f
k
)/2 4 digit approx. pf ∗

% % %

H3 3 20,000 20,000 100 3,256 16 2,383 12
H6 6 20,000 20,000 100 20,000 100 20,000 100
GP 2 20,000 20,000 100 2,106 11 2,145 11
SHCB 2 20,000 17,643 88 762 4 762 4
L3 2 20,000 20,000 100 72 0 72 0
L5 2 20,000 20,000 100 37 0 37 0
Sch27 3 5,706 16 0 16 0 5,706 100
EX2 5 20,000 20,000 100 20,000 100 20,000 100

programs were coded in C++. The inclusion functions were implemented
via the PROFIL/BIAS routines [12], and the basis algorithm was that of
the C++ Toolbox for Verified Computing [8]. The standard time unit (the
CPU time required to evaluate the Shekel 5 test function 1000 times at
(4.0, 4.0, 4.0, 4.0)T ) was 0.00076 seconds.

In contrast to our earlier paper discussing an extensive numerical study,
our present computational experiments used only those test problems, that
were the most difficult to solve among those in [6]. Thus now the problems
Hartman-3 (H3), Hartman-6 (H6), Goldstein-Price (GP), Six-Hump-Camel-
Back (SHCB), Levy-3 (L3), Levy-5 (L5), Schwefel-2.7 (Sch27), and EX2
from [7]. The search regions were the same as in other numerical tests
[7, 9, 16, 19]. The numerical results are demonstrated in Tables 1 to 3.

In our test the most important indicator is the required number of list
elements for the solution of the given problems. In instances when the
respective value is 20,000, the related method was unable to solve the given
problem, thus all further efficiency indicators are incomparable for these
cases. According to the maximal list length required (MLL), it is definitely
worth to use an approximation of the global minimum value, since with this
overhead, our new algorithm was able to solve all those problems, which
were otherwise solved only by the pf ∗ based method (that needs the a priori
known global minimum value). The MLL values were close to those obtained
by the pf ∗ method, in one instance (Schwefel 2.7 problem) it was even better.

According to Table 2, the CPU times needed for the solution proved to
be a success story for the new method (denoted by 4 digit approx.): it could
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Table 2: The CPU time in seconds required for the solution.

Problem CPUt

name dim. F (fk + f
k
)/2 4 digit approx. pf ∗

% % %

H3 3 347.64 431.98 124 8.46 2 5.59 2
H6 6 444.75 439.99 99 375.53 84 368.55 83
GP 2 474.79 1,760.60 371 3.09 1 3.48 1
SHCB 2 362.53 298.12 82 0.45 0 0.54 0
L3 2 387.02 443.24 115 0.07 0 0.09 0
L5 2 381.78 319.82 84 0.03 0 0.05 0
Sch27 3 114.40 0.06 0 0.04 0 115.27 101
EX2 5 358.43 354.16 99 311.11 87 328.91 92

provide the minimal requirements of the follow up two techniques, that of
the (fk + f

k
)/2 based, and the pf ∗ based methods. It is remarkable, that

all solved problems were handled within 10 seconds.
The number of function evaluations and the number of iterations (NFE)

go understandably in parallel, thus the later is not demonstrated here. Al-
though the new method (4 digit approx.) is the best according to NFE in
all comparable cases, still, remember, that the new method involves an ad-
ditional amount of function evaluations for the approximate optimization to
obtain an estimated global minimum value. Notice that the solution time
difference between the best technique not using f ∗ and the new method al-
lows the preliminary approximate optimization, and provides a substantial
saving in the whole test set.

Summarizing the numerical experiences, we can conclude that according
to the tests made it is definitely worth to run a traditional, real arithmetic
based optimization algorithm to obtain an approximate minimum value,
since it can well be utilized with the pf(fk, X) indicator, and in the cor-
responding subinterval selection rule. As the efficiency indicators show, it
seems that the approximate minimum value can be well used in the interval
selection rule. We have repeated our computational tests with other preci-
sion values, and we have found that the savings were similar in a relatively
large range of precision, with 100% to 0.000001% relative error in the es-
timation of the global minimum value. The large complexity savings open
the way to heuristic reliable procedures, which use iteratively estimated op-
timum values together with reliable interval optimization techniques.

8



Table 3: The number of objective function evaluations needed for the solu-
tion.

Problem NFE

name dim. F (fk + f
k
)/2 4 digit approx. pf ∗

% % %

H3 3 66,817 120,055 180 6,519 10 7,159 11
H6 6 64,105 68,074 106 40,135 63 60,202 94
GP 2 70,663 636,550 901 4,211 6 6,433 9
SHCB 2 78,883 129,211 164 1,553 2 2,329 3
L3 2 70,774 118,153 167 189 0 283 0
L5 2 69,223 87,520 126 81 0 121 0
Sch27 3 60,535 88 0 59 0 60,535 100
EX2 5 62,407 78,151 125 42,547 68 63,823 102
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