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Abstract

The Internet, which is becoming a more and more dynamic, extremely heterogeneous network has
recently became a platform for huge fully distributed peer-to-peer overlay networks containing millions
of nodes typically for the purpose of information dissemination and file sharing. This paper targets the
problem of analyzing data which are scattered over a such huge and dynamic set of nodes, where each
node is storing possibly very little data but where the total amount of data is immense due to the large
number of nodes. We present distributed algorithms for effectively calculating basic statistics of data
using the recently introduced newscast model of computation and we demonstrate how to implement
basic data mining algorithms based on these techniques. We will argue that the suggested techniques are
efficient, robust and scalable and that they preserve the privacy of data.

1 Introduction
With the rapid increase in the number of computers connected to the Internet and the emergence of a range
of mobile computational devices which might soon be equipped with mobile IP technology, the Internet
is converging to a more dynamic, huge, extremely heterogeneous network which nevertheless provides
basic services such as routing and name lookup. This platform is already being used to support huge,
fully distributed peer-to-peer overlay networks containing millions of nodes typically for the purpose of
information dissemination and file sharing [8]. Such fully distributed systems generate immense amounts
of data. Analyzing this data can be interesting from both scientific and business purposes. Among other
applications, this environment is a natural target for distributed data mining [10].

In this paper we would like to push the concept of distributed data mining to the extreme. The mo-
tivations behind distributed data mining include the optimal usage of available computational resources,
privacy and dependability by eliminating critical points of service. We will adopt the harshest possible
constraints on the distribution of data and the elements of the network and demonstrate techniques which
can still provide useful information about the distributed data effectively and dependably.

There are two constraints that we will adopt. The first is that all nodes are allowed to hold as few as
one single data instance. This can be viewed as an extremum of horizontal data distribution. The second
is another extremum: there is practically no limit on the number of nodes. The only requirement is that in
principle each pair of nodes could communicate directly which holds if the nodes are on the Internet with
a (not necessarily fixed) IP address.

Furthermore, we will concentrate on two other very important aspects. The first is data privacy, the
second is the dynamic nature of the underlying network: nodes can leave the overlay network and new
nodes can join it.

To achieve our goal we will work in the newscast model of computation [5]. This model is built on a
lower layer, an epidemic protocol for disseminating information and group membership [4], and it provides
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a simple interface for applications. The advantage of the model is that due to the robustness and scalability
of the epidemic protocol it is built on, the applications of the newscast model of computation inherit this
robustness and scalability and can target the kinds of distributed networks described above.

2 The Newscast Model of Computation
The newscast model has been developed as part of the European FP5-IST DREAM project [9]. The news-
cast model of computation is implemented by a probabilistic epidemic protocol for information and mem-
bership dissemination. This protocol provides a dependable, scalable and robust way of maintaining a
connected overlay network and disseminating information among its members effectively. Here we do not
discuss this protocol since it is not necessary for understanding the paper. The interested reader should
consult [5]. Information about related work can be found in [2, 6].

During the discussion of the newscast model of computation we will make further simplifications
avoiding the technical details and focusing only on those properties that we apply when developing our
algorithms.

The two main concepts of the model are the collective of agents and the news agency. Computation is
performed by the agents that might have their own data storage, processor and I/O facilities. The agents
communicate through the news agency according to a special schedule which is orchestrated by the news
agency. It is very important to stress here that although the news agency plays the role of a server in the
model, it is a purely virtual entity and the actual implementation of its functionality at the protocol level is
a fully distributed peer-to-peer solution.

The communication schedule is organized into cycles. In each cycle the news agency collects exactly
one news item from all the agents. At the same time it delivers to every agent a random sample of c news
items that were collected in the previous cycle.

Even though we do not discuss the protocol here, note that since agents receive only the news content
but no information about the sender, the system can stay completely anonym so privacy is not violated. The
actual protocol that implements this model can effectively act as a “remailer”, where the origin of a given
item is hard to track down.

To shed some more light on how to develop applications for the model, we present an easily com-
prehensible yet interesting example. Let us assume that the collective contains n agents, and each agent
i knows a single number ai. The task is to find the maximum of these numbers a∗ = maxn

i=1 ai. The
following two-liner, which will be common to all agents, will solve this problem.

NewsItem newsUpdate(news[]) {
myMax = max(myMax, a, news[1],...,news[c]);
return myMax;}

where a = ai for agent i.
It is important to note that reading the output of the algorithm is possible for all agents, so there is no

need for a specific user terminal or service to extract the output. Although there is no signal that informs the
agents that the value is found, using the theory of epidemic algorithms [1] it can be proven that all agents
will hear about the final solution very quickly. The trick is that from the point of view of a true maximum
value the algorithm is in fact an effective broadcasting mechanism, since all agents will keep returning it
after they have seen it at least once. So the maximum value spreads exactly like an epidemic, “infecting” a
quickly growing number of agents. Let as assume that pi is the probability that a given agent is not infected
in cycle i. The probability that a given agent is not infected in cycle i + 1 is given by pi+1 = pip

c
i since it

had to be uninfected in cycle i and none of its c samples in the news update must be infective. The initial
value p0 = (1 − 1/n). It is clear that pi decreases extremely fast.

3 Calculating Basic Statistics
Let us consider a system of n agents that form a newscast network, and let each agent store one number–its
own value. Our objective is to program these agents in such a way, that they will collectively find, within



very few cycles, the mean of all values (or a good approximation of it). In this section we will present three
algorithms for this task: basic averaging, (BA), systematic averaging (SA), and cumulative averaging (CA).
These algorithms, although based on the same idea, have different properties with respect to convergence
speed, accuracy and adaptivity.

The ability of finding the mean is central for implementing some basic data mining algorithms within
the newscast framework. In Section 4 we will demonstrate how the process of finding the mean can be
adopted for finding other statistics, like conditional probabilities, information gain, Gini index, etc. – the
key elements for building various classification procedures like Naive Bayes and decision trees.

To simplify the statistical analysis of the behavior of our algorithms we will assume that c = 2, i.e.,
that news that are distributed by the news agency always consist of 2 news items. It should be noticed that
in practice the value of c is usually much bigger than 2 (e.g., in our experiments we used c = 20) which
yields much faster convergence rates than our theoretical bounds.

3.1 Basic Averaging
Probably this is the simplest algorithm for finding the mean. During the first cycle (when no news are
available) every agent publishes its own value. In this way the news agency gets a copy of all values to be
averaged. Next, all agents switch to the “averaging mode”: whenever they receive news they calculate the
average of all news items and publish it. More formally, agent’s behavior – the newsUpdate(news[])
function (where news[] refers to the list of news items, each of them being a single number) – is defined
as follows:

NewsItem newsUpdate(news[]) {
if (news[] is empty) return own value;
else return the average of elements in news[];}

The rationale behind the algorithm is based on the following observation: if we are given a set of numbers
and replace two of them by their average then the overall mean will not change, but the variance will
decrease. Therefore, in every cycle the news agency receives a collection of numbers that (on average) has
the same mean as the mean of the original set, but the variance will be getting smaller and smaller. As a
matter of fact, the variance is dropping exponentially fast with the number of cycles: every cycle reduces the
variance by factor 2. Indeed, in a single cycle n pairs of numbers are drawn at random (we assumed c = 2),
and consequently each pair is averaged. This can be modeled by a random variable (X + Y )/2, where X
and Y are independent random variables that take values in V – the set of values kept by the news agency
– with each value having the same chance. Clearly, we have: E[(X + Y )/2] = E[X ] = E[Y ] = E[V ]
and V ar((X + Y )/2) = V ar(X)/4 + V ar(Y )/4 = V ar(V )/2, where E[.] denotes the expected value
(mean) and V ar(.) the variance of a random variable (so we are misusing a bit the notation, as V is not a
random variable).

As said earlier, the newscast model that we are working with is an idealization of the real model that
works in a more unpredictable way. In particular, it is not realistic to expect that all the agents get or send
their news items simultaneously. But even if the agents acted on news in a sequential way (i.e., instead of
processing n pairs of numbers in one step, the agents would average pairs of numbers one after another),
the algorithm would still converge to the mean exponentially fast. More precisely, it can be shown that
after k iterations of the “averaging operation” the variance drops to (1 − 1/n)k of its initial value, thus a
single cycle (of n iterations) reduces it approximately by factor e ≈ 2.71. Let us note that the averaging
operator does not change the mean.

3.2 Systematic Averaging
The BA algorithm has one drawback: the lack of adaptivity. Sometimes we would like the system to dy-
namically adjust the output value (in our case: the estimate of the mean) in response to a changing situation:
a modification of agents’ own values, changes of the number of agents that form the network, temporary
faults in communication channels, etc. The systematic averaging algorithm achieves adaptivity by con-
stantly propagating agents’ current values and temporal averages through the news agency. Therefore, any
change in the incoming data will quickly affect the final result.



Let us fix a small positive integer d, e.g., d = 15, that will control the depth of the propagation process.
The SA algorithm works with news items that are vectors of d + 1 numbers. The first element of a news
item x, x0, will always be an agent’s value (we will call it a 0-order estimate of the mean), x1 will be the
average of two 0-order estimates (we will call it a 1-order estimate), . . . , xd will be the average of two
estimates of order d − 1 (and will be called an estimate of order d). In this way consecutive elements of
x will be “balanced”: they will be averages of 1, 2, 4, . . . , 2d of original values. Clearly, the result this
propagation is represented by xd.

The systematic averaging algorithm, when applied to news items a[] and b[] processes the estimates
from left to right:

NewsItem NewsUpdate({a[], b[]}){
create a news item c[d];
c[0]= current value of the agent
for (i=1; i<=d; i++)

c[i]+=(a[i-1]+b[i-1])/2;
return c[]; }

Using the same argument as above we can show that the SA algorithm reduces the variance of the input
data exponentially fast. Moreover, the system reacts to changes in the input data within d iterations.

3.3 Cumulative Averaging
Both algorithms, BA and SA, reduce variance exponentially fast. Unfortunately, due to randomness that
is involved in the sampling mechanism of the newscast engine, the output values might still be different
from the true mean. Our third algorithm, cumulative averaging, CA, solves this problem by running two
processes in parallel: in one process agents update their local estimates of the mean of the incoming data, in
the other one the mean of these estimates is collectively calculated (by the BA procedure). More precisely,
news items consist of two numbers: the private value of an agent and the current estimate of the mean. Each
agent is counting and summing up all incoming private values (first process) and returning the average of
the incoming estimates and its own private value. We will leave further implementation details to the reader.
The reader can also verify that local estimates of means tend to the true mean (with the increasing number
of cycles), so it is guaranteed that the whole algorithm also converges to it.

3.4 Experiments and Results
For the purpose of simulation we used the actual newscast model instead of the idealized model presented
in the introduction. This is very useful in illustrating that the intuitions and the mathematical analysis based
on the idealized model provide a practical approximation when working in the newscast model. To gain
experimental data on the behavior of our system we performed runs with various number of agents (10000,
20000, and 50000), and different data sets. For each case we executed 100 independent runs with cache
size 20 and terminated after 100 cycles. The data sets included Gaussian (where the value of each agent
is drawn independently from a Gaussian distribution), half-half (where half of the agents hold the value 0,
the other half has value 1), and peak, where one agent has value being the number of nodes and all other
agents have value 0, so the “correct” average is 1.

It turned out that with respect to the convergence rate the BA algorithm was fastest (20-30 iterations
were sufficient), the SA algorithm was slower (about 50 iterations were needed) and the slowest was the
CA algorithm (about 100 iterations were needed). On the other hand, with respect to accuracy, the situation
was opposite: the BA was worst, CA better, and CA the best. The actual deviation from the “true mean”
strongly depended on the initial distribution of the data. For example, on the “hardest” peak distribution
the average output of the SA algorithm was 0.98, with the standard deviation 0.265, whereas the BA was
producing 0.935, with the standard deviation 0.656. A more extensive survey of the results is presented in
[7].



4 An Illustrative Example: Naive Bayes
A central problem in data mining is classification: given some records x1, . . . ,xr, represented here by
vectors of fixed length p, with their class labels, y1, . . . yr, one wants to build a classification procedure that
assigns labels to new observations that are not labelled. This classification procedure might have a form of
a decision tree, a regression formula, a description of a joint probability distribution, etc., [3]. In this paper
we will focus on a very simple, yet powerful, classification procedure called Naive Bayes. Additionally,
we will assume that all attributes (vector elements) are discrete and take values in V = {v1, . . . , vk}; class
labels are assumed to belong to {c1, . . . , cm}.

The Naive Bayes procedure finds p(y = cl|x) , for l = 1, . . . , m with help of some probability estimates
that are easy to find. The class with the highest probability is chosen as the label for x. Indeed, if we assume
that attributes are conditionally independent with respect to the class attribute (it is a naive assumption
therefore the name: Naive Bayes), the probabilities p(y = cl|x) can be expressed in terms of p(xi =
vj |y = cl) and p(y = cl), for i = 1, . . . , p, j = 1, . . . , k, and l = 1, . . . , m, where xi denotes the i-th
coordinate of x (the value of the i-th attribute):

p(y = cl|x)p(x) = p(y = cl)
∏

i,j

p(xi = vj |y = cl).

The term p(x) can be eliminated as we know that
∑m

l=1
p(y = cl|x) = 1. Clearly, given the data, all

the probabilities that we need can be expressed by ratios:

p(y = cl) =
number of observations with label cl

number of all observations
, and

p(xi = vj |y = cl) =
number of observations with label cl s.t. xi = vj

number of all observations with label cl

.

Therefore, to implement the Naive Bayes procedure in the newscast model we only have to know how to
calculate ratios of some counts. More precisely, let us consider n agents that form a newscast network
and let each agent store two numbers ai and bi, for i = 1, . . . , n. We are interested in estimating the
value of r = (

∑
ai)/(

∑
bi). Once we know how to determine r we know how to calculate all the

conditional probabilities we need. Fortunately, the ratio r can be expressed as a combination of two means:
r = (

∑
ai/n)(n/

∑
bi). Therefore, any algorithm that was described in the previous section, after a slight

modification (we have to estimate several means at the same time), can be immediately used for finding the
Naive Bayes classifier for data that is arbitrarily distributed among the agents.

Let us note that most statistics that are used by other classification algorithms are defined in terms of
ratios (or probabilities) that have the same form as described above. For example, information gain, gain
ratio, Gini index and χ2 statistics that are used by decision tree inducers: ID3, C4.5, CART and CHAID,
respectively, [3]. Consequently they can be implemented within the newscast framework.

5 Summary and Conclusions
The main contribution of this paper is the theoretical and experimental evidence for the feasibility of a
novel approach to distributed data mining. The particular type of distributed data mining task we handle
constitutes of seeking a model for data spread over a number of sites (here, agents). The challenge is
twofold. Firstly, the number of agents can be extremely large (here, up to 50000) and the amount of
data per agent can be very small (here, one single value). Secondly, the data might change on-the-fly so the
system should be able to adjust the model to these changes automatically. We have reduced the general data
mining task to calculating averages demonstrating that it forms the basis for ”real” data mining algorithms,
such as Naive Bayes or decision trees.

The technical approach we follow is based on the newscast model of computation. We have designed,
implemented, and executed algorithms fitting into this model naturally inheriting its main properties: ro-
bustness, scalability, and efficiency. For some of these algorithms we have proved theoretical properties
on convergence speed and also provided experimental data to show the systems behavior from various



perspectives, such as the “averaging power”, convergence behavior, and adaptivity in case of changing the
data set on-the-fly.

Our current research focuses on the development of other “building blocks” for data mining algorithms,
like quantile estimation or various discretization algorithms. We are also experimenting with newscast
implementations of incremental algorithms for constructing decision trees.
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