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Abstract. In a paper published in 1955, E.M. Wright proved that all solutions of the delay
differential equation u′(t) = −αu(t − 1)(1 + u(t)) converge to zero for α ∈ (0, 1.5], and conjectured
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2
). The present paper provides a computer-assisted proof of the

conjecture for α ∈ [1.5, 1.5706] (compare with π
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= 1.570796...).
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1. Introduction. In 1955, Edward M. Wright [35], motivated by an unpublished
note of Lord Cherwell about a heuristic approach to the density of prime numbers
(see also [10], [36]), studied the delay differential equation

u̇(t) = −αu(t− 1)[1 + u(t)], α > 0.(1.1)

An equivalent form, the so-called delayed logistic equation or Hutchinson’s equation

v̇(t) = αv(t)[1 − v(t− 1)],

was introduced by Hutchinson [11] in 1948 for ecological models.
Considering only those solutions of equation (1.1) which have values in (−1,∞),

the transformation x = log(1 + u) leads to the equation

ẋ(t) = fα(x(t − 1))(1.2)

with fα(ξ) = −α(eξ − 1), ξ ∈ R. Throughout this paper (1.2) is also called Wright’s
equation. It is one of the simplest nonlinear delay differential equations. Wright
[35] was the first who obtained deep results for equation (1.2). He proved among
others that all solutions of (1.2) approach zero as t → ∞ provided α ≤ 3

2 , and he
made the following remark: My methods, at the cost of considerable elaboration, can
be used to extend this result to α ≤ 37

24 and, probably to α < 1.567... (compare with
π
2 = 1.570796...). But the work becomes so heavy for the last step that I have not
completed it.

For every α > π
2 , Wright [35] proved the existence of bounded solutions of equation

(1.2) which do not tend to zero. If α < π
2 then the roots of the characteristic equation

z+αe−z = 0 of the linear variational equation ẏ(t) = −αy(t−1) of (1.2) have negative
real parts. Thus the zero solution of (1.2) is locally attractive.

Based on the above facts the question of the global attractivity of the zero solution
of (1.2) for parameter values α < π

2 arises naturally, and it is known as Wright’s
conjecture.
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Conjecture 1. For every α < π
2 , the zero solution of equation (1.2) is globally

attractive, i.e., all solutions approach zero as t→ ∞.
The problem is still open, and, as far as we know, Wright’s result, i.e., α ≤ 3

2 , is
still the best one for global attractivity of the zero solution. Walther [32] proved that
the set of parameter values α, for which 0 is globally attracting, is an open subset of
(0, π2 ).

We mention that Wright’s equation motivated the development of a wide variety
of deep analytical and topological tools (see e.g. the monographs [7], [9]) to get more
information about the dynamics of (1.2). For example, Jones [12] proved the existence
of slowly oscillating periodic solutions of (1.2) for α > π

2 , where slow oscillation
means that |z1 − z2| > 1 for each pair of zeros z1, z2 of the periodic solution. Chow
and Mallet-Paret [4] showed that there is a supercritical Hopf bifurcation of slowly
oscillating periodic solutions form the zero solution at α = π

2 .
Applying the Poincaré–Bendixson type result of Mallet-Paret and Sell [23] it can

be shown that any solution of equation (1.2) approaches either a nontrivial periodic
solution or zero as t→ ∞. Mallet-Paret and Walther [24] verified that slow oscillation
is generic for equation (1.2) for all α > 0, that is, for an open dense set of initial data
from the phase space the solutions are eventually slowly oscillating. Mallet-Paret [21]
obtained a Morse decomposition of the global attractor of (1.2); see also McCord and
Mischaikow [26]. For several other results we refer to the monographs [7], [9]. Despite
of the simplicity of equation (1.2) and the very intensive investigation since 1955, it
seems that we are still far from the complete understanding of the dynamics of (1.2).

Conjecture 1 is not the only open question for equation (1.2). Recently, Lessard
[20] made some progress toward the proof of Jones’ conjecture [12]:

Conjecture 2. For every α > π
2 , equation (1.2) has a unique slowly oscillating

periodic orbit.
In the work [19] we defined the set U(α), in the space of continuous functions from

[−1, 0] into R, as the forward extension (by the semiflow) of a local unstable manifold
at zero. Then we described the dynamic and geometric structure of its closure U(α).
The results of [19] are valid for equations including (1.2). In [17] for equation (1.2)
we formulated the so called generalized Wright’s conjecture:

Conjecture 3. For every α > 0, the set U(α) is the global attractor for equation
(1.2).

An affirmative answer for Conjecture 3 would mean a more or less complete
understanding of the dynamics of equation (1.2). For example, for the equation
ẋ(t) = −ax(t)− b tanh(cx(t− 1)) with a ≥ 0, b > 0, c > 0, the analogue of Conjecture
3 is known to be valid [16].

In this paper we prove that Wright’s conjecture is equivalent to the nonexistence
of slowly oscillating periodic solutions, and we develop a reliable computational tool
to exclude the existence of slowly oscillating periodic solutions with amplitude greater
than a certain constant ǫ0 > 0. For 3

2 ≤ α < π
2 , following a geometric idea of Walther

[33], we project slowly oscillating periodic solutions of (1.2) and periodic solutions of
ẏ(t) = −π

2 y(t − 1) into the plane R2, and explicitly construct ǫ(α) > 0 so that for
every slowly oscillatory periodic solution p of (1.2), maxt∈R p(t) > log π

2α holds. Since
log π

2α → 0 as α → π
2 , we are able to prove Wright’s conjecture only for those values

of α for which log π
2α > ǫ0. These results combined verify Wright’s conjecture for

α ≤ 1.5706.

Important parts of the proof are based on verified numerical calculations apply-
ing interval arithmetic, the respective inclusion functions and guaranteed reliability
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Fig. 1.1. The simplest bounding function values compared to M for α = 1.0 (left) and α = 1.1
(right).

bounds for the solutions of the involved delay differential equation [1, 30].

The idea of Wright’s original proof is the following. For the sake of simplicity, we
formulate it to exclude the existence of periodic solutions. We show in Section 3 that
the nonexistence of slowly oscillatory periodic solutions and the global attractivity of
0 are equivalent statements. Assume that y is a slowly oscillatory periodic solution
of equation (1.1) with maximal value M and with minimal value −m, where m > 0,
M > 0. Let z be a time with y(z) = 0. Then, by the fact [23] that for periodic
solutions of (1.2) there is a unique zero of y′ between two consecutive zeros of y, and
three consecutive zeros of y determine the minimal period, z+1 must be a minimum
or a maximum point of y(t). Consider first the case y(z + 1) =M . Then

M =

∫ z+1

z

y′(t) dt = −α

∫ z+1

z

(

ey(t−1) − 1
)

dt = −α

∫ z

z−1

(

ey(t) − 1
)

dt

≤ −α

∫ z

z−1

(

e−m − 1
)

dt = −α
(

e−m − 1
)

.

In other words, M can be bounded as M ≤ −α (e−m − 1), and in a similar way

m ≤ α
(

eM − 1
)

. Now one can derive the inequality M ≤M := −α
(

e−α(e
M−1) − 1

)

which is illustrated on Figure 1.1. For α = 1, the respective bounding function is below
M for positive values of M , i.e., M < M holds, which is a contradiction. Therefore,
no slowly oscillating periodic solutions can exist. But for α > 1 (illustrated in the
figure for α = 1.1) the inequality does not imply this statement, since not all positive
values of M can be discarded.

The above reasoning was strengthened by Wright utilizing a better estimation of
the possible solution up to z. Applying the bounds −m ≤ y(t) ≤M , we obtain

−α
(

eM − 1
)

≤ y′(t) ≤ −α
(

e−m − 1
)

(1.3)

from (1.1) for all t. The bound (1.3) for the derivative of y allows a wider set of
values α for which slowly oscillating periodic solutions cannot exist. The first and
the improved allowed regions for the slowly oscillating periodic solutions are given in
Figure 1.2.
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Fig. 1.2. Regions where the solutions can be before z, according to the first and second bounding
scheme.

We skip here the technical details from Wright’s paper, and just give the condi-
tions obtained by him:

M ≤ −α
(

e−m − 1
)

+ (−m)
e−m

e−m − 1
− 1 if α

(

e−m − 1
)

≤ −m,(1.4)

M ≤ α−
1− eα(e

−m−1)

(1− e−m)
,(1.5)

m ≤ α
(

eM − 1
)

−M
eM

eM − 1
+ 1.(1.6)

These inequalities imply a new upper bound M = M , i.e., M ≤ M holds for all
M > 0.

Figure 1.3 shows the effects of the improved bounding inequalities. Compare
the upper left bounding function with that on the Figure 1.1: it is obvious that the
new, stronger bounding function excludes the possibility of a periodic solution with a
positive amplitude. For α = 1.5 one can see that the bounding function implies the
nonexistence of slowly oscillating periodic solutions, while for α > 1.5 (illustrated in
the figure for α = 1.55 and α = π/2), no conclusion can be drawn on the basis of
these bounding functions.

The present paper provides a new iterative bounding scheme that is based on the
ideas of Wright. First we present the scheme based on theoretical notion (Section 5).
Then a purely technical presentation is given in Sections 6 to 7 that starts directly
from the anticipated ideas of Wright, and need only elementary considerations. The
actual computer implementation also applies guaranteed reliability bounds on the
trajectories, and safe bounds on the zeros. The main result of the paper is

Theorem 1.1. If α ∈ [1.5, 1.5706], then the zero solution of equation (1.2) is
globally attractive. We have also completed a computational proof of the following
assertion.

Theorem 1.2. If α ∈ [1.5, π/2] and pα : R → R is a slowly oscillating periodic
solution of (1.2), then maxt∈R |pα(t)| < 0.04 holds.

Applying center manifold theory and local Hopf bifurcation techniques it is possi-
ble to find an ǫ∗ > 0 independently of α such that, for any α ∈ [1.5, π/2] and any slowly
oscillating periodic solution pα : R → R of (1.2), the inequality maxt∈R |pα(t)| > ǫ∗
holds [18]. However, ǫ∗ is much smaller than the constant 0.04 obtained in Assertion
1, and thus the proof is still not complete for Conjecture 1.

2. Preliminary results, notation. The results which we mention below with-
out references are all well known, and can be found e.g. in [7] or [9].
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Fig. 1.3. The second bounding function values compared to M for α = 1.1 (top left), α = 1.5
(top right), α = 1.55 (bottom left), and α = π/2 (bottom right).

The natural phase space for equation (1.2) is C = C([−1, 0],R) equipped with
the supremum norm || · ||. By the method of steps, every φ ∈ C uniquely determines a
solution x = xφ : [−1,∞) → R of (1.2), i.e., a continuous function x so that x|(0,∞) is
differentiable, x|[−1,0] = φ, and x satisfies (1.2) for all t > 0. C1 is the Banach space

of all C1-maps φ : [−1, 0] → R, with norm ||φ||1 = ||φ||+ ||φ̇||. If I ⊂ R is an interval,
x : I → R is a continuous function, t ∈ R so that [t − 1, t] ⊂ I, then the segment
xt ∈ C is defined by xt(s) = x(t+ s), −1 ≤ s ≤ 0.

For every φ ∈ C the unique solution xφ : [−1,∞) → R is bounded. The map

F : R+ × C ∋ (t, φ) 7→ xφt ∈ C

defines a continuous semiflow. 0 is the only stationary point of F . All maps F (t, ·) :
C → C, t ≥ 0 are injective. It follows that for every φ ∈ C there is at most one
solution x : R → R of (1.2) with x0 = φ. We denote also by xφ such a solution on R

whenever it exists. For a given φ ∈ C, the ω-limit set of φ is defined as

ω(φ) = {ψ ∈ C : there is a sequence (tn)
∞
0 ⊂ [0,∞) so that

tn → ∞ and F (tn, φ) → ψ as n→ ∞}.
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Each map F (t, ·), t ≥ 0, is continuously differentiable. The operators D2F (t, 0),
t ≥ 0, form a strongly continuous semigroup. The spectrum of the generator of the
semigroup (D2F (t, 0))t≥0 consists of the solutions λ ∈ C of the characteristic equation

λ+ αe−λ = 0.

In case 1
e < α ≤ π

2 , all points in the spectrum form a sequence of complex conjugate

pairs (λj , λj)
∞
0 with

0 ≥ Re λ0 > Re λ1 > Re λ2 > . . . ,

0 < Im λ0 ≤
π

2
, 2jπ < Im λj < (2j + 1)π for all j ∈ N \ {0}.

Let P denote the realified generalized eigenspace of the generator associated with the
spectral set {λ0, λ0}. Let Q denote the realified generalized eigenspace given by the
spectral set of all λk, λk with k ≥ 1. Then P and Q are positively invariant under
D2F (t, 0) for all t ≥ 0, and C = P ⊕Q.

We recall the definition and some properties of a discrete Lyapunov functional

V : C \ {0} → N ∪ {∞}.

The version which we use was introduced in Mallet-Paret and Sell [22]. The definition
is as follows. First, set sc(φ) = 0 whenever φ ∈ C \ {0} is nonnegative or nonpositive,
otherwise, for nonzero elements of C, let

sc(φ) = sup
{

k ∈ N \ {0} : there is a strictly increasing finite sequence

(si)k0 in [−1, 0] with φ(si−1)φ(si) < 0 for all i ∈ {1, 2, . . . , k}
}

≤ ∞.

Then define

V (φ) =

{

sc(φ) if sc(φ) is odd or ∞,
sc(φ) + 1 if sc(φ) is even.

Set

R = {φ ∈ C1 : φ(0) 6= 0 or φ̇(0)φ(−1) < 0,

φ(−1) 6= 0 or φ̇(−1)φ(0) > 0,
all zeros of φ in (−1, 0) are simple}.

We list some basic properties of V [22], [23].
Proposition 2.1.

(i) For every φ ∈ C \ {0} and for every sequence (φn)
∞
0 in C \ {0} with φn → φ as

n→ ∞,

V (φ) ≤ lim inf
n→∞

V (φn).

(ii) For every φ ∈ R and for every sequence (φn)
∞
0 in C1 \ {0} with ||φn − φ||1 → 0

as n→ ∞,

V (φ) = lim
n→∞

V (φn) <∞.
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(iii) Let an interval I ⊂ R, and continuous functions b : I → (−∞, 0) and z :
I + [−1, 0] → R be given so that z|I is differentiable with

ż(t) = b(t)z(t− 1)(2.1)

for inf I < t ∈ I, and z(t) 6= 0 for some t ∈ I + [−1, 0]. Then the map
I ∋ t 7→ V (zt) ∈ N ∪ {∞} is monotone nonincreasing. If t ∈ I, t − 3 ∈ I
and z(t) = 0 = z(t− 1), then V (zt) = ∞ or V (zt−3) > V (zt). If t ∈ I with
t− 4 ∈ I and V (zt−4) = V (zt) <∞, then zt ∈ R.

(iv) If b : R → (−∞, 0) is continuous and bounded, z : R → R is differentiable and
bounded, z satisfies (2.1) for all t ∈ R, and z(t) 6= 0 for some t ∈ R, then
V (zt) <∞ for all t ∈ R.

We remark that solutions of (1.2), differences of solutions of (1.2), and solutions
of the linear variational equation satisfy an equation of the form (2.1) with a suitable
coefficient b(t). For example, for solutions x, x̂ of (1.2), the difference y = x − x̂
satisfies (2.1) with

b(t) =

∫ 1

0

f ′
α(sx(t− 1) + (1 − s)x̂(t− 1)) ds.

The following result is a consequence of a more general Poincaré–Bendixson type
theorem of Mallet-Paret and Sell [23] applied for equation (1.2). A nontrivial solution
x : R → R and the corresponding orbit {xt : t ∈ R} are called homoclinic to zero if
lim|t|→∞ x(t) = 0 and lim|t|→∞ xt = 0, respectively.

Proposition 2.2. For every φ ∈ C, the ω-limit set ω(φ) is either 0 ∈ C or a
periodic orbit, or a set in C containing 0 and orbits homoclinic to 0.

3. Attractivity and periodic solutions. Recall that a solution x of (1.2) is
called slowly oscillatory if |z1 − z2| > 1 for each pair of zeros of x.

The aim of this section is to reduce Conjecture 1 to the nonexistence of slowly
oscillating periodic solutions.

Theorem 3.1. The zero solution of (1.2) is globally attracting if and only if (1.2)
has no slowly oscillating periodic solution.

For the proof of Theorem 3.1 we need the following result.

Proposition 3.2. Suppose 0 < α ≤ π/2. Then (1.2) has no homoclinic orbit to
zero.

Proof. If α < π/2 then 0 is locally asymptotically stable, and there is no homo-
clinic orbit to zero.

Suppose α = π/2, and assume that x : R → R is a nontrivial solution of (1.2)
with x(t) → 0 as |t| → ∞.

Let x̂ : R → R be another solution of (1.2) with x̂(t) → 0 as |t| → ∞, and x̂ 6≡ x.
For example, x̂ ≡ 0, or x̂(·) = x(·+ τ) for some τ 6= 0.

The function y = x− x̂ satisfies

ẏ(t) = b(t)y(t− 1) (t ∈ R)

with

b(t) =

∫ 1

0

f ′
π/2(sx(t − 1) + (1− s)x̂(t− 1)) ds.
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From y(t) → 0 as t → −∞ and y 6≡ 0 it follows that there is a sequence (tn)
∞
0 such

that tn → −∞ as n→ ∞, and

|y(tn)| = sup
t≤0

|y(tn + t)| (n ∈ N).

For the functions

yn(t) =
y(tn + t)

|y(tn)|
(t ∈ R),

we have

ẏn(t) = b(tn + t)yn(t− 1) (t ∈ R)(3.1)

and

1 = |yn(0)| ≥ |yn(t)| (t ≤ 0).(3.2)

Observe that

b(tn + t) → −
π

2
as n→ ∞ uniformly in t ∈ (−∞, 0].(3.3)

By (3.1), (3.2), and (3.3) there is a uniform bound for |ẏn(t)|, n ∈ N, t ≤ 0. Then the
Arzela–Ascoli theorem and the diagonalization process gives a subsequence (nk) and
a continuous function z : (−∞, 0] → R such that

ynk(t) → z(t) as k → ∞

uniformly on compact subsets of (−∞, 0], and

|z(t)| ≤ |z(0)| = 1 (t ≤ 0).

Considering (3.1) and (3.3), we find that

ẏnk(t) → −
π

2
z(t− 1) as k → ∞

uniformly on compact subsets of (−∞, 0]. It follows that z is differentiable,

ẏnk(t) → ż(t) as k → ∞

uniformly on compact subsets of (−∞, 0], and

ż(t) = −
π

2
z(t− 1) (t ≤ 0).

Recall the decomposition C = Q ⊕ P . Let PrQ denote the projection of C onto Q
along P . It is well known [9] that there are K ≥ 1 and κ > 0 so that

||D2F (t, 0)PrQφ|| ≤ Ke−κt||PrQφ||

for all t ≥ 0 and φ ∈ C. Then, for −∞ < s < t ≤ 0, we have

PrQzt = PrQD2F (t− s, 0)zs = D2F (t− s, 0)PrQzs
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and

||PrQzt|| ≤ Ke−κ(t−s)||PrQzs|| ≤ Ke−κ(t−s)||PrQ||.

Letting s → −∞, PrQzt = 0 follows. Therefore, zt ∈ P \ {0} for all t ≤ 0. Subspace
P contains segments of a cos π2 t + b sin π

2 t, a, b ∈ R. Consequently, V (φ) = 1 for all
φ ∈ P \ {0}, and V (zt) = 1 for all t ≤ 0. Proposition 2.1 (iii) gives z0 ∈ R. As
||ynk

0 − z0||1 → 0, Proposition 2.1 (ii) implies V (ynk

0 ) = 1 for all sufficiently large k.
The definition of y and the monotone property of V in Proposition 2.1 (iii) combined
yield

V (yt) = 1 for all t ∈ R.

Hence, by Proposition 2.1 (iii) again,

(y(t), y(t− 1)) 6= (0, 0) for all t ∈ R.(3.4)

Applying (3.4) with x̂(t) = x(t+ τ), t ∈ R, for all τ 6= 0, it follows that the curve

γ : R ∋ t 7→ (x(t), x(t − 1)) ∈ R
2

is injective.
If (3.4) is used with x̂ ≡ 0 then (x(t), x(t − 1)) 6= (0, 0), t ∈ R, is obtained. Then

by (1.2) all zeros of x are simple. In addition, γ transversally intersects the half line
v+ = {(0, v) : v > 0}. Indeed, if γ(t) ∈ v+ for some t ∈ R, then x(t) = 0, x(t− 1) > 0,
and ẋ(t) < 0.

The homoclinic solution x has arbitrarily large negative zeros. Otherwise, there
is T ∈ R so that either x(t) > 0 and ẋ(t) < 0 for all t < T , or x(t) < 0 and ẋ(t) > 0
for all t < T . Both cases contradict limt→−∞ x(t) = 0.

Let t1, t2, t3 be consecutive zeros of x with ẋ(t1) < 0, ẋ(t2) > 0, ẋ(t3) < 0. Set

L = {(1− s)γ(t1) + sγ(t3) : 0 < s < 1}

and

Γ = {γ(t) : t1 ≤ t ≤ t3} ∪ L.

Then Γ is a simple closed curve. By the Jordan curve theorem, R2\Γ has two disjoint,
open and connected components. The bounded component is the interior int(Γ) of
Γ, and the unbounded component is the exterior ext(Γ) of Γ. Clearly, (0, 0) ∈ int(Γ).
γ(t1) 6= γ(t3) because of the injectivity of γ. Suppose γ(t3) < γ(t1) in the natural
ordering of v+.

The transversal intersection of γ and v+ implies that γ can cross L only from
outside of Γ to inside of Γ, that is, if γ(t) ∈ L for some t ∈ R, then

γ(t− s) ∈ ext(Γ), γ(t+ s) ∈ int(Γ)

for all sufficiently small s > 0.
Observe γ(t1−s) ∈ ext(Γ) for all small s > 0. Combining this fact, the injectivity

of γ, the Jordan curve theorem and the fact that through L the curve γ can only enter
into int(Γ), we conclude

γ(t) ∈ ext(Γ) for all t < t1.
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This contradicts limt→−∞ γ(t) = (0, 0).
The case γ(t3) > γ(t1) analogously leads to a contradiction. This completes the

proof of Proposition 3.2.
Proof. [of Theorem 3.1] 1. It is obvious that if (1.2) has a slowly oscillating

periodic solution then not all solutions approach zero as t→ ∞.
2. Suppose that (1.2) has no slowly oscillating periodic solution. Our aim is to

show limt→∞ x(t) = 0 for all solutions of (1.2).
It is known [12] that for α > π/2 equation (1.2) has a slowly oscillating periodic

solution. Therefore, in the remaining part of the proof we may assume α ≤ π/2.
By Proposition 3.2, (1.2) cannot have an orbit which is homoclinic to zero. Using

this fact, Proposition 2.2 implies that for any φ ∈ C the ω-limit set ω(φ) is either
0 ∈ C or a periodic orbit.

In order to complete the proof it suffices to show that (1.2) cannot have nontrivial
periodic solutions.

2.1. Let ψ ∈ C be given by ψ(θ) = α, θ ∈ [−1, 0]. Consider the solution
x = xψ of (1.2). We claim that xψ(t) → 0 as t → ∞. Assume the contrary. Then
ω(ψ) = {qt : t ∈ R} for some nontrivial periodic solution q which cannot be slowly
oscillating by our assumption. Clearly, V (ψ) = 1. The monotone property of V

implies V (xψt ) = 1, t ≥ 0. There are η ∈ ω(ψ) and a sequence (tn) with tn → ∞ such

that xψtn → η as n→ ∞. Proposition 2.1 (i) implies

lim inf
n→∞

V (xψtn) ≥ V (η).

Therefore, V (η) = 1. The periodicity of q and results of Proposition 2.1 combined
yield V (qt) = 1, qt ∈ R for all t ∈ R. It follows that q is a slowly oscillatory periodic
solution, a contradiction. Consequently, xψ(t) → 0 as t→ ∞.

2.2. Let p : R → R be a nontrivial periodic solution of (1.2). SetM = maxt∈R p(t).
Choose t0 with p(t0) =M . Then ṗ(t0) = 0, and by (1.2), p(t0 − 1) = 0. Therefore

M = p(t0)− p(t0 − 1) =

∫ t0

t0−1

ṗ(t) dt =

∫ t0−1

t0−2

fα(p(t)) dt < α.

By the definition of ψ in 2.1 and M < α, V (xψ0 − p0) = 1 follows. The monotone

property of V gives V (xψt − pt) = 1 for all t ≥ 0. If T > 0 is the minimal period of p,
then by part 2.1

xψnT − pnT → −p0 as n→ ∞,

and Proposition 2.1 (i) implies

1 = lim inf
n→∞

V (xψnT − pnT ) ≥ V (−p0) = V (p0).

From V (p0) = 1, form the periodicity of p, and from the monotone property of V ,
V (pt) = 1 follows for all t ∈ R. Consequently, p is a slowly oscillatory periodic
solution, and it is a contradiction. This completes the proof.

4. Nonexistence of small slowly oscillating periodic solutions. We prove
a slightly more general result which was motivated by a paper of Walther [33].

Theorem 4.1. Suppose a > 0, b > 0, g ∈ C1((−a, b),R) with g(0) = 0 and

0 < g′(ξ) <
π

2
for all ξ ∈ (−a, b) \ {0}.(4.1)
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Then equation

ẋ(t) = −g(x(t− 1))(4.2)

has no slowly oscillating periodic solution x with x(R) ⊂ (−a, b).
Proof. Assume that x is a slowly oscillatory periodic solution of (4.2) with x(R) ⊂

(−a, b). It is well known (see e.g. the paper of Mallet-Paret and Sell [23]) that the
minimal period T > 0 of x is given by 3 consecutive zeros of x, and thus T > 2.
Moreover, if t0 ∈ R with x(t0) = mint∈R x(t), then there exists a unique t1 ∈ (t0, t0+T )
with x(t1) = maxt∈R x(t), and ẋ(t) > 0 for all t ∈ (t0, t1), ẋ(t) < 0 for all t ∈
(t1, t0 + T ). It follows that (x(t), ẋ(t)) 6= (0, 0) for all t ∈ R.

The function R ∋ t 7→ k sin π
2 (t+ t∗) ∈ R is a solution of

ż(t) = −
π

2
z(t− 1)(4.3)

for any k ∈ R and t∗ ∈ R.
Define the simple closed curves

X : [0, T ] ∋ t 7→ (x(t), ẋ(t)) ∈ R
2,

and

Y τl : [0, 4] ∋ t 7→ l
(

sin
π

2
(t+ τ),

π

2
cos

π

2
(t+ τ)

)

∈ R
2

for l > 0, τ ∈ R. Let |X |, |Y τl | denote the traces of X , Y τl , respectively, and int(Y τl ),
ext(Y τl ) the interior, exterior of Y τl , respectively. Clearly, |Y τl | = {(u, v) ∈ R

2 :

u2 +
(

2
π

)2
v2 = l2} is an ellipse, and it is independent of τ .

Fix τ ∈ R. There exists a k > 0 so that

|X | ⊂ int(Y τl ) for all l > k

and

|X | ∩ |Y τk | 6= ∅.

Set z(t) = k sin π
2 (t+ τ), t ∈ R, and Z = Y τk . Clearly, |X | ∩ ext(Z) = ∅.

By the definition of k there are t0, t1 in R with

X(t0) = Z(t1) ∈ |X | ∩ |Z|.(4.4)

Replacing x(·) and z(·) with x(· + t0) and z(· + t1), respectively, we may assume
t0 = t1 = 0, that is

(x(0), ẋ(0)) = (z(0), ż(0)).

Obviously, (z(0), ż(0)) 6= (0, 0).
Suppose ẋ(0) = ż(0) = 0. Then x(0) = z(0) = c 6= 0. We consider only the

case c > 0 as the case c < 0 is analogous. Clearly, c = k. From equation (4.2),
condition (4.1), and ẋ(0) = 0, one finds x(−1) = 0. The monotone property of x and
x(0) = c > 0, ẋ(0) = 0 imply

c = x(0) = max
t∈R

x(t), ẋ(t) > 0 for all t ∈ [−1, 0).
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By z(0) = c > 0 and ż(0) = 0, we have z(t) = c cos π2 t, t ∈ R.
Let τx : [0, c] → [−1, 0] and τz : [0, c] → [−1, 0] denote the inverses of x|[−1,0] and

z|[−1,0], respectively. The functions

φx : [0, c] ∋ u 7→ ẋ(τx(u)) ∈ R, φz : [0, c] ∋ u 7→ ż(τz(u)) ∈ R

satisfy φx(c) = φz(c) = 0, and φx(u) > 0 for all u ∈ [0, c), φz(u) > 0 for all u ∈ [0, c).
The arcs

Ωx = {X(t) : t ∈ [−1, 0]} and Ωz = {Z(t) : t ∈ [−1, 0]}

coincide with the graphs

{(u, φx(u)) : u ∈ [0, c]} and {(u, φz(u)) : u ∈ [0, c]},

respectively. From the inclusions |X | ⊂ int(Z) ∪ |Z| and Ωx ⊂ |X | ∩ {(u, v) ∈ R2 :
v ≥ 0}, Ωz ⊂ |Z| ∩ {(u, v) ∈ R2 : v ≥ 0} it follows that

0 ≤ φx(u) ≤ φz(u) for all u ∈ [0, c].

From the definition of φx and φz , we obtain

ẋ(s) = φx(x(s)), ż(s) = φz(z(s)) s ∈ [−1, 0].

Hence

1 = lim
ǫ→0+

(1− ǫ) = lim
ǫ→0+

∫ −ǫ

−1

ẋ(s)

φx(x(s))
ds =

∫ c

0

du

φx(u)

where the last integral is improper. Similarly,

1 =

∫ c

0

du

φz(u)
.

Then
∫ c

0

du

φx(u)
=

∫ c

0

du

φz(u)
.

The last equality and 0 < φx(u) ≤ φz(u), 0 ≤ u < c, combined imply

φx(u) = φz(u) for all u ∈ [0, c].

As

d

du
τx(u) =

1

ẋ(τx(u))
=

1

φx(u)
=

1

φz(u)
=

d

du
τz(u)

for all u ∈ [0, c), and τx(0) = −1 = τz(0), we conclude τx(u) = τz(u) for all u ∈ [0, c],
and x(t) = z(t) for all t ∈ [−1, 0].

As a consequence, ẋ(−1) = ż(−1) = π
2 c. From equation (4.2) at t = −1, the

equality g(x(−2)) = −π
2 c follows. Hence x(−2) ∈ (−a, 0). By the mean value theorem

there is ξ ∈ (x(−2), 0) ⊂ (−a, 0) with g′(ξ)x(−2) = g(x(−2)) = −π
2 c. By (4.1),

x(−2) < −c follows, that is, X(−2) ∈ ext(Z), a contradiction. Therefore ẋ(0) =
ż(0) 6= 0.
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Then, for sufficiently small δ > 0, x and z have inverses tx and tz in (−δ, δ),
respectively. Define

ηx : x((−δ, δ)) ∋ u 7→ ẋ(tx(u)) ∈ R, ηz : z((−δ, δ)) ∋ u 7→ ż(tz(u)) ∈ R.

Then

ηx
′(u) =

ẍ(tx(u))

ẋ(tx(u))
, ηz

′(u) =
z̈(tz(u))

ż(tz(u))
.

In particular at u = d = x(0) = z(0),

ηx
′(d) =

ẍ(0)

ẋ(0)
, ηz

′(d) =
z̈(0)

ż(0)
.

The smooth arcs

{(u, ηx(u)) : u ∈ x((−δ, δ))} ⊂ |X |, {(u, ηz(u)) : u ∈ z((−δ, δ))} ⊂ |Z|

intersect at u = d. As |X | ⊂ int(Z) ∪ Z, it follows that ηx
′(d) = ηz

′(d). So

ẍ(0)

ẋ(0)
=
z̈(0)

ż(0)
.

From ẋ(0) = ż(0) 6= 0, ẍ(0) = z̈(0) follows. Applying these equalities, from equations
(4.2) and (4.3) one gets

g(x(−1)) =
π

2
z(−1)(4.5)

and

g′(x(−1))ẋ(−1) =
π

2
ż(−1).(4.6)

We have x(−1) 6= 0, z(−1) 6= 0, since otherwise ẋ(0) = 0, ż(0) = 0 from equations
(4.2), (4.3), respectively.

Consequently, by (4.1) and (4.5),

0 < |z(−1)| < |x(−1)|, x(−1)z(−1) > 0.(4.7)

If ẋ(−1) = 0 or ż(−1) = 0, then by (4.1) and (4.6) we find ẋ(−1) = ż(−1) = 0,
and (4.7) implies X(−1) ∈ ext(Z), a contradiction. Thus, ẋ(−1) 6= 0, ż(−1) 6= 0.

Then (4.1) and (4.6) combined yield

0 < |ż(−1)| < |ẋ(−1)|, ẋ(−1)ż(−1) > 0.(4.8)

It is easy to see that (4.7) and (4.8) lead to the contradiction

X(−1) ∈ ext(Z).

This completes the proof.

We can apply Theorem 4.1 in the case g(ξ) = α(eξ − 1). If 0 < α < π
2 , then for

−∞ < ξ < log π
2α we have g′(ξ) < π

2 . So, we obtained
Corollary 4.2. If 0 < α < π

2 and pα : R → R is a slowly oscillating periodic
solution of equation (1.2) then

max
t∈R

pα(t) ≥ log
π

2α
> 1−

2α

π
.

The last inequality in the corollary is a consequence of the elementary inequality
log ξ > 1− 1

ξ , ξ > 1.
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0 1

−m

M

z1 z2z1 + 1

Fig. 5.1. The considered typical shape for one period of the solution trajectory.

5. A rigorous numerical method. For people familiar with the theoretical
part of delay differential equations, we describe an algorithm which can be applied to
prove that certain slowly oscillating periodic solutions of equation (1.2) cannot exist.
In Section 6 technical details of the rigorous numerical part of the proof are given.

Define

B = {φ : [−1, 0] → R | φ is bounded and integrable}.

If I is an interval, t ∈ I, t− 1 ∈ I, and u : I → R is a bounded and locally integrable
function, then ut ∈ B is defined by ut(s) = u(t+ s), −1 ≤ s ≤ 0. For elements φ, ψ
in B we write φ ≤ ψ provided φ(s) ≤ ψ(s) for all s ∈ [−1, 0].

Suppose that M,m are given positive numbers and p : R → R is a slowly oscil-
lating periodic solution of (1.2) such that

max
t∈R

p(t) =M, min
t∈R

p(t) = −m.

If we want to emphasize the dependence on α,M,m then we write p(α,M,m). By
[23] without loss of generality we may assume that p has the shape as shown on Figure
5.1. That is, there are reals z1 > 1 and z2 > z1+1 such that z2 is the minimal period
of p, and

p(0) = 0, p(z1) = 0, p(z2) = 0, p(1) =M, p(z1 + 1) = −m,

p′(t) > 0 for all t ∈ (0, 1) ∪ (z1 + 1, z2),

p′(t) < 0 for all t ∈ (1, z1 + 1).

The elements

y0+, y
0
−, y

1
+, y

2
+, y

2
−, y

3
−

of B are called bounding functions of the periodic solution p if

y0− ≤ p1 ≤ y0+

pz1 ≤ y1+(5.1)

y2− ≤pz1+1≤ y2+

y3− ≤ pz2 .

The idea is that we construct in an iterative way a finite sequence of bounding
functions for p. In each step the bounding functions are improved, i.e., the inequalities
(5.1) are sharpened. After each step we check whether

y0+(0) < M and y2−(0) > −m(5.2)
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hold or not. If at least one of inequalities (5.2) is satisfied, then we stop the iteration
process. In this case the conclusion is that there is no slowly oscillating periodic
solution p(α,M,m). If none of the inequalities in (5.2) holds, then we construct the
next element of the sequence of bounding functions.

The iteration process goes as follows. Initially we set

y0− = y2+ = 0

y0+ = y1+ =M(5.3)

y2− = y3− = −m.

Suppose that after k steps we obtained the bounding functions y0±, y
1
+, y

2
±, y

3
−

in B satisfying (5.1). We describe how to construct the new bounding functions

ŷ0±, ŷ
1
+, ŷ

2
±, ŷ

3
−.

For a φ ∈ C with φ(0) = 0 the unique solution x = xφ of equation (1.2) satisfies

x(t) =

∫ t

0

fα(x(u − 1)) du =

∫ t−1

−1

fα(φ(u)) du, 0 ≤ t ≤ 1,

or equivalently

x1(s) =

∫ s

−1

fα(φ(u)) du, −1 ≤ s ≤ 0.

If ψ ∈ B and η ∈ B with ψ ≤ φ ≤ η, then the monotone decreasing property of fα
can be used to obtain

∫ s

−1

fα(η(u)) du ≤ x1(s) ≤

∫ s

−1

fα(ψ(u)) du, −1 ≤ s ≤ 0.(5.4)

Choosing φ = p0 = pz2 and ψ = y3−, we have x(t) = p(t) and in this case (5.4)
gives

p1(s) ≤

∫ s

−1

fα(y
3
−(u)) du, −1 ≤ s ≤ 0.

Similarly, if φ = pz1 and η = y1+, then x(t) = p(z1 + t) and

∫ s

−1

fα(y
1
+(u)) du ≤ pz1+1(s), −1 ≤ s ≤ 0.

Then the new bounds ŷ0+ and ŷ2− are defined by

ŷ0+(s) = min

{

y0+(s),

∫ s

−1

fα(y
3
−(u)) du

}

and

ŷ2−(s) = max

{

y2−(s),

∫ s

−1

fα(y
1
+(u)) du

}

for each s ∈ [−1, 0].
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For φ ∈ C the unique solution x = xφ of equation (1.2) satisfies

x(1)− x(t) =

∫ 1

t

ẋ(u) du =

∫ 0

t−1

fα(φ(u)) du, 0 ≤ t ≤ 1,

or equivalently

x1(s) = x(1)−

∫ 0

s

fα(φ(u)) du, −1 ≤ s ≤ 0.

If ψ and η are in B with ψ ≤ φ ≤ η, then by using the monotone increasing property
of −fα we obtain

x(1)−

∫ 0

s

fα(ψ(u)) du ≤ x1(s) ≤ x(1)−

∫ 0

s

fα(η(u)) du, −1 ≤ s ≤ 0.(5.5)

Applying inequality (5.5) in the cases φ = p0, ψ = y3− and φ = pz1 , η = y1+,
respectively, the new bounds ŷ0− and ŷ2+ are defined by

ŷ0−(s) = max

{

y0−(s),M −

∫ 0

s

fα(y
3
−(u)) du

}

and

ŷ2+(s) = min

{

y2+(s),−m−

∫ 0

s

fα(y
1
+(u)) du

}

.

The above definitions of ŷ0± and ŷ2± follow the original idea of Wright [35]. The
construction of the bounds ŷ1+ and ŷ3− is slightly more complicated. It seems to be
new, it does not appear in Wright’s paper [35]. The difficulty of the construction of
ŷ1+ and ŷ3− is that the zeros z1 and z2 of the periodic solution p are not known. Below
we describe the definition of ŷ1+. ŷ

3
− can be obtained analogously.

Starting from the bounds y0±, and applying a reliable numerical integration method,

we get lower and upper bounds P and P for p. The functions P and P are step func-
tions as illustrated in Figure 6.2. Let h > 0 denote the step size of the numerical
integration. Both P and P are nondecreasing functions on [0, 1]. P and P are nonin-
creasing at least on the intervals [1, ti] and [1, tj], respectively, where i is the smallest
positive integer so that P (t) < 0 for all t ∈ (ti, ti + h), and the positive integer j is
the smallest one such that P (t) < 0 for all t ∈ (tj , tj + h). Setting

z1 = ti, z1 = tj ,

obviously [z1, z1] is a verified enclosing interval for the zero z1 of p. Set ∆ = z1 − z1.
For ∆ ≤ 1 define the function q : [−1, z1] → R by

q(t) =















0 if − 1 ≤ t < −∆
P (t+∆) if −∆ ≤ t < 1−∆
M if 1−∆ ≤ t < 1
P (t) if 1 ≤ t ≤ z1

For the case 1 < ∆ ≤ 2

q(t) =







P (t+∆) if − 1 ≤ t < 1−∆
M if 1−∆ ≤ t < 1

P (t) if 1 ≤ t ≤ z1
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For 2 < ∆

q(t) =

{

M if − 1 ≤ t < 1
P (t) if 1 ≤ t ≤ z1

Clearly,

q(t) ≥ p(t) for all t ∈ [−1, z1].

Claim 1.

q(z1 + s) ≥ p(z1 + s) for all s ∈ [−2, 0].

Proof. We prove the statement only for the case ∆ ≤ 1. Setting δ = z1 − z1, the
claim is equivalent to

q(t) ≥ p(t+ δ) for all t ∈ [z1 − 2, z1].(5.6)

From z1 ∈ [z1, z1], δ ∈ [0,∆] follows.
If t ∈ [1, z1] then q(t) = P (t) ≥ p(t). Function p is decreasing on [1, z1 + δ] =

[1, z1]. Therefore p(t+ δ) ≤ p(t), t ∈ [1, z1], and thus

q(t) ≥ p(t+ δ) for all t ∈ [1, z1]

follows. Inequality (5.6) clearly holds on [1−∆, 1] since q(t) =M for t ∈ [1−∆, 1].
For t ∈ [−∆, 1−∆) inequality (5.6) is equivalent to

P (t+∆) ≥ p(t+ δ) for all t ∈ [−∆, 1−∆),

which is equivalent to

P (t) ≥ p(t− (∆− δ)) for all t ∈ [0, 1).

The last inequality is obvious since p(s) < 0 for s ∈ (−∆, 0), p is increasing on [0, 1],
∆ ≥ δ, and thus

P (t) ≥ p(t) ≥ p(t− (∆− δ)) for all t ∈ [0, 1].

If z1 − 2 < −∆ and t ∈ [z1 − 2,−∆) then t ∈ (−1,−∆), t+ δ ∈ (−1, 0), and thus
q(t) = 0 and p(t+ δ) < 0. This completes the proof of the Claim.

For any s ∈ [−1, 0] one has

p(z1 + s) = p(z1 + s)− p(z1) = −

∫ z1

z1+s

ṗ(u) du = −

∫ −1

s−1

fα(p(z1 + u)) du.

Combining the above inequality, Claim 1 and the monotone increasing property of
−fα, it follows that

p(z1 + s) ≤ −

∫ −1

s−1

fα(q(z1 + u)) du for all s ∈ [−1, 0].

Now the new bounding function ŷ1+ ∈ B can be defined as follows. For all s ∈
[−1, 0],

ŷ1+(s) = min

{

y1+(s), q(z1 + s),−

∫ −1

s−1

fα(q(z1 + u)) du

}

.
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6. A computer-assisted bounding scheme. In an earlier paper [2], the first
author investigated the problem with traditional verified differential equation solver
algorithms. He found that a proof of the conjecture along these lines would require
an enormous amount of computation time with the present technological conditions
(compilers, algorithms and computer capacities). He was able to prove, e.g., that for
all α values within the tiny interval [1.5, 1.5+ 10−22] the trajectories of the solutions
will reach a phase when the absolute value of the solution remains below 0.075 for a
time interval of a unit length. For wider parameter intervals, or for values closer to
π/2 the required CPU times exploded. Thus traditional computer-assisted techniques
for differential equations appear not suitable for settling the conjecture.

In this section we describe and prove the correctness of a new, computer-assisted
bounding scheme that extends Wright’s original reasoning and allows an efficient
shrinking of the possible extreme values of a slowly oscillating periodic solution. The
computational part of the proof of Theorem 1.1 will prove the following

Theorem 6.1. If α ∈ [1.5, 1.5706] and y : R → R is a slowly oscillating periodic
solution of (1.2), then maxt∈R |y(t)| ≤ 1− 2α

π .

Now, a combination of Theorem 3.1, Corollary 4.2, and Theorem 6.1 proves The-
orem 1.1.

The present approach follows another line of thought, still it is a kind of direct
extension of that of Wright. Denote three subsequent zeroes of the trajectory by 0,
z1, and z2. Let us define the following functions bounding the trajectories:

y
(upper)
(inc,1) (t) : an upper bounding function for the time interval 0 ≤ t ≤ 1,

y
(lower)
(inc,1) (t) : a lower bounding function for the time interval 0 ≤ t ≤ 1,

y
(upper)
(dec,n) (t) : an upper bounding function for the time interval 1 ≤ t ≤ z1,

y
(lower)
(dec,1) (t) : a lower bounding function for the time interval z1 ≤ t ≤ z1 + 1,

y
(upper)
(dec,1) (t) : an upper bounding function for the time interval z1 ≤ t ≤ z1 + 1,

y
(lower)
(inc,n) (t) : a lower bounding function for the time interval z1 + 1 ≤ t ≤ z2.

The trajectory bounding functions are illustrated by dashed lines on Figure 6.1.
Here four consecutive time intervals will be considered defined by the zeros and by
the extremal values of the trajectory denoted by (inc, 1), (dec, n), (dec, 1), and (inc, n),
respectively. The length of the time intervals (inc, 1) and (dec, 1) are known to be
one. On the other hand the length of (dec, n), denoted as pM = z1 − 1 and that of
(inc, n), pm = z′1− z1− 1 are unknown, it is even unclear whether the these are larger
than one.

The trajectory bounding functions will be sharpened sequentially, in an iterative
way, i.e. the bounding functions of the time interval (inc, 1) will be used to improve
the bounding function on the interval (dec, n), etc. Then, the bounding function of
the last interval, (inc, n) will be used to make the inequalities for the interval (inc, 1)
sharper, and so on. Those bounding function improvements that are based on a single
bounding function of the earlier time interval are basically similar to the original
technique used by Wright. The sharpening steps using two bounding functions on the
argument interval apply a new, Taylor series based method to be described later in
this paper. At start we set the upper bounding functions to constant M , the lower
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pmpM

(inc, 1)

(dec, 1) (inc, n)

(dec, n)
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(dec,n)

y
(lower)
(dec,1) y

(lower)
(inc,n)

y
(upper)
(dec,1)

y
(lower)
(inc,1)

Fig. 6.1. The trajectory bounding functions shown as dashed lines for a full period.

bounding functions to −m with the exceptions of y
(lower)
(inc,1) = 0 and y

(upper)
(dec,1) = 0.

We iterate only on such cases, when the conditions (1.4) to (1.6) and that of
Corollary 4.2 are fulfilled. The conditions we check at the end of each iteration cycle
of the bounding function sharpening procedure are

y
(upper)
(inc,1) (0 + 1) < M and −m < y

(lower)
(dec,1) (z1 + 1).(6.1)

In case at least one of these conditions are satisfied then the solution of the investigated
delay differential equation cannot have a periodic solution with a maximal value of
M and the minimal value of m as assumed for the given α parameter.

6.1. Improved bounds for the unit width intervals. We repeat the deriva-
tion of bounding functions in Section 5 with slightly different notation that will be
applied within our computational procedure. First we show how to obtain an upper

bound on the periodic trajectory on the interval (inc, 1) based on the y
(lower)
(inc,n) (t) func-

tion. Since y
(lower)
(inc,n) (t) is a lower bounding function, so y

(lower)
(inc,n) (t) ≤ y(t) holds for all

t ≤ 0. Now integrate y′ from 0 to t (0 ≤ t ≤ 1): y(t) = y(t)− y(0) =

−α

t
∫

0

ey(x−1) − 1 dx = −α

t−1
∫

0−1

ey(x) − 1 dx ≤ −α

t−1
∫

0−1

e
y
(lower)

(inc,n)
(x) − 1 dx.

We can obtain a new, stronger bounding function from this bound and from the old
one for the t ≥ 0 case:

y
(upper)
(inc,1) (t) = min



















y
(upper)
(inc,1) (t)

−α
t−1
∫

0−1

e
y
(lower)

(inc,n)
(x) − 1 dx



















, t ∈ [0, 1],(6.2)

We suppress the iteration number in the bounding function, the new one on the left
hand side of the defining equation is calculated from the old function on the right
hand side as it is usual in computer programs. We can get a new bounding function
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for the lower bounding function in (dec, 1) in a similar way:

y
(lower)
(dec,1) (t) = max



















y
(lower)
(dec,1) (t)

−α
t−1
∫

z1−1

ey
(upper)

(dec,n)
(x) − 1 dx



















, t ∈ [z1, z1 + 1].(6.3)

We can obtain an improved lower bound for the trajectory on the interval (inc, 1)
by y(1)− y(t) =M − y(t) =

−α

1
∫

t

ey(x−1) − 1 dx = −α

0
∫

t−1

ey(x) − 1 dx ≤ −α

0
∫

t−1

e
y
(lower)

(inc,n)
(x) − 1 dx.

The new lower bounding function is then

y
(lower)
(inc,1) (t) = max



















y
(lower)
(inc,1) (t)

M + α
0
∫

t−1

ey
(lower)

(inc,n)
(x) − 1 dx



















, if t ∈ [0, 1].(6.4)

We can build an improved upper bound also for the time interval (dec, 1) in a similar
way:

y
(upper)
(dec,1) (t) = min



















y
(upper)
(dec,1) (t)

−m+ α
0
∫

t−1

e
y
(upper)

(dec,n)
(x) − 1 dx



















, if t ∈ [0, 1].(6.5)

By that we have completed the description of the improved bounding functions
for the unit width time intervals.

6.2. Bounds for the period length. A sharp enclosure of the period length is
very important for the success of the proof for the conjecture, especially for α values
close to π/2. To calculate bounds on the period length and as a part of that bounds
for the not unit length time intervals we apply an Euler type differential equation
solution method

Y (x) = Y (x0) + Y (1)([x0, x])(x − x0),

Y ([x0, x]) = Y (x0) + Y (1)([x0, x])([0, x− x0]).

customized for delay equations. In these equations we used the notions of interval
calculations [30], i.e. capitals denote interval values. The implementation details will
be discussed in the next section. To use this method we need an enclosure Y (x0)
of the trajectory in the start point, and bounds on a given number of time intervals
covering together unit length time intervals.

For these calculations we need lower and upper bounds for the trajectory on the
unit length time intervals before the investigated (dec, n) and (inc, n) phases. These
are available due to the previous subsection. The lower and upper bounds for the
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y

M

0

z1 = 1 + PM

PM

PM

1

Fig. 6.2. Illustration of the bounding procedure for the z1 zero of the trajectory.

zeros z1 and z2 of the trajectory will be determined using the interval enclosures
obtained on time intervals for the trajectory. Consider first the case when we follow
the trajectory from 1 to find z1, i.e. we want to find bounds for pM . Assume that as
a part of the verified integration the first interval that contains zero is Y (ti, ti + h),
where h is the step size of the numerical integration. Then there may follow some
integration steps for which the respective Y enclosures contain zero. Let the last such
be Y (tj , tj + h) (in some cases it is possible that i = j). Then [ti, tj + h] is obviously
a verified enclosing interval for z1. The same technique that is illustrated on Figure
6.2 is also applicable for the bounding of pm.

Denote the enclosures of pM and pm to be calculated from the above bounds
of the zeros by PM and Pm, respectively. The lower and upper bounds of these
intervals are denoted as usual in interval calculation, with underline and overline, e.g.
PM = [PM , PM ].

6.3. Improved bounds for the not unit width intervals. As we could see in
the previous subsection, it is not easy to determine z1, as the zero of the investigated
trajectory. In the present subsection we build a valid upper bound for the trajectory
on the (inc, 1) and (dec, n) intervals that can be applied as needed also until the point
z1 for calculating further improving bounds on the interval (dec, 1).

Consider the trajectory on [0, 1 + PM ], i.e. on the intervals (inc, 1) and (dec, n).
The bounds on the trajectory are at this point obtained by the new bounds of (6.4) and
(6.5) on (inc, 1), and by the verified solution of the differential equation, as described
in Subsection 6.2 on (dec, n). Let us call this complete bounding function as Y , and
its upper bound as Y . For a monotonically increasing y(t) function we have

y(t) ≥ y(t−∆t), if ∆t ≥ 0

and for a monotonically decreasing y(t) function

y(t) ≥ y(t−∆t), ha ∆t ≤ 0.

The trajectory is known to be strictly monotonically increasing on (inc, 1), while
strictly monotonically decreasing on (dec, n).

Consider first the (inc, 1) time interval, here the y
(upper)
(inc,1) gives an upper bounding

function, Y for the periodic trajectory. Since pM ≤ PM , the relation

∆t =
(

1 + PM
)

− z1 = PM − pM ≥ 0
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holds. Now these imply

Y (t) ≥ y(t) ≥ y(t−∆t) = y
(

t−
((

1 + PM
)

− z1
))

.

These relations can be interpreted as Y is an upper bounding function also for y(t−
∆t), i.e. for the trajectory shifted by ∆t on the interval

[

−
((

1 + PM
)

− z1
)

, 1−
((

1 + PM
)

− z1
)]

=

[

−(PM − pM ), 1− (PM − pM )
]

=
[

z1 − PM − 1, z1 − PM
]

.

Consider now the (dec, n) phase, the verified solution will give an upper bound
for y(t) on [1, 1 + PM ]. Here y(t) is strictly monotonically decreasing, thus due to
PM ≤ pM the relations

Y (t) ≥ y(t) ≥ y(t−∆t) = y (t− ((1 + PM )− z1))

hold with ∆t = PM − pM ≤ 0. Here again Y is an upper bounding function also for
y(t−∆t), i.e. for the trajectory shifted by ∆t on the interval

[1− (PM − pM ) , 1 + PM − (PM − pM )] =

[z1 − PM , z1] .

The explanation for the above bounding technique is illustrated on Figure 6.3.
The first case can be understood as if the original periodic solution would be shifted in
such a way that the original z1 zero coincides with 1+PM . Since y(t) is monotonically
increasing on the interval (inc, 1), thus the upper bounding function Y (t) remains an
upper bound of the shifted function too (upper picture of Figure 6.3). The highlighted
upper bounding functions parts are presented as bounds of the y(t) trajectory.

In the second case the original trajectory is shifted in such a way that the zero z1
coincides with (1 + PM ). The monotonically decreasing y(t) will then remain below
Y (t) on the given time interval (see the second picture of Figure 6.3). As it can
be seen on this figure, in the gap between the two highlighted function we consider
the constant M value. With the above considerations we have provided a bounding
function that can be used also until the unknown z1 time point.

The same technique can be applied to establish such a valid lower bound for the
trajectory on the intervals (dec, 1) and (inc, n), that can be applied for further bound
improvements even in the case when the necessary integration should start from the
z2 zero.

Let us see now how can we produce stronger bounds on the intervals (dec, n) and
(inc, n) before the z1 − 1, and z2 − 1 time points, respectively – on the basis of the
bounds discussed earlier in the present subsection. Consider first the (dec, n) case,
then for the present upper bounding function

y
(upper)
(dec,n) ≥ y(t).

Integrate the derivative function y′ from t to z1, where z1 − 1 ≤ t ≤ z1:

−y(t) = y(z1)− y(t) = −α

z1
∫

t

ey(x−1) − 1 dx = −α

z1−1
∫

t−1

ey(x) − 1 dx.
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Y (t)

y(t) ∆t∆t

PM

PM + 1

0 z11 1 + PM

Y (t)

y(t) ∆t∆t

PM

0 z11 1 + PM1 + PM

Fig. 6.3. Illustrations of how the bounds can be obtained for the cases when the shifted z1
coincides with 1 + PM and with 1 + PM , respectively.

In other terms

y(t) ≤ α

z1−1
∫

t−1

e
y
(upper)

(dec,n)
(x) − 1 dx.

This bounding function can be use to update the old one:

y
(upper)
(dec,n) (t) = min



















y
(upper)
(dec,n) (t)

α
z1−1
∫

t−1

ey
(upper)

(dec,n)
(x) − 1 dx



















, if t ∈ [z1 − 1, z1].(6.6)

In a similar way we can calculate a new lower bounding function on the interval
(inc, n):

y(t) ≥ α

z2−1
∫

t−1

e
y
(lower)

(inc,n) − 1 dx,

that implies the update

y
(lower)
(inc,n) (t) = min



















y
(lower)
(inc,n) (t)

α
z2−1
∫

t−1

e
y
(lower)

(inc,n)
(x) − 1 dx



















, if t ∈ [z2 − 1, z2].(6.7)

Notice that in both cases the new, improved bound utilizes earlier bound values
also from more than 1 time unit distance to the actual right end zero of the trajectory.
This gives an explanation how improvements made at the first part of the present
subsection can improve our bounds at a much later time point.
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6.4. The iterative improvement of the bounding functions. The lower
and upper bounds derived in the earlier subsections will be applied in an iterative
procedure to make them even sharper that possibly allows to conclude that for a
given pair ofM andm values the (1.1) delay differential equation with the investigated
interval of α parameter leads to a contradiction. The iteration cycle begins with the
time interval (inc, 1), and with the integration of the right hand side of the differential
equation we update the earlier upper bound on (dec, n). This new upper bound will
then be used to improve the lower and upper bounding functions on (dec, 1), and

finally the latter help us to make y
(lower)
(inc,n) sharper.

Now the bounding functions y
(lower)
(inc,1) , y

(upper)
(dec,1) , y

(upper)
(inc,1) , and y

(lower)
(dec,1) are defined on

unit length time intervals, on [0, 1] and [z1, z1 + 1], respectively. In contrast to these,

in the case of y
(lower)
(inc,n) and y

(upper)
(dec,n) we must also calculate with their values over wider

time intervals. To be able to handle the delayed terms, we have to save bounding
function values for a unit length interval in the first case, and for two width intervals
otherwise (this later figure proved to be satisfactory for our investigation).

Due to the computer representation of reals, it is advantageous to subdivide
these time intervals into 2l, and 2l+1 subintervals for a natural number l, respectively.
Denote these subintervals by ti, where i ∈ (1, . . . , 2l), and for the (dec, n) and (inc, n)
time intervals i ∈ (1, . . . , 2l+1) in increasing order as they depart from the zero. It
is intentional that the order of the numeration for the unit length intervals is the
opposite of that for (dec, n) and (inc, n). Within such a subinterval, the respective
bounding function will be represented by a real number, i.e. we use a bounding step
function for the saved bounding functions. This step function is denoted by Y , as
also in Subsection 6.2. The right hand side of the differential equation can then
easily be bounded using the step functions both at tj and at the same time at tj − 1.

The updated value of Y
(upper)
(inc,1) (ti) (i = 1, . . . , 2l) can be calculated applying Y

(lower)
(inc,n)

according to (6.2):

Y
(upper)
(inc,1) (ti) = min







−α
i

∑

j=1

(

e
Y

(lower)

(inc,n)
(t

2l−j+1
) − 1

)

/2l ; Y
(upper)
(inc,1) (ti)







.(6.8)

In a similar way, we can obtain the other bounding functions updated using the
stronger bounds given as (6.3) to (6.5):

Y
(lower)
(dec,1) (ti) = max







−α
i

∑

j=1

(

e
Y

(upper)

(dec,n)
(t

2l−j+1
) − 1

)

/2l ; Y
(lower)
(dec,1) (ti)







,(6.9)

Y
(lower)
(inc,1) (ti) = max







M + α

2l
∑

j=i

(

e
Y

(lower)

(inc,n)
(t

2l−j+1
) − 1

)

/2l ; Y
(lower)
(inc,1) (ti)







,(6.10)

Y
(upper)
(dec,1) (ti) = min







−m+ α

2l
∑

j=i

(

e
Y

(upper)

(dec,n)
(t

2l−j+1
) − 1

)

/2l ; Y
(upper)
(dec,1) (ti)







.(6.11)

On the basis of these bounding functions, we can calculate bounds on the tra-
jectory for the next, not unit length time intervals. The bounds on the trajectory
will provide lower and upper bounds on the next zero, as discussed in Subsection
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Algorithm 1 Determination of PM and PM for the bounds for the period length

Input: – s: M or −m as an extremal value of the periodic trajectory,
– α: a parameter of the studied delay differential equation,
– 2l: the number of equal width subintervals in the unit length time

interval,
– L, U : lower and upper bound functions on the unit length time

interval.
Output: – An enclosure of the length for the not unit width interval,

bounding of the trajectory from 1 and z1 + 1, respectively.

Step 1. Compute Y (ti) (i = 1, . . . , 2l) as the enclosures of the periodic solution on
subintervals of the unit length time period by using the U and L functions
on the (inc, 1) and (dec, 1) intervals.

Step 2. Set j = (2l + 1) and Ylast = [s, s].

Step 3. Enclose Y (tj) with the expression
(

Ylast +
(

−α
(

eY (t
j−2l

) − 1
))

· [0, 1/2l]
)

.

Step 4. Set Ylast = Ylast +
(

−α
(

eY (t
j−2l

) − 1
))

/2l.

Step 5. If 0 /∈ Y (tj−1) and 0 ∈ Y (tj), then calculate the new lower bound for the
length of the not unit width interval: PM = (j − 1)/2l.

Step 6. If 0 ∈ Y (tj−1) and 0 /∈ Y (tj), then calculate the new upper bound for the
length of the not unit width interval: PM = (j − 1)/2l and STOP.

Step 7. Set j = j + 1.
Step 8. If j < 2l+2, then continue with Step 3, otherwise STOP.

6.2. Thus we obtain lower and upper bounds on the trajectory on the time intervals
[0, 1+PM ], and [0, 1+PM ], respectively. The formal description of the algorithm for
the determination of the bounds of zeros is given as Algorithm 1. Here we bound the
trajectory after the time 1, or z1 +1, and check whether the respective Y (tj) interval
contains zero. The algorithm is able to identify lower and upper bounds within length
2 intervals, this was satisfactory for our investigation. The reordering of the 2−l size
subintervals mentioned in Subsection 6.4 must be made after Algorithm 1 was run.

Consider now how these bounding functions can be used to improve y
(upper)
(dec,n) . The

integration of the step function Y (ti), i ∈
(

1, . . . , 2l
)

gives with (6.6) and (6.7) the
updated upper and lower bounding functions

Y
(upper)
(dec,n) (ti) = max







α

2l
∑

j=i

(

e
Y

(upper)

(dec,n)
(t

j−2l
) − 1

)

/2l ; Y
(upper)
(dec,n) (ti)







,(6.12)

and

Y
(lower)
(inc,n) (ti) = min







α

2l
∑

j=i

(

e
Y

(lower)

(inc,n)
(t

j−2l
) − 1

)

/2l ; Y
(lower)
(inc,n) (ti)







.(6.13)

This completes the description of the iterative procedure to improve bounding
functions on the periodic solutions of the delay differential equation (1.1). The pe-
riodic solution should reach at the time point 1 the maximal value of M , while at
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the end of (dec, 1) the value −m. We can use this fact as a condition to be checked,
whether to the givenM,m pair a periodic solution belongs for the actual α differential
equation parameter. The corresponding inequalities are (cf. (6.1)):

Y
(upper)
(inc,1) (t2n) ≥M and Y

(lower)
(dec,1) (t2n) ≤ −m.

The checking algorithm is also able to decide on these conditions when the M
values are given as intervals. To exclude such possible intervals of M we apply the
above conditions for the upper bounds of the respective intervals:

Y
(upper)
(inc,1) (t2n) < M.(6.14)

By this condition we can delete all points of the respective subintervals. The checking
algorithm is given as Algorithm 2.

7. A verified computational bounding procedure and numerical results.

We composed a computer program, a verified numerical algorithm that is able to
check reliably whether α values in an interval allow a periodic solution with given
maximal value (M). To check the condition (6.14), the interval version of (6.1)
we used an adaptive branch-and-bound technique. The investigated interval was
([m,M ] ∈ [0.0, 6.0]× [0.0, 6.0]) since values for m and M beyond these bounds con-
tradict conditions (1.3). This procedure generates such a subdivision of the starting
interval that for all subintervals either:

• one of the conditions (1.4) to (1.6) are hurt, or
• M < 1− 2α/π, or
• one of the conditions in (6.14) holds, or
• it is shown that a (user set size) small subinterval exists that contradicts at
least one of the relations that ensure the existence of the specified periodic
solution.

The mentioned branch-and-bound algorithm was introduced in [6], and the correct-
ness proof for it was given there too. This technique was applied to prove the chaotic
behaviour of some iterated nonlinear mappings [3]. To achieve the reliability of numer-
ical calculations necessary for computer aided proofs, we applied interval arithmetic
based verified algorithms [1] as also in the solution of other mathematical problems
[3, 5, 6, 25]. The computational environment for the computer aided proof was C-XSC
[14] and PROFIL/BIAS [15]. These will provide support for the interval arithmetic,
for the outward rounding, and for the interval versions of the standard functions.
The runs were executed on a 2 processor, 4 core SUN Fire V490 workstation. The
parallelization of the branch-and-bound algorithm was described in the paper [29].

The source code of the algorithm is available at the internet address of

http://www.inf.u-szeged.hu/∼csendes/Wright/WrightNM.cpp

The numerical tests made for the narrow parameter interval α = [1.500, 1.568]
are summarized in Table 7.1. The bounding propagation cycle was applied at most
5 times – four rounds were not always enough. We stored the bounding functions on
1/1024 to 1/4096 wide time intervals. The minimum interval size (for the intervals of
both m andM) used in the branch-and-bound technique was set to 10−4, 10−5, 10−6,
and 10−7. The shortest calculation required about 6.6 hours in fully successful case.
The algorithm parameter settings in the last two rows of Table 7.1 allowed to prove
that for the α values within the interval [1.500, 1.568] the solution trajectories of (1.1)
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Algorithm 2 Check the existence of a periodic trajectory

Input: – M and −m: the extreme values of the periodic trajectory,
– α: a parameter of the studied delay differential equation,
– 2l: the number of equal width subintervals in the unit length time

interval,
– cikl: the maximal number of iterations.

Output: – a statement whether a periodic solution can exist with the given
extreme values.

Step 0. Check the conditions (1.4)-(1.6) and that of Corollary 4.2 for the given m
and M values. If any of these is false then the answer is that the given
periodic solution does not exists, and STOP.

Step 1. Set c = 1 and for all i = 1, . . . , 2l:

Y
(upper)
(inc,1) (ti) =M , Y

(lower)
(dec,1) (ti) = −m,

Y
(lower)
(inc,1) (ti) = 0, and Y

(upper)
(dec,1) (ti) = 0,

furthermore for all i = 1, . . . , 2l+1:

az Y
(upper)
(dec,n) (ti) =M , and Y

(lower)
(inc,n) (ti) = −m.

Step 2. Calculate stronger bounding functions for Y
(upper)
(inc,1) and Y

(lower)
(inc,1) from

Y
(lower)
(inc,n) by the expressions (6.8) and (6.10).

Step 3. Calculate stronger bounding functions for Y
(lower)
(dec,1) and Y

(upper)
(dec,1) from

Y
(upper)
(dec,n) by the expressions (6.9) and (6.11).

Step 4. If at least one of M ≤ Y
(upper)
(inc,1) (t2l) and Y

(lower)
(dec,1) (t2l) ≤ −m is false then the

answer is that the given periodic solution does not exists, and STOP.
Step 5. Apply Algorithm 1 to calculate PM and PM and a new bounding function

for the trajectory on (dec, n).
Step 6. Based on the new bounding functions of Step 5 improve the bounding func-

tion Y
(upper)
(dec,n) .

Step 7. Apply the distant points of Y
(upper)
(dec,n) to calculate a stronger bounding func-

tion with the help of (6.12).
Step 8. Calculate bounds for the trajectory on the interval (dec, 1).
Step 9. Apply Algorithm 1 to calculate Pm and Pm and a new bounding function

for the trajectory on (inc, n).
Step 10. Based on the new bounding functions of Step 9 improve the bounding

function Y
(lower)
(inc,n) .

Step 11. Apply the distant points of Y
(lower)
(inc,n) to calculate a stronger bounding func-

tion with the help of (6.13).
Step 12. If c ≥ cikl, then answer that the existence of a periodic solution could not

be excluded, and STOP.
Step 13. Set c = c+ 1, and continue at Step 2.

converge to zero as conjectured by E.M. Wright. The parallelization was successful
regarding the acceleration rates close to 4. This fact raises hope that more demanding
problem instances can be solved by similar architecture computers with more cores
and threads.
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Parameters proven interval elapsed CPU acceleration
Mmeps resolution time (s) time (s) rate

1,024 [1.500, 1.557] 428 1,504 3.51
10−4 2,048 [1.500, 1.558] 1,150 4,040 3.51

4,096 [1.500, 1.558] 2,222 7,817 3.51
1,024 [1.500, 1.565] 2,755 10,310 3.74

10−5 2,048 [1.500, 1.565] 4,046 15,099 3.73
4,096 [1.500, 1.565] 7,243 26,730 3.69
1,024 [1.500, 1.566] 7,009 26,422 3.76

10−6 2,048 [1.500, 1.568] 23,956 90,442 3.77
4,096 [1.500, 1.568] 34,000 130,156 3.82
1,024 [1.500, 1.566] 6,972 26,449 3.79

10−7 2,048 [1.500, 1.568] 82,366 319,629 3.88
4,096 [1.500, 1.568] 34,041 130,233 3.82

Table 7.1

Numerical results of the computer aided proof. Here Mmeps stands for the stopping criterion
parameter: when subintervals of this width are reached by the B&B algorithm, then it is terminated.
Resolution gives the number of subintervals checked within the time unit. Elapsed time denotes the
length of time interval between the start and the halt of the algorithm, while CPU time provides the
total amount of CPU time used by the four processors.

The numerical results for the original problem are summarized on Figure 7.1. The
first part of the interval we are interested in, was α ∈ [1.500, 1.542]. To prove that the
solutions converge to zero as stated we used 12.93 seconds on the hardware described
above (and 47.01 seconds cumulative time regarding the four cores). We needed 4
iteration cycles, 2l = 128, and Mmeps = 10−5 was the stopping criterion parameter
in the B&B algorithm. This part corresponds to α values for which Wright stated to
have a proof (but was too long to include in his article [35]).

The second part proved the statement for α ∈ [1.500, 1.568]. The algorithm
parameters and the CPU times used are given in the last two rows of Table 7.1. With
this we have 96% of the conjectured interval that was not proven yet, and 90% of that
said to be open by Wright.

The conjecture was also proven for the intervals [1.5000, 1.5702], [1.5000, 1.5705],
and [1.5705, 1.5706] for α with the same technique using 12 days, 37 days, and 78
days of CPU time, respectively. In the last case the hardware we used was a Hewlett
Packard ProLiant DL980 Generation 7 computer with 64 cores applying hyperthread-
ing. The computation time was converted back according to the Sun Fire V490
workstation to have comparable computation times. This result shows that slightly
larger parts of the conjectured interval of [1.5, π/2] could be proved with the presented
technique in reasonable time.

Finally, we run our program also for the last part that completes the whole
parameter interval in question, and we obtained a computational proof of Theorem
1.2. This phase is based on the still unproven statement that if the M value is
below 0.04 then the trajectories always converge to zero. In this way, this part of our
computational results is just an indication how long a computational proof would be
if the mentioned statement would be proven (three days of CPU time). One order of
magnitude of decrease in the bounding constant 0.04 corresponds to ca. 1000 times
more computation time. In other words, substantial improvement of the theoretical
part of the present proof is needed to prove Wright’s conjecture fully.
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Fig. 7.1. Illustration of the proved part of the conjecture, indicated by shades of blue (top
left). The convergence of the solutions to zero for α ∈ [1.5, 1.5420] was stated to be proven by
E.M. Wright, but the proof was not given. Wright thought that his technique can be successful until
α = 1.567 . . . The green area in the top right corner demonstrates the virtual subproblem, in the
case somebody could prove (e.g. by theoretical tools) that the slowly oscillating solutions cannot have
an amplitude smaller than 0.04. The computation times are measured on a 4 core Sun Fire V490
workstation. (The result marked with * is calculated on a 64 core HP ProLiant DL980 Generation
7 computer with hyper-threading. We have converted the CPU time for the earlier mentioned 4 core
SUN hardware, based on the number of threads.)
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[15] O. Knüppel, A Multiple Precision Arithmetic for PROFIL, Berichte des Forschungsschwer-

punktes Informations- und Kommunikationstechnik, TU Hamburg-Harburg, 1993.
[16] T. Krisztin, Periodic orbits and the global attractor for delayed monotone negative feedback.

Electron. J. Qual. Theory Differ. Equ., 2000 1–12.
[17] T. Krisztin, Global dynamics of delay differential equations. Period. Math. Hungar. 56 (2008),

no. 1, 8395.
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