
Optimization Methods and Software
Vol. 00, No. 00, January 2008, 1–10

Global Optimization Software

INTLAB implementation of an interval global optimization

algorithm

László Pála and Tibor Csendesb∗

aFaculty of Business and Humanities, Sapientia University, Miercurea-Ciuc, Romania;
bInstitute of Informatics, University of Szeged, Szeged, Hungary

(May 2008)

We describe a new implementation of an interval optimization algorithm with focus on the
software related issues. The algorithm implemented in MATLAB that uses the INTLAB
package supporting interval calculations and automatic differentiation solves the bound con-
strained global optimization problem. The method itself is a simplified version of those in-
terval techniques much investigated in the past, which were first developed from the global
optimization algorithm of the Numerical Toolbox for Verified Computing. According to the
numerical studies completed, the new, INTLAB based implementation is closely as efficient
as its C-XSC-based basis algorithm – with the exception of the CPU time needed (the longer
computations are due to the interpreter nature of MATLAB).

Keywords: interval methods; INTLAB; bound constrained global optimization; verified
solution

AMS Subject Classification: 65K05, 90C30

1. Introduction

Bound constrained global optimization problems in the form of

min
x∈X

f(x)

are common with X = {xi ∈ [xi, xi], i = 1, . . . , n}, and xi, xi ∈ R, i = 1, . . . , n. In
several cases we can assume that the objective function, f is smooth. Our algorithm
utilizes smoothness, but with skipping the interval Newton step and the concavity
test, it can also be applied for nonsmooth objective functions.

Just to name some of the numerous applications of global optimization, we point
on some of our recent publications: we solved with such techniques hard mathe-
matical problems arising in the field of qualitative analysis of dynamical systems
[2, 5, 6] and discrete geometry, for optimal packing of circles in the square [10, 13].
Global optimization methods have also been applied for theoretical chemical prob-
lems [1], and for the evaluation of bounding methods [14].

MATLAB is a natural environment for algorithm development and testing. Our
aim was to provide an easy to use reliable global optimization method. We have re-
cently completed a similar successful implementation in MATLAB for the stochas-
tic GLOBAL procedure [7].

∗Corresponding author. Email: Csendes@inf.u-szeged.hu

ISSN: 1055-6788 print/ISSN 1029-4937 online
c© 2008 Taylor & Francis
DOI: 10.1080/1055678xxxxxxxxxxxxx
http://www.informaworld.com

2 L. Pál and T. Csendes

The algorithm investigated now uses only a subroutine calculating the objective
function as information on the global optimization problem, i.e. the expression is
not required. The procedure applies the gradient and the Hessian of the objective
function, these are computed by the automatic differentiation facility of INTLAB.

2. The algorithm and its implementation

The branch-and-bound type method we have implemented is described by Algo-
rithm 1. This technique originates in the Numerical Toolbox for Verified Computing
[8], and it applies the most common accelerating devices: the cutoff test, the con-
cavity test, the monotonicity test, and the interval Newton step. Beyond natural
interval extension (based on naive interval arithmetic), a simple centered form in-
clusion function is also applied. Once the inclusion of the gradient is available, the
intersection of these inclusion functions proved to be a good quality estimation of
the range of the objective function.

We use also multisection and advanced subdivision direction selection [9], albeit
without those based on the pf∗ heuristic algorithm parameter [3]. These later
techniques will be inserted in the future: the present version is planed to be simple
and easy to use. Multisection means this time that each interval will be subdivided
into three subintervals according to the most promising two coordinate directions.
The subdivision directions are determined according to the well tested and effective
C subdivision direction selection rule (also used in [3] and [9]). The algorithm
solves also one-dimensional problems. Then the described multisection technique
is substituted by greedy bisection made again on the basis of the C rule.

For the MATLAB/INTLAB implementation we have followed closely the C-XSC
code which was developed for bound constrained global optimization by Mihály
Csaba Markót based on the algorithm documented in [11]. The control structures of
the two algorithms are identical, while the vectorial array statements of MATLAB
were applied wherever possible.

To use the new method, first install the INTLAB package for interval arithmetic
based inclusion functions and verified numerical techniques. Download the com-
pressed archive from http://www.ti3.tu-harburg.de/rump/intlab/, and follow
the included guide and instructions. The installation requires a few minutes and
some level of experience in operating system script programming. Otherwise the
hints given in the user guide are sufficient. INTLAB is free for private use and
for purely academic purposes provided proper reference is given acknowledging
that the software package INTLAB has been developed by Siegfried M. Rump at
Hamburg University of Technology, Germany [12]. INTLAB applies a sophisticated
rounding that depends closely on the actual hardware. This is why it is easy to
implement on a standard PC (also in Linux), while it cannot be used immediately
on some modern workstations.

When the INTLAB package has been downloaded, decompress the archive, and
place the files into a directory, that should be then given as the default directory,
where MATLAB finds the INTLAB related files. This can be accomplished by
setting the Current Directory properly at the top center position of the MATLAB
window. The next step is to run the script startintlab.m from the main directory:

>> startintlab

which initiates various global variables and will do much of the rest. In case ev-
erything went well, no error message is obtained. Otherwise the user obtains the
most important hints how to complete the implementation procedure. Note that

A global optimization algorithm for INTLAB 3

Algorithm 1 The bound constrained global optimization algorithm investigated
GlobalOptimize (f , X, ε, Lres, f∗)
Y := X; f̃ := f(m(X));Lres := {}; Lwork := {}; Ltemp := {};
repeat

OptimalComponents(Y, k1, k2);
Trisection(Y, k1, k2, U

1, U2, U3);
for i := 1 to 3 do

if MonotonicityTest(∇f(U i)) then next i;
fU := f(U i);
if f̃ < fU then next i;
fU := fU ∩ CenteredForm(U i,∇f(U i));
if f(m(U i)) < f̃ then f̃ := f(m(U i));

Lwork := CutOffTest(Lwork, f̃);
if f̃ >= fU then Ltemp := Ltemp ∪ (U i, fU);

if length(Ltemp) = 1 then
U := Head(Ltemp);
if not ConcavityTest(∇2f(U)) then

NewtonStep(f, U,∇2f(U), V, p);
for i := 1 to p do

if MonotonicityTest(∇f(V i)) then next i;
fV := f(V i) ∩ CenteredForm(V i,∇f(V i));
if f(m(V i)) < f̃ then f̃ := f(m(V i));

Lwork := CutOffTest(Lwork, f̃);
if f̃ >= fV then

if w(fV) < ε then Lres := Lres ∪ (V i, fV);
else Lwork := Lwork ∪ (V i, fV);

else
while (Ltemp 6= {}) do

U := Head(Ltemp);
if w(fU) < ε then Lres := Lres ∪ (U, fU);

else Lwork := Lwork ∪ (U, fU);
if Lwork 6= {} then Y := Head(Lwork);

until L = {};
Y := Head(Lres); f∗ := [fY , f̃];
return Lres, f

∗;

you must issue the startinlab command always before using INTLAB, not only
the first time.

INTLAB has been successfully tested under different MATLAB versions up to the
7.4 (R2007a) version. In recent releases MATLAB uses Intel Math Kernel Library
(IMKL) as default for BLAS operations. This may cause problems, since the IMKL
library takes full control over the control word forcing internal computation to be
done in extended mode and sets the rounding mode to nearest. In order to make
INTLAB work properly, we have to change to another BLAS library, for instance
the Atlas library which was used up to recently by MATLAB.

Under Windows, we should change the system variable BLAS VERSION to at-
las***.dll choosing ’***’ according to the processor type (for example the full name
is ”atlas P4.dll” for a PC with a Pentium 4 processor). The corresponding file is
located in the MATLAB directory ”...\MATLAB\bin\win32\”. If you have the
rights of the system administrator, then you can set the BLAS version for all users

4 L. Pál and T. Csendes

and threads using the Environment Variables (Control Panel → System Properties
→ Advanced) dialog box. Otherwise complete the above procedure in the command
line window, applying the command

set BLAS VERSION="atlas P4.dll"

and make sure that MATLAB is started then from the same place.
Under Linux we can set the new library by the command

export BLAS VERSION="atlas P4.so"

to reach the above level of readiness. The setting of the BLAS library usually solves
all the problems what is reported first by the startintlab procedure.

After starting INTLAB, you may wish to define an interval and see the results
of the basic operations and standard functions. You can define an interval with the

infsup(a,b)

command. INTLAB has the default display mode of intervals with uncertainty, for
example

infsup(3.14, 3.15)

results in

intval ans = 3.15

while with the command

intvalinit(’displayinfsup’)

the result of the same definition is in the more conventional

[3.14, 3.15]

form. Now after the definitions x=infsup(0,1); and y=infsup(2,3); the state-
ment x/y provides

intval ans = [0.0000, 0.5000]

while sin(x) gives

intval ans = [0.0000, 0.8415].

After reaching this point, it is worth to read the article on INTLAB [12], and to
study the demo programs.

The new MATLAB/INTLAB based interval global optimization algorithm will
also be available soon as a part of the GLOBAL package. The latter is to be
downloaded from

www.inf.u-szeged.hu/∼csendes/reg/regform.php.
The comprised package contains all necessary files, a suitable directory structure

and also a testing environment.

3. Use of the interval global optimization algorithm and examples

After decompressing the archive, move the current directory setting to the new one
named GlobalInterval, and within MATLAB, issue the command

>> MainTester

A global optimization algorithm for INTLAB 5

In case the directory named TestFunctions contains only the files sh5.bnd and
sh5.m, then the interval global optimization algorithm GOP will solve only the
Shekel-5 standard global optimization problem.

The content of the file sh5.bnd is

S5
4
0 10
0 10
0 10
0 10
1e-8

The first line provides the name of the function, the second one contains the di-
mension of the problem (here 4), then the subsequent 4 lines set the coordinate
intervals for the search space, which is now a 4-dimensional interval. Finally the
last line sets the tolerance ε of the stopping criterion: when the width of the actual
inclusion function value is less than this value then the subinterval is moved from
the working list to the result list (and the algorithm will not subdivide it further).

The objective function is given in the file sh5.m:

%Shekel-(4,5)
function y = sh5(x)
%
% Shekel function
% MATLAB Code by A. Hedar (Nov. 23, 2005).
% The number of variables n = 4
% The parameter m should be adjusted m = 5,7,10.
% The default value of m = 10.
%
m = 5;
a = ones(10,4);
a(1,:) = 4.0*a(1,:);
a(2,:) = 1.0*a(2,:);
a(3,:) = 8.0*a(3,:);
a(4,:) = 6.0*a(4,:);
for j = 1:2;

a(5,2*j-1) = 3.0; a(5,2*j) = 7.0;
a(6,2*j-1) = 2.0; a(6,2*j) = 9.0;
a(7,j) = 5.0; a(7,j+2) = 3.0;
a(8,2*j-1) = 8.0; a(8,2*j) = 1.0;
a(9,2*j-1) = 6.0; a(9,2*j) = 2.0;
a(10,2*j-1)= 7.0; a(10,2*j)= 3.6;

end
c(1) = 0.1; c(2) = 0.2; c(3) = 0.2; c(4) = 0.4; c(5) = 0.4;
c(6) = 0.6; c(7) = 0.3; c(8) = 0.7; c(9) = 0.5; c(10)= 0.5;
s = 0.0;
for j = 1:m;

p = 0.0;
for i = 1:4

p = p+(x(i)-a(j,i))^2;
end
s = s+1.0/(p+c(j));

end y = -s;

6 L. Pál and T. Csendes

The result we obtain after running MainTester is then:

Function name: S5

The set of global minimizers is located in the union of the
following boxes:

c1: [4.00003713662883, 4.00003718945147]
[4.00013323800906, 4.00013329348396]
[4.00003713910016, 4.00003717168197]
[4.00013326916774, 4.00013328566954]

The global minimum is enclosed in:

[-10.153199679058694, -10.153199679058199]

Statistics:

Iter Feval Geval Heval MLL CPUt(sec)
16 126 86 7 10 6.69

In contrast to what can be seen here, it is more usual to have several such result
intervals (which are formed from the subintervals of the result list by merging the
neighboring ones). The global minimizer points are contained in the union of these.
The precision of the inclusion for the global minimum value is much better than
the set tolerance. This phenomenon is caused usually by the interval Newton step,
which can be very effective on smooth functions.

The optimization algorithm required now 16 iterations, 126 objective function
evaluations, 86 gradient evaluations, and 7 Hessian evaluations. The maximal
length of the working list was 10, and the CPU time used for the solution was
6.69 seconds. A computational comparison between the introduced new INTLAB
based interval global optimization method and the one implemented in C-XSC will
be discussed in the next section.

The interval global optimization method can also be applied directly, without Main-
Tester. A simple example for that is to repeat the above test by

>> addpath(’./’,’./Utils’,’TestFunctions’)
>> amin=[0; 0; 0; 0]
>> amax=[10; 10; 10; 10]
>> b = infsup(amin,amax)
>> [intv, min, stats] = GOP(@sh5,b,0.00000001)

An even simpler usage is given below for the toy problem

min
x∈[−2,1]2

x2
1 + x2

2 + 1

without editing a file that contains the objective function:

>> f = inline(’x(1)^2+x(2)^2+1’)
>> amin = [-2; -2]
>> amax = [1; 1]
>> int =infsup(amin,amax)
>> [intv, min, stat] = GOP(f, int, 0.00000001)

A global optimization algorithm for INTLAB 7

Another telling example is the #4 problem from the set of the SIAM 100 $, 100
Digits Challenge announced in 2002 (ten exact digits were to be determined for
each of the ten numerical problems). The function to be minimized was:

exp(sin(50x))+sin(60ey)+sin(70 sin(x))+sin(sin(80y))−sin(10(x+y))+
1
4
(x2+y2).

We run our INTLAB based interval global optimization algorithm for the search
interval [−10, 10]2. The parameter file and the code of the objective function are,
respectively:

SIAM
2
-10 10
-10 10
1e-8

and

%SIAM
function y = siam(x)

y = exp(sin(50*x(1))) + sin(60*exp(x(2))) + sin(70*sin(x(1))) +
sin(sin(80*x(2))) - sin(10*(x(1)+x(2))) + 1/4 * (x(1)^2 + x(2)^2);

The obtained result was:

The set of global minimizers is located in the union of the
following boxes:

c1: [-0.02440308068263, -0.02440307781118]
[0.21061242712377, 0.21061242717589]

The global minimum is enclosed in:

[-3.3068686474752584, -3.3068686474752287]

Statistics:

Iter Feval Geval Heval MLL CPUt(sec)
238 1723 1151 90 75 75.63

That is, we have obtained a very narrow verified enclosure of the global minimum
value:

[−3.3068686474752584,−3.3068686474752287]

at the cost of 75.63 CPU seconds, 1723 function-, 1151 gradient-, and 90 Hessian
inclusion function evaluations, and 238 iterations (using only 75 memory units).
The underlined 14 digits are exact. The human overhead (the work to be done by
us for coding the problem until the algorithm could be run) of this problem solution
was much less than in C-XSC (and Profil/BIAS) – due to the more sophisticated
interval standard functions.

8 L. Pál and T. Csendes

Table 1. The numerical comparison of the C-XSC and the INTLAB code. Dim stands

for the dimension of the problem, NIT for the number of iterations, NFE for the number

of objective function evaluations, and NGE for the number of gradient evaluations.

Old, C-XSC code New, INTLAB code
Problem Dim NIT NFE NGE NIT NFE NGE
S5 4 16 126 86 16 126 86
S7 4 18 129 84 17 121 78
S10 4 18 126 81 17 123 78
H3 3 42 184 135 42 184 135
H6 6 217 1,014 735 220 1,038 756
GP 2 2,351 15,314 9,430 2,351 15,319 9,427
SHCB 2 130 694 455 130 694 455
THCB 2 56 327 229 56 327 229
BR 2 52 282 200 52 282 200
RB 2 43 263 172 43 263 172
RB5 5 612 4,907 3,685 607 4,878 3,664
L3 2 293 1,890 1,301 293 1,890 1,301
L5 2 88 578 397 88 578 397
L8 3 11 80 55 11 80 55
L9 4 16 112 74 16 115 77
L10 5 19 143 97 19 143 97
L11 8 29 225 152 29 225 152
L12 10 34 282 194 34 282 194
L13 2 12 72 46 12 72 46
L14 3 15 104 66 15 104 66
L15 4 20 135 86 20 135 86
L16 5 19 142 88 19 142 88
L18 7 27 206 130 27 206 130
Schw2.1 2 226 1,312 951 226 1,312 951
Schw3.1 3 14 91 61 14 91 61
Schw2.5 2 53 307 216 53 307 216
Schw2.14 4 369 2,600 1,820 408 2,780 1,913
Schw2.18 2 51 284 201 51 284 201
Schw3.2 3 33 201 135 25 164 110
Schw3.7 5 5 129 677 484 129 677 484
Schw3.7 10 10 7,566 35,385 25,771 7,566 35,385 25,771
Griew5 5 691 9,854 6,424 705 9,940 6,482
Griew7 7 40 272 163 40 272 163
R4 2 154 902 648 153 899 645
R5 3 173 1,555 1,174 173 1,555 1,174
R6 5 227 2,255 1,826 227 2,255 1,826
R7 7 380 4,437 3,711 380 4,437 3,711
R8 9 471 6,170 5,266 471 6,170 5,266
EX2 5 41,794 250,885 177,929 14,774 89,318 65,862

4. Computational tests and comparison

The numerical comparison aimed to clear whether the new implementation is capa-
ble to deliver similar quality results as the old one, and to measure the efficiency in
terms of the usual indicators. Hence, we have completed a computational test, and
compared the efficiency and the results of the INTLAB implementation to that of
a C-XSC, BIAS, and Profil based procedure [11].

For the test we used INTLAB version 5.4, MATLAB R2007a, and a PC with
1 Gbyte RAM and a 3 GHz Pentium 4 processor. The test problems included all
the standard global optimization functions to be minimized, and basically all of
those usually applied in comparing interval global optimization methods. The test
function Schwefel 2.7 is missing from the study, and hence also from the tables.
The reason for it is that this problem cannot be solved by the algorithms within
reasonable time (less than 10 minutes). Otherwise the test problem set is the same
as those in other extensive numerical studies, such as [3, 4].

The results are summarized in Tables 1 and 2. The problem names are abbrevi-
ated as usual, e.g. S5 stands for Shekel-5, Sch3.2 for Schwefel 3.2, and R4 for Ratz-4
(cf. [3]). The first two columns give the problem names and their dimension. The
listed efficiency indicators are the number of iterations necessary (abbreviated as
NIT), the number of objective function evaluations (NFE), the number of gradient

A global optimization algorithm for INTLAB 9

Table 2. The numerical comparison of the C-XSC and the INTLAB code. Dim

stands for the dimension of the problem, NHE for the number of Hessian evaluations,

MLL for the maximal list length required, and CPU for the CPU time needed in

seconds.

Old, C-XSC code New, INTLAB code
Problem dim NHE MLL CPU NHE MLL CPU
S5 4 7 10 0.01 7 10 10.14
S7 4 7 14 0.03 6 14 13.05
S10 4 6 16 0.03 6 17 18.56
H3 3 3 12 0.01 3 12 11.20
H6 6 25 69 0.33 27 69 113.47
GP 2 608 480 0.68 608 480 630.33
SHCB 2 25 51 0.01 25 51 21.06
THCB 2 22 19 0.00 22 19 8.11
BR 2 18 12 0.00 18 12 6.91
RB 2 15 11 0.00 15 11 3.17
RB5 5 411 77 0.45 410 73 220.30
L3 2 97 138 0.16 97 138 115.11
L5 2 28 31 0.04 28 31 41.06
L8 3 5 9 0.00 5 9 4.03
L9 4 6 14 0.01 6 14 7.52
L10 5 8 17 0.02 8 17 11.97
L11 8 10 30 0.10 10 30 29.13
L12 10 12 39 0.24 12 39 46.28
L13 2 3 9 0.00 3 9 2.39
L14 3 5 11 0.00 5 11 4.59
L15 4 6 17 0.01 6 17 7.44
L16 5 6 20 0.01 6 20 9.33
L18 7 8 26 0.05 8 26 18.22
Schw2.1 2 88 26 0.02 88 26 36.78
Schw3.1 3 5 6 0.00 5 6 2.67
Schw2.5 2 28 5 0.00 28 5 4.02
Schw2.14 4 179 78 0.09 190 65 76.53
Schw2.18 2 22 8 0.00 22 8 3.81
Schw3.2 3 12 9 0.00 11 7 3.34
Schw3.7 5 5 32 32 0.03 32 32 25.98
Schw3.7 10 10 1,024 1,024 11.35 1,024 1,024 2,585.11
Griew5 5 597 32 1.04 611 32 575.95
Griew7 7 7 52 0.05 7 52 20.63
R4 2 51 39 0.02 51 39 17.72
R5 3 109 43 0.10 109 43 75.22
R6 5 143 29 0.39 143 29 186.75
R7 7 257 47 1.59 257 47 526.50
R8 9 321 65 3.81 321 65 951.27
EX2 5 19,124 1,969 72.93 6,928 1,610 12,042.27

evaluations (NGE), the number of Hessian evaluations (NHE), the maximal length
of the working list (MLL), and the required CPU time in seconds (CPU).

Most of the efficiency indicators have the same or very similar values for the two
implementations. We discuss here just the larger and systematic differences. The
most significant change is definitely in the CPU time needed: the INTLAB based
implementation requires on the average ca. 700 times more time to reach basically
the same result. The ratios differ from 165 to 2106, and the median of them is 619.
The highest ratio values are related to cases when the CPU time for the C-XSC
version were hardly measurably low. It is also worth mentioning, that the lowest
ratios belong to those test problems, that required more computation. The reason
for this drop in speed is that MATLAB works in interpreter mode, and thus it is
no wonder that a machine code program produced by a compiler can reach better
times. On the other hand we have to add that we had a well readable, but less
optimized coding, and there remained much to improve exploiting the vectorization
feature of MATLAB. The bottom line of this comparison is that although the easy
use of MATLAB has its price in speed, still for practical problems the Intlab based
interval global optimization method can be a useful modeling tool for early phases
of optimization projects.

Since the number of iterations, objective function evaluations, gradient calls,

10 REFERENCES

Hessian evaluations and maximal working list lengths are identical for the two
algorithms for the majority of test problems, we can certainly conclude that the al-
gorithms are equivalent, and there cannot be significant algorithmic differences. In
the remaining cases the slightly changing indicators are caused by the different re-
alizations of the rounding and other hardware depending statements and functions.
This finding is also supported by the fact that the somewhat larger differences (ca.
24%, 18%, 18%, 8%, 22%, and ca. 65%, 64%, 63%, 64%, 18%, respectively for the
first five indicators in the Tables 1 and 2) obtained for the test problems Schwefel-
3.2 and EX2 can well be led back for the flatness of these functions. The better
efficiency indicators obtained for the latter cases are in accordance with the fact
that the outside rounding necessary for the verified reliable bounds on the range of
the functions is more precise in the INTLAB implementation. A smaller part of the
CPU time differences is also due to the quicker but less precise interval operations
and functions provided by Profil/BIAS.

Summarizing our numerical results, we can state that the computational experi-
ences confirm that the new implementation is in several indicators (e.g. number
of function, gradient and Hessian evaluations, number of iterations, and memory
complexity) in essence equivalent to that of the old one. The CPU time needed is
as a rule by at least two order of magnitude higher for the INTLAB version – as it
can be anticipated regarding the interpreter nature of MATLAB. However, further
vectorization coding changes in the algorithm and in the objective functions may
improve on that. In spite of the lower speed, the new interval global optimization
methods can well be suggested as an early modeling and experimentation tool for
the verified solution of bound constrained global optimization problems.

Acknowledgements

The present work was supported by the grants Aktion Österreich-Ungarn 60öu6,
OTKA T 048377 and T 046822.

References

[1] J. Balogh, T. Csendes, and R.P. Stateva, Application of a stochastic method to the solution of the
phase stability problem: cubic equations of state. Fluid Phase Equilibria 212 (2003), pp. 257-267.

[2] B. Bánhelyi, T. Csendes, and B.M. Garay, Optimization and the Miranda approach in detecting
horseshoe-type chaos by computer. Int. J. Bifurcation and Chaos 17 (2007), pp. 735-747.

[3] T. Csendes, New subinterval selection criteria for interval global optimization. J. Global Optimization
19 (2001), pp. 307-327.

[4] ———, Numerical experiences with a new generalized subinterval selection criterion for interval
global optimization. Reliable Computing 9 (2003), pp. 109-125.

[5] T. Csendes, B. Bánhelyi, and L. Hatvani, Towards a computer-assisted proof for chaos in a forced
damped pendulum equation. J. Computational and Applied Mathematics 199 (2007), pp. 378-383.

[6] T. Csendes, B.M. Garay, and B. Bánhelyi, A verified optimization technique to locate chaotic regions
of Hénon systems. J. of Global Optimization 35 (2006), pp. 145-160.

[7] T. Csendes et al.; The GLOBAL Optimization Method Revisited. Accepted for publication in the
Optimization Letters.

[8] R. Hammer et al., Numerical Toolbox for Verified Computing I. Springer-Verlag, Berlin, 1993.
[9] R.B. Kearfott, Rigorous global search: continuous problems. Kluwer, Dordrecht, 1996.

[10] M.Cs. Markót and T. Csendes, A new verified optimization technique for the ”packing circles in a
unit square” problems. SIAM J. on Optimization 16 (2005), pp. 193-219.

[11] M.C. Markót et al., New interval methods for constrained global optimization. Mathematical Pro-
gramming 106 (2006), pp. 287-318.

[12] S.M. Rump, INTLAB – Interval Laboratory. In: T. Csendes (ed.): Developments in Reliable Com-
puting, Kluwer, Dordrecht, 1999, pp. 77-104.

[13] P.G. Szabó et al., New Approaches to Circle Packing in a Square – With Program Codes. Springer-
Verlag, Berlin, 2007.

[14] B. Tóth, J. Fernández, and T. Csendes, Empirical convergence speed of inclusion functions for facility
location problems. J. of Computational and Applied Mathematics 199 (2007), pp. 384-389.

