
Engineering Emergence through Gossip∗

Márk Jelasity?

?University of Bologna
Mura Anteo Zamboni 7, 40127 Bologna, Italy

jelasity@cs.unibo.it
and RGAI, MTA-SZTE Szeged, Hungary

Abstract

Gossip is one of the most usual social activities. The result of gossip is that new and interesting
information spreads over a social network not unlike diseases during an epidemic, or computer worms
over the Internet. We will argue here that the core “idea” of gossip, that is, periodic information
exchange among members of a group over a network that connects them, and a subsequent update of
the knowledge of the group members based on the information they exchange, is a powerful abstraction
that can be applied for solving a wide range of problems in distributed computing. The applications
include—apart from the most natural one: information dissemination—gathering global knowledge
about distributed systems and organizing the group members into several structures, such as ordering,
clustering or other arbitrary topologies.

1 Introduction

Gossip is one of the most usual social activities. The
result of gossip is that new and interesting informa-
tion spreads over a social network very efficiently,
not unlike diseases during an epidemic, or computer
worms over the Internet.

The characteristics of information spreading
through gossip are quite remarkable. Considering
that participants only talk to their acquaintances and
relatives, and they make strictly local and private de-
cisions about what to gossip, and how to interpret the
received information, it is quite impressive how effi-
cient the process is. This fact has not been left un-
noticed in the distributed algorithms community: in
fact, the application of gossip to spread information
over various distributed systems is commonplace, see
e.g. Eugster et al. (2004).

However, the basic “protocol” underlying gossip-
ing holds a much more general potential than merely
information spreading. If we distill the basic com-
ponents, we can realize that we have a complex so-
cial network that connects people and the “algorithm”
which is run by all people is essentially periodic
communication with some neighbors in this network.
During such a communication, a person selects infor-
mation to be shared with the neighbor, and receives

∗Proc. AISB’05 Convention, Joint Symposium on Socially In-
spired Computing, 2005, pp 123–126. extended abstract of invited
talk

do once in each T time
units at a random time

p = selectPeer()
send state to p
receive statep from p
state = update(statep)

(a) active thread

do forever
receive statep from p
send state to p
state = update(statep)

(b) passive thread

Figure 1: The generic protocol scheme run on each
network node.

information from the neighbor. After the reception of
information, everyone updates their knowledge.

This scheme can be easily translated into the lan-
guage of distributed systems, where the participants
are processes or network nodes, and the social net-
work becomes a physical or virtual (overlay) com-
puter network. The skeleton of the gossip scheme is
shown in Figure 1. Note that this scheme is rather
similar to a cellular automaton, only more general in
that the connection topology can be arbitrary, and it
can even change over time. Furthermore, the nodes
can execute rather complex algorithms to update their
states. The components of the scheme are the follow-
ing:

state is defined by the application domain (for ex-
ample, a number, a set of documents, a set of



after 3 cycles after 5 cycles after 8 cycles after 15 cycles

Figure 2: T-Man is run starting with a random network. A torus is evolved within a few cycles. The example
shown is a 1000 node graph, but experiments show that convergence time is logarithmic in network size. A cycle
is T/2 time units, that is, each node communicates once on average during a cycle.

initial state after 1 cycle after 3 cycles after 8 cycles

Figure 3: A network of 10 000 nodes is shown, each pixel representing a node in a 100x100 bitmap. The intensity
of each pixel represents the numeric value held by a node. The underlying random overlay network is not shown.
Convergence speed is similar irrespective of initial configuration and network size. A cycle is T/2 time units, that
is, each node communicates once on average during a cycle.

neighbors, known information items, etc)

selectPeer() defines the way the peer is selected
(random, biased towards geographic proximity
or high bandwidth, etc)

update() is the key function: the local rule that re-
sults in global behavior. Analogous to the up-
date rule of cellular automata, but more general
operating on arbitrary structures (states)

2 Examples
In this section we briefly outline two examples to il-
lustrate the generality of the gossiping scheme.

2.1 Construction of Structures
Over a set of nodes connected to the Internet, one can
define a so called overlay topology based on a “who-
knows-whom” relation. That is, although any node
can potentially communicate with any other node, to

actually communicate they have to know the address
of the peer node. The set of addresses known by each
node define a virtual, or overlay, network.

Overlay networks have recently received increas-
ing attention, because they are very useful in support-
ing distributed protocols. Applications include rout-
ing information, and clustering and sorting the nodes
according to some attributes to facilitate search.

The gossip scheme is useful also to evolve such
overlay topologies in a completely decentralized way,
very quickly. All we need to assume is that the nodes
are able to rank any set of other nodes according to
preference of selecting them as neighbors. The com-
ponents are implemented as follows:

state is a set of peer addresses: the partial view. The
views of the nodes define the overlay topology.

selectPeer() is biased towards nodes that are
“closer” according to the actual target topology
to be evolved, using the preference of the nodes.

update(a,b) generates a new partial view from the



two partial views a and b. It keeps those ad-
dresses from the union of a and b that are “clos-
est” in the target topology, again, based on the
preference ranking.

Figure 2 illustrates the protocol when it is used
to construct a torus. The protocol has been studied
by Jelasity and Babaoglu (2004), where it was shown
that it is rather independent of the characteristics of
the topology that we would like to generate. The
cases of the ring, torus and a binary tree were shown
to converge at virtually the same, logarithmic speed
in the network size.

2.2 Data Aggregation

The problem of data aggregation is to provide all the
nodes with global information about the distributed
system in which they participate. Examples include
the average or maximal value of some attribute, such
as storage capacity, available bandwidth, or temper-
ature (in sensor networks), the size of the system
(number of nodes), or the variance of some attribute.
Aggregation plays an important part in monitoring
and control applications.

The gossip scheme offers a possibility to imple-
ment a simple but very robust and efficient averaging
scheme that follows a diffusion-like dynamics. The
components of the scheme have to be implemented
the following way:

state is a number, representing any attribute, like
temperature, free storage, available bandwidth,
etc.

selectPeer() is random from the entire system, as-
suming an underlying random network. There
are protocols that can provide this random net-
work, such as NEWSCAST that is based on
the gossiping scheme itself, see Jelasity et al.
(2004).

update(a,b) defines the aggregate function to be
calculated. Some examples are maximum
(or minimum), where update(a, b) =max(a, b)
(or min(a, b)), or any mean of the form
f−1((f(x1)+...+f(xn))/n) that covers among
others average (f(x) = x), quadratic (f(x) =
x2), harmonic (f(x) = 1/x) and geometric
(f(x) = ln x) means. In this case update(a,b)=
f−1((f(a) + f(b))/2).

Figure 3 illustrates the speed at which all the nodes
converge to the average value. It has been shown that

the protocol is very fast and extremely robust, see Jel-
asity et al.; Jelasity and Montresor (2004); Montresor
et al. (2004).

3 Conclusions
It has been shown that the basic scheme underlying
gossiping can be efficiently used to implement very
different fully distributed functions, in a controllable,
robust, simple and relatively well understood way.
This means that this scheme represents a way of engi-
neering emergent properties of systems such as struc-
ture of the connectivity network, and calculation of
global information.

In fact this approach can be even incorporated into
a component architecture, in which a large set of ser-
vices are provided by overlay networks participating
in a gossip protocol, see Babaoglu et al. (2004). In
this framework, overlay networks (random and struc-
tured, as shown above) are constructed and main-
tained, which in turn support other higher level func-
tions such as load balancing, information dissemina-
tion, search, and aggregation.

Finally, we note that since these ideas seem to be
useful and powerful in computer science engineering,
the reverse question becomes also interesting: isn’t it
possible that real gossip also works in much richer
ways than usually assumed? For example, gossip it-
self can change the social network it uses for spread-
ing, and other ways of feedback are possible, like
learning about certain pieces of information might
change our preferences and our gossip behavior, the
set of people we talk to, which in turn changes our
sources of information, and so on. This dynamics
might be responsible for complex emergent social
phenomena.

References
Ozalp Babaoglu, Márk Jelasity, and Alberto Mon-

tresor. Grassroots approach to self-management
in large-scale distributed systems. In Pre-
Proceedings of the Workshop on Unconventional
Programming Paradigms (UPP’04), pages 165–
172, Le Mont Saint-Michel, France, September
2004. invited paper, Springer LNCS volume pend-
ing.

Patrick Th. Eugster, Rachid Guerraoui, Anne-Marie
Kermarrec, and Laurent Massoulié. Epidemic
information dissemination in distributed systems.
IEEE Computer, 37(5):60–67, May 2004.



Márk Jelasity and Ozalp Babaoglu. T-Man: Fast
gossip-based construction of large-scale over-
lay topologies. Technical Report UBLCS-
2004-7, University of Bologna, Department
of Computer Science, Bologna, Italy, May
2004. http://www.cs.unibo.it/pub/
TR/UBLCS/2004/2004-07.pdf.

Márk Jelasity, Rachid Guerraoui, Anne-Marie Ker-
marrec, and Maarten van Steen. The peer sampling
service: Experimental evaluation of unstructured
gossip-based implementations. In Hans-Arno Ja-
cobsen, editor, Middleware 2004, volume 3231 of
Lecture Notes in Computer Science, pages 79–98.
Springer-Verlag, 2004. ISBN 3-540-23428-4.

Márk Jelasity and Alberto Montresor. Epidemic-style
proactive aggregation in large overlay networks. In
Proceedings of The 24th International Conference
on Distributed Computing Systems (ICDCS 2004),
pages 102–109, Tokyo, Japan, 2004. IEEE Com-
puter Society.

Márk Jelasity, Alberto Montresor, and Ozalp
Babaoglu. Gossip-based aggregation in large dy-
namic networks. ACM Transactions on Computer
Systems. to appear.

Alberto Montresor, Márk Jelasity, and Ozalp
Babaoglu. Robust aggregation protocols for large-
scale overlay networks. In Proceedings of The
2004 International Conference on Dependable
Systems and Networks (DSN), pages 19–28, Flo-
rence, Italy, 2004. IEEE Computer Society.


