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Abstract

Machine learning over fully distributed data poses an important problem in peer-to-peer (P2P) appli-

cations. In this model we have one data record at each network node, but without the possibility to move

raw data due to privacy considerations. For example, user profiles, ratings, history, or sensor readings

can represent this case. This problem is difficult, because there is no possibility to learn local models,

the system model offers almost no guarantees for reliability, yet the communication cost needs to be

kept low. Here we propose gossip learning, a generic approach that is based on multiple models tak-

ing random walks over the network in parallel, while applying an online learning algorithm to improve

themselves, and getting combined via ensemble learning methods. We present an instantiation of this

approach for the case of classification with linear models. Our main contribution is an ensemble learning

method which—through the continuous combination of the models in the network—implements a virtual

weighted voting mechanism over an exponential number of models at practically no extra cost as com-

pared to independent random walks. We prove the convergence of the method theoretically, and perform

extensive experiments on benchmark datasets. Our experimental analysis demonstrates the performance

and robustness of the proposed approach.

1 Introduction

The main attraction of peer-to-peer (P2P) technology for distributed applications and systems is acceptable

scalability at a low cost (no central servers are needed) and a potential for privacy preserving solutions,

where data never leaves the computer of a user in a raw form. The label P2P covers a wide range of

distributed algorithms that follow a specific system model, in which there are only minimal assumptions

about the reliability of communication and the network components. A typical P2P system consists of a

very large number of nodes (peers) that communicate via message passing. Messages can be delayed or

lost, and peers can join and leave the system at any time.

In recent years, there has been an increasing effort to develop collaborative machine learning algorithms

that can be applied in P2P networks. This was motivated by the various potential applications such as spam

filtering, user profile analysis, recommender systems and ranking. For example, for a P2P platform that

offers rich functionality to its users including spam filtering, personalized search, and recommendation [1–

3], or for P2P approaches for detecting distributed attack vectors [4], complex predictive models have to be

built based on fully distributed, and often sensitive, data.

An important special case of P2P data processing is fully distributed data, where each node holds

only one data record containing personal data, preferences, ratings, history, local sensor readings, and so

on. Often, these personal data records are the most sensitive ones, so it is essential that we process them

locally. At the same time, the learning algorithm has to be fully distributed, since the usual approach of

building local models and combining them is not applicable.
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Our goal here is to present algorithms for the case of fully distributed data. The design requirements

specific to the P2P aspect are the following. First, the algorithm has to be extremely robust. Even in extreme

failure scenarios it should maintain a reasonable performance. Second, prediction should be possible at any

time in a local manner; that is, all nodes should be able to perform high quality prediction immediately

without any extra communication. Third, the algorithm has to have a low communication complexity; both

in terms of the number of messages sent, and the size of these messages as well. Privacy preservation is

also one of our main goals, although in this study we do not analyze this aspect explicitly.

The gossip learning approach we propose involves models that perform a random walk in the P2P

network, and that are updated each time they visit a node, using the local data record. There are as many

models in the network as the number of nodes. Any online algorithm can be applied as a learning algorithm

that is capable of updating models using a continuous stream of examples. Since models perform random

walks, all nodes will experience a continuous stream of models passing through them. Apart from using

these models for prediction directly, nodes can also combine them in various ways using ensemble learning.

The generic skeleton of gossip learning involves three main components: an implementation of random

walk, an online learning algorithm, and ensemble learning. In this paper we focus on an instantiation

of gossip learning, where the online learning method is a stochastic gradient descent for linear models.

In addition, nodes do not simply update and then pass on models during the random walk, but they also

combine these models in the process. This implements a distributed “virtual” ensemble learning method

similar to bagging, in which we in effect calculate a weighted voting over an exponentially increasing

number of linear models.

Our specific contributions include the following: (1) we propose gossip learning, a novel and generic

approach for P2P learning on fully distributed data, which can be instantiated in various different ways; (2)

we introduce a novel, efficient distributed ensemble learning method for linear models that virtually com-

bines an exponentially increasing number of linear models; and (3) we provide a theoretical and empirical

analysis of the convergence properties of the method in various scenarios.

The outline of the paper is as follows. Section 2 elaborates on the fully distributed data model. Section 3

summarizes related work and the background concepts. In Section 4 we describe our generic approach and

a naive algorithm as an example. Section 5 presents the core algorithmic contributions of the paper along

with a theoretical discussion, while Section 6 contains an experimental analysis. Section 7 concludes the

paper.

This paper is a significantly extended and improved version of our previous work [5].

2 Fully Distributed Data

Our focus is on fully distributed data, where each node in the network has a single feature vector, that

cannot be moved to a server or to other nodes. Since this model is not usual in the data mining community,

we elaborate on the motivation and the implications of the model.

In the distributed computing literature the fully distributed data model is typical. In the past decade,

several algorithms have been proposed to calculate distributed aggregation queries over fully distributed

data, such as the average, the maximum, and the network size (e.g., [6–8]). Here, the assumpion is that

every node stores only a single record, for example, a sensor reading. The motivation for not collecting

raw data but processing it in place is mainly to achieve robustness and adaptivity through not relying on

any central servers. In some systems, like in sensor networks or mobile ad hoc networks, the physical

constraints on communication also prevent the collection of the data.

An additional motivation for not moving data is privacy preservation, where local data is not revealed

in its raw form, even if the computing infrastructure made it possible. This is especially important in smart

phone applications [9–11] and in P2P social networking [12], where the key motivation is giving the user

full control over personal data. In these applications it is also common for a user to contribute only a single

record, for example, a personal profile, a search history, or a sensor reading by a smart phone.

Clearly, in P2P smart phone applications and P2P social networks, there is a need for more complex

aggregation queries, and ultimately, for data models, to support features such as recommendations and

spam filtering, and to make the system more robust with the help of, for example, distributed intruder

detection. In other fully distributed systems data models are also important for monitoring and control.
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Motivated by the emerging need for building complex data models over fully distributed data in different

systems, we work with the abstraction of fully distributed data, and we aim at proposing generic algorithms

that are applicable in all compatible systems.

In the fully distributed model, the requirements of an algorithm also differ from those of parallel data

mining algorithms, and even from previous work on P2P data mining. Here, the decisive factor is the cost

of message passing. Besides, the number of messages each node is allowed to send in a given time window

is limited, so computation that is performed locally has a cost that is typically negligible when compared

to communication delays. For this reason prediction performance has to be investigated as a function of

the number of messages sent, as opposed to wall clock time. Since communication is crucially important,

evaluating robustness to communication failures, such as message delay and message loss, also gets a large

emphasis.

The approach we present here is applicable successfully also when each node stores many records (and

not only one); but its advantages to known approaches to P2P data mining become less significant, since

communication plays a smaller role when local data is already usable to build reasonably good models. In

the following we focus on the fully distributed model.

3 Background and Related Work

We organize the discussion of the background of our work along the generic model components outlined

in the Introduction and explained in Section 4: online learning, ensemble learning, and peer sampling. We

also discuss related work in P2P data mining. Here we do not consider parallel data mining algorithms. This

field has a large literature, but the rather different underlying system model means it is of little relevance to

us here.

Online Learning. The basic problem of supervised binary classification can be defined as follows. Let

us assume that we are given a labeled database in the form of pairs of feature vectors and their correct clas-

sification, i.e. (x1, y1), . . . , (xn, yn), where xi ∈ R
d, and yi ∈ {−1, 1}. The constant d is the dimension

of the problem (the number of features). We are looking for a model f : Rd → {−1, 1} that correctly

classifies the available feature vectors, and that can also generalize well; that is, which can classify unseen

examples too. For testing purposes, the available data is often partitioned into a training set and a test set,

the latter being used only for testing candidate models.

Supervised learning can be thought of as an optimization problem, where we want to maximize predic-

tion performance, which can be measured via, for example, the number of feature vectors that are classified

correctly over the training set. The search space of this problem consists of the set of possible models (the

hypothesis space) and each method also defines a specific search algorithm (often called the training algo-

rithm) that eventually selects one model from this space.

Training algorithms that iterate over available training data, or process a continuous stream of data

records, and evolve a model by updating it for each individual data record according to some update rule

are called online learning algorithms. Gossip learning relies on this type of learning algorithms. Ma et al.

provide a nice summary of online learning for large scale data [13].

Stochastic gradient search [14, 15] is a generic algorithmic family for implementing online learning

methods. Without going into too much detail, the basic idea is that we iterate over the training examples in

a random order repeatedly, and for each training example, we calculate the gradient of the error function

(which describes classification error), and modify the model along this gradient to reduce the error on

this particular example. At the same time, the step size along the gradient is gradually reduced. In many

instantiations of the method, it can be proven that the converged model minimizes the sum of the errors

over the examples [16].

Let us now turn to support vector machines (SVM), the learning algorithm we apply in this paper [17].

In its simplest form, the SVM approach works with the space of linear models to solve the binary clas-

sification problem. Assuming a d dimensional problem, we want to find a d − 1 dimensional separating

hyperplane that maximizes the margin that separates examples of the two class. The margin is defined by

the hyperplane as the sum of the minimal perpendicular distances from both classes.
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Equation (1) states a variant of the formal SVM optimization problem, where w ∈ R
d and b ∈ R

are the parameters of model, namely the norm of the separating hyper-plane and the bias parameters,

respectively. Furthermore, ξi is the slack variable of the ith sample, which can be interpreted as the amount

of misclassification error of the ith sample, and C is a trade-off parameter between generalization and error

minimization.

min
w,b,ξi

1

2
‖w‖2 + C

n
∑

i=1

ξi

s.t. yi(w
Txi + b) ≥ 1− ξi and ξi ≥ 0 (∀i : 1 ≤ i ≤ n)

(1)

The Pegasos algorithm is an SVM training algorithm, based on a stochastic gradient descent ap-

proach [18]. It directly optimizes a form of the above defined, so-called primal optimization task. We

will use the Pegasos algorithm as a basis for our distributed method. In this primal form, the desired model

w is explicitly represented, and is evaluated directly over the training examples.

Since in the context of SVM learning this is an unusual approach, let us take a closer look at why we

decided to work in the primal formulation. The standard SVM algorithms solve the dual problem instead

of the primal form [17]. The dual form is

max
α

n
∑

i=1

αi −
1

2

n
∑

i,j=1

αiyiαjyjx
T
i xj

s.t.

n
∑

i=1

αiyi = 0 and 0 ≤ αi ≤ C (∀i : 1 ≤ i ≤ n),

(2)

where the variables αi are the Lagrangian variables. The Lagrangian variables can be interpreted as the

weights of the training samples, which specify how important the corresponding sample is from the point

of view of the model.

The primal and dual formalizations are equivalent, both in terms of theoretical time complexity and

the optimal solution. Solving the dual problem has some advantages; most importantly, one can take full

advantage of the kernel-based extensions (which we have not discussed here) that introduce nonlinearity

into the approach. However, methods that deal with the dual form require frequent access to the entire

database to update αi, which is unfeasible in our system model. Besides, the number of variables αi equals

the number of training samples, which could be orders of magnitude larger than the dimension of the primal

problem, d. Finally, there are indications that applying the primal form can achieve a better generalization

on some databases [19].

Ensemble Learning. Most distributed large scale algorithms apply some form of ensemble learning to

combine models learned over different samples of the training data. Rokach presents a survey of ensemble

learning methods [20]. We apply a method for combining the models in the network that is related to both

bagging [21] and “pasting small votes” [22]: when the models start their random walk, initially they are

based on non-overlapping small subsets of the training data due to the large scale of the system (the key

idea behind pasting small votes) and as time goes by, the sample sets grow, approaching the case of bagging

(although the samples that belong to different models will not be completely independent in our case).

Peer Sampling in Distributed Systems. The sampling probability for each data record is defined by

peer sampling algorithms that are used to implement the random walk. Here we apply uniform sampling.

A set of approaches to implement uniform sampling in a P2P network apply random walks themselves

over a fixed overlay network, in such a way that the corresponding Markov-chain has a uniform limiting

distribution [23–25]. In our algorithm, we apply gossip-based peer sampling [26] where peers periodically

exchange small random subsets of addresses, thereby providing a local random sample of the addresses

at each point in time at each node. The advantage of gossip-based sampling in our setting is that samples

are available locally and without delay. Furthermore, the messages related to the peer sampling algorithm

can piggyback the random walks of the models, thereby avoiding any overheads in terms of message

complexity.
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Algorithm 1 Gossip Learning Scheme

1: initModel()

2: loop

3: wait(∆)
4: p← selectPeer()

5: send modelCache.freshest() to p
6: end loop

7: procedure ONRECEIVEMODEL(m)

8: modelCache.add(createModel(m, lastModel))

9: lastModel← m
10: end procedure

P2P Learning. In the area of P2P computing, a large number of fully distributed algorithms are known for

calculating global functions over fully distributed data, generally referred to as aggregation algorithms. The

literature of this field is vast, we mention only two examples: Astrolabe [6] and gossip-based averaging [7].

These algorithms are simple and robust, but are capable of calculating only simple functions such as the

average. Nevertheless, these simple functions can serve as key components for more sophisticated methods,

such as the EM algorithm [27], unsupervised learners [28] or the collaborative filtering based recommender

algorithms [29–32]. However, here we seek to provide a rather generic approach that covers a wide range

of machine learning models, while maintaining a similar robustness and simplicity.

In the past few years there has been an increasing number of proposals for P2P machine learning

algorithms as well, like those in [33–39]. The usual assumption in these studies is that a peer has a subset

of the training data on which a model can be learned locally. After learning the local models, algorithms

either aggregate the models to allow each peer to perform local prediction, or they assume that prediction is

performed in a distributed way. Clearly, distributed prediction is a lot more expensive than local prediction;

however, model aggregation is not needed, and there is more flexibility in the case of changing data. In our

approach we adopt the fully distributed model, where each node holds only one data record. In this case

we cannot talk about local learning: every aspect of the learning algorithm is inherently distributed. Since

we assume that data cannot be moved, the models need to visit data instead. In a setting like this, the main

problem we need to solve is to efficiently aggregate the various models that evolve slowly in the system so

as to speed up the convergence of prediction performance.

To the best of our knowledge there is no other learning approach designed to work in our fully asyn-

chronous and unreliable message passing model, and which is capable of producing a large array of state-

of-the-art models.

4 Gossip Learning: the Basic Idea

Algorithm 1 provides the skeleton of the gossip learning framework. The same algorithm is run at each

node in the network. The algorithm consists of an active loop of periodic activity, and a method to handle

incoming models. Based on every incoming model a new model is created potentially combining it with

the previous incoming model. This newly created model is stored in a cache of a fixed size. When the cache

is full, the model stored for the longest time is replaced by the newly added model. The cache provides a

pool of recent models that can be used to implement, for example, voting based prediction. We discuss this

possibility in Section 6. In the active loop the freshest model (the model added to the cache most recently)

is sent to a random peer.

We make no assumptions about either the synchrony of the loops at the different nodes or the reliability

of the messages. We do assume that the length of the period of the loop∆ is the same at all nodes. However,

during the evaluations ∆ was modeled as a normally distributed random variable with parameters µ = ∆
and σ2 = ∆/10. For simplicity, here we assume that the active loop is initiated at the same time at all the

nodes, and we do not consider any stopping criteria, so the loop runs indefinitely. The assumption about the

synchronized start allows us to focus on the convergence properties of the algorithm, but it is not a crucial

requirement in practical applications. In fact, randomly restarted loops actually help in following drifting

concepts and changing data, which is the subject of our ongoing work.

The algorithm contains abstract methods that can be implemented in different ways to obtain a concrete

learning algorithm. The main placeholders are SELECTPEER and CREATEMODEL. Method SELECTPEER

is the interface for the peer sampling service, as described in Section 3. Here we use the NEWSCAST
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Algorithm 2 CREATEMODEL: three implementations

1: procedure CREATEMODELRW(m1,m2)

2: return update(m1)

3: end procedure

4:

5: procedure CREATEMODELMU(m1,m2)

6: return update(merge(m1,m2))

7: end procedure

8: procedure CREATEMODELUM(m1,m2)

9: return merge(update(m1),update(m2))

10: end procedure

algorithm [26], which is a gossip-based implementation of peer sampling. We do not discuss NEWSCAST

here in detail, all we assume is that SELECTPEER() provides a uniform random sample of the peers without

creating any extra messages in the network, given that NEWSCAST gossip messages (that contain only a

few dozen network addresses) can piggyback gossip learning messages.

The core of the approach is CREATEMODEL. Its task is to create a new updated model based on locally

available information—the two models received most recently, and the local single training data record—to

be sent on to a random peer. Algorithm 2 lists three implementations that are still abstract. They represent

those three possible ways of breaking down the task that we will study in this paper.

The abstract method UPDATE represents the online learning algorithm—the second main component of

our framework besides peer sampling—that updates the model based on one example (the local example

of the node). Procedure CREATEMODELRW implements the case where models independently perform

random walks over the network. We will use this algorithm as a baseline.

The remaining two variants apply a method called MERGE, either before the update (MU) or after it

(UM). Method MERGE helps implement the third component: ensemble learning. A completely impracti-

cal example for an implementation of MERGE is the case where the model space consists of all the sets of

basic models of a certain type. Then MERGE can simply merge the two input sets, UPDATE can update all

the models in the set, and prediction can be implemented via, for example, majority voting (for classifica-

tion) or averaging the predictions (for regression). With this implementation, all nodes would collect an

exponentially increasing set of models, allowing for a much better prediction after a much shorter learning

time in general than based on a single model [21,22], although the learning history for the members of the

set would not be completely independent.

This implementation is of course impractical because the size of the messages in each cycle of the main

loop would increase exponentially. Our main contribution is to discuss and analyze a special case: linear

models. For linear models we will propose an algorithm where the message size can be kept constant, while

producing the same (or similar) behavior as the impractical implementation above. The subtle difference

between the MU and UM versions will also be discussed.

Let us close this section with a brief analysis of the cost of the algorithm in terms of computation and

communication. As of communication: each node in the network sends exactly one message in each ∆
time units. The size of the message depends on the selected hypothesis space; normally it contains the

parameters of a single model. In addition, the message also contains a small constant number of network

addresses as defined by the NEWSCAST protocol (typically around 20). The computational cost is one or

two update steps in each ∆ time units for the UM or the MU variants, respectively. The exact cost of this

step depends on the selected online learner.

5 Merging Linear Models through Averaging

The key observation we make is that in a linear hypothesis space, in certain cases voting-based prediction

is equivalent to a single prediction by the average of the models that participate in the voting. Furthermore,

updating a set of linear models and then averaging them is sometimes equivalent to averaging the models

first, and then updating the resulting single model. These observations are valid in a strict sense only in

special circumstances. However, our intuition is that even if this key observation holds only in a heuristic

sense, it still provides a valid heuristic explanation of the behavior of the resulting averaging-based merging

approach.
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In the following we first give an example of a case where there is a strict equivalence of averaging

and voting to illustrate the concept, and subsequently we discuss and analyze a practical and competitive

algorithm, where the correspondence of voting and averaging is only heuristic in nature.

5.1 The Adaline Perceptron

We consider here the Adaline perceptron [40] that arguably has one of the simplest update rules due to its

linear activation function. Without loss of generality, we ignore the bias term. The error function to be

optimized is defined as

Ex(w) =
1

2
(y − 〈w, x〉)2 (3)

where w is the linear model, and (x, y) is a training example (x,w ∈ R
n, y ∈ {−1, 1}). The gradient at w

for x is given by

∇w =
∂Ex(w)

∂w
= −(y − 〈w, x〉)x (4)

that defines the learning rule for (x, y) by

w(k+1) = w(k) + η(y − 〈w(k), x〉)x, (5)

where η is the learning rate. In this case it is a constant.

Now, let us assume that we are given a set of models w1, . . . , wm, and let us define w̄ = (w1 + . . .+
wm)/m. In the case of a regression problem, the prediction for a given point x and model w is 〈w, x〉. It is

not hard to see that

h(x) = 〈w̄, x〉 =
1

m
〈

m
∑

i=0

wi, x〉 =
1

m

m
∑

i=0

〈wi, x〉, (6)

which means that the voting-based prediction is equivalent to prediction based on the average model.

In the case of classification, the equivalence does not hold for all voting mechanisms. But it is easy to

verify that in the case of a weighted voting approach, where vote weights are given by |〈w, x〉|, and the

votes themselves are given by sgn〈w, x〉, the same equivalence holds:

h(x) = sgn(
1

m

m
∑

i=1

|〈w, x〉| sgn〈w, x〉) = sgn(
1

m

m
∑

i=1

〈wi, x〉) = sgn〈w̄, x〉. (7)

A similar approach to this weighted voting mechanism has been shown to improve the performance of

simple vote counting [41]. Our preliminary experiments also support this.

In a very similar manner, it can be shown that updating w̄ using an example (x, y) is equivalent to

updating all the individual models w1, . . . , wm and then taking the average:

w̄ + η(y − 〈w̄, x〉)x =
1

m

m
∑

i=1

wi + η(y − 〈wi, x〉)x. (8)

The above properties lead to a rather important observation. If we implement our gossip learning

skeleton using Adaline, as shown in Algorithm 3, then the resulting algorithm behaves exactly as if all the

models were simply stored and then forwarded, resulting in an exponentially increasing number of models

contained in each message, as described in Section 4. That is, averaging effectively reduces the exponential

message complexity to transmitting a single model in each cycle independently of time, yet we enjoy the

benefits of the aggressive, but impractical approach of simply replicating all the models and using voting

over them for prediction.

It should be mentioned that—even though the number of „virtual” models is growing exponentially

fast—the algorithm is not equivalent to bagging over an exponential number of independent models. In

each gossip cycle, there are only N independent updates occurring in the system overall (where N is the

number of nodes), and the effect of these updates is being aggregated rather efficiently. In fact, as we will

see in Section 6, bagging over N independent models actually outperforms the gossip learning algorithms.
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Algorithm 3 Pegasos and Adaline updates, initialization, and merging

1: procedure UPDATEPEGASOS(m)

2: m.t← m.t+ 1
3: η ← 1/(λ ·m.t)
4: if y 〈m.w, x〉 < 1 then

5: m.w ← (1− ηλ)m.w + ηyx
6: else

7: m.w ← (1− ηλ)m.w
8: end if

9: return m
10: end procedure

11:

12: procedure UPDATEADALINE(m)

13: m.w← m.w + η(y − 〈m.w, x〉)x
14: return m
15: end procedure

16: procedure INITMODEL

17: lastModel.t← 0
18: lastModel.w← (0, . . . , 0)T

19: modelCache.add(lastModel)

20: end procedure

21:

22: procedure MERGE(m1,m2)

23: m.t← max(m1.t,m2.t)
24: m.w← (m1.w +m2.w)/2
25: return m
26: end procedure

5.2 Pegasos

Here we discuss the adaptation of Pegasos (a linear SVM gradient method [18] used for classification)

into our gossip framework. The components required for the adaptation are shown in Algorithm 3, where

method UPDATEPEGASOS is simply taken from [18]. For a complete implementation of the framework,

one also needs to select an implementation of CREATEMODEL from Algorithm 2. In the following, the

three versions of a complete Pegasos-based implementation defined by these options will be referred to as

P2PEGASOSRW, P2PEGASOSMU, and P2PEGASOSUM.

The main difference between the Adaline perceptron and Pegasos is the context dependent update rule

that is different for correctly and incorrectly classified examples. Due to this difference, there is no strict

equivalence between averaging and voting, as in the case of the previous section. To see this, consider

two models, w1 and w2, and an example (x, y), and let w̄ = (w1 + w2)/2. In this case, updating w1 and

w2 first, and then averaging them results in the same model as updating w̄ if and only if both w1 and w2

classify x in the same way (correctly or incorrectly). This is because when updating w̄, we virtually update

both w1 and w2 in the same way, irrespective of how they classify x individually.

This seems to suggest that P2PEGASOSUM is a better choice. We will test this hypothesis experimen-

tally in Section 6, where we will show that, surprisingly, it is not always true. The reason could be that

P2PEGASOSMU and P2PEGASOSUM are in fact very similar when we consider the entire history of the

distributed computation, as opposed to a single update step. The histories of the models define a directed

acyclic graph (DAG), where the nodes are merging operations, and the edges correspond to the transfer

of a model from one node to another. In both cases, there is one update corresponding to each edge: the

only difference is whether the update occurs on the source node of the edge or on the target. Apart from

this, the edges of the DAG are the same for both methods. Hence we see that P2PEGASOSMU has the

favorable property that the updates that correspond to the incoming edges of a merge operation are done

using independent samples, while for P2PEGASOSUM they are performed with the same example. Thus,

P2PEGASOSMU guarantees a greater independence of the models.

In the following we present our theoretical results for both P2PEGASOSMU and P2PEGASOSUM.

We note that these results do not assume any coordination or synchronization; they are based on a fully

asynchronous communication model. First let us formally define the optimization problem at hand, and let

us introduce some notation.

Let S = {(xi, yi) : 1 ≤ i ≤ n, xi ∈ R
d, yi ∈ {+1,−1}} be a distributed training set with one data

point at each network node. Let f : Rd → R be the objective function of the SVM learning problem

8



(applying the L1 loss in the more general form proposed in Eq. (1)):

f(w) = min
w

λ

2
‖w‖2 +

1

n

∑

(x,y)∈S

ℓ(w; (x, y)),

where ℓ(w; (x, y)) = max{0, 1− y〈w, x〉}

(9)

Note that f is strongly convex with a parameter λ [18]. Let w⋆ denote the global optimum of f . For a fixed

data point (xi, yi) we define

fi(w) =
λ

2
‖w‖2 + ℓ(w; (xi, yi)), (10)

which is used to derive the update rule for the Pegasos algorithm. Obviously, fi is λ strongly convex as

well, since it has the same form as f with m = 1.

The update history of a model can be represented as a binary tree, where the nodes are models, and the

edges are defined by the direct ancestor relation. Let us denote the direct ancestors of w(i+1) as w
(i)
1 and

w
(i)
2 . These ancestors are averaged and then updated to obtain w(i+1) (assuming the MU variant). Let the

sequence w(0), . . . , w(t) be defined as the path in this history tree, for which

w(i) = argmax
w∈{w

(i)
1 ,w

(i)
2 }
‖w − w⋆‖, i = 0, . . . , t− 1. (11)

This sequence is well defined. Let (xi, yi) denote the training example, that was used in the update step

that resulted in w(i) in the series defined above.

Theorem 1 (P2PEGASOSMU convergence). We assume that (1) each node receives an incoming message

after any point in time within a finite time period (eventual update assumption), (2) there is a subgradient

∇ of the objective function such that ‖∇w‖ ≤ G for every w. Then,

1

t

t
∑

i=1

fi(w̄
(i))− fi(w

⋆) ≤
G2(log(t) + 1)

2λt
(12)

where w̄(i) = (w
(i)
1 + w

(i)
2 )/2.

Proof. During the running of the algorithm, let us pick any node on which at least one subgradient update

has been performed already. There is such a node eventually, due to the eventual update assumption. Let

the model currently stored at this node be w(t+1).

We know that w(t+1) = w̄(t) − ∇(t)/(λt), where w̄(t) = (w
(t)
1 + w

(t)
2 )/2 and where ∇(t) is the

subgradient of ft. From the λ-convexity of ft it follows that

ft(w̄
(t))− ft(w

⋆) +
λ

2
‖w̄(t) − w⋆‖2 ≤ 〈w̄(t) − w⋆,∇(t)〉. (13)

On the other hand, the following inequality is also true, following from the definition of w̄(t+1), G and

some algebraic rearrangements:

〈w̄(t) − w⋆,∇(t)〉 ≤
λt

2
‖w̄(t) − w⋆‖2 −

λt

2
‖w(t+1) − w⋆‖2 +

G2

2λt
. (14)

Moreover, we can bound the distance of w̄(t) from w⋆ with the distance of the ancestor of w̄(t) that is

further away from w⋆ with the help of the Cauchy–Bunyakovsky–Schwarz inequality:

‖w̄(t) − w⋆‖2 =

∥

∥

∥

∥

∥

w
(t)
1 − w⋆

2
+

w
(t)
2 − w⋆

2

∥

∥

∥

∥

∥

2

≤ ‖w(t) − w⋆‖2. (15)

From (13), (14), (15) and the bound on the subgradients, we derive

ft(w̄
(t))− ft(w

⋆) ≤
λ(t− 1)

2
‖w(t) − w⋆‖2 −

λt

2
‖w(t+1) − w⋆‖2 +

G2

2λt
. (16)

9



Note that this bound also holds for w(i), 1 ≤ i ≤ t. Summing up both sides of these t inequalities, we get

the following bound:

t
∑

i=1

fi(w̄
(i))− fi(w

⋆) ≤ −
λt

2
‖w(t+1) − w⋆‖2 +

G2

2λ

t
∑

i=1

1

i
≤

G2(log(t) + 1)

2λ
, (17)

from which the theorem follows after division by t.

The bound in (17) is analogous to the bound presented in [18] in the analysis of the PEGASOS algorithm.

It basically means that the average error tends to zero. To be able to show that the limit of the process is

the optimum of f , it is necessary that the samples involved in the series are uniform random samples [18].

Investigating the distribution of the samples is left to future work; but we believe that the distribution

closely approximates uniformity for a large t, given the uniform random peer sampling that is applied.

For P2PEGASOSUM, an almost identical derivation leads us to a similar result (omitted due to lack of

space).

6 Experimental Results

We experiment with two algorithms: P2PEGASOSUM and P2PEGASOSMU. In addition, to shed light

on the behavior of these algorithms, we include a number of baseline methods as well. To perform the

experiments, we used the PEERSIM event based P2P simulator [42].

6.1 Experimental Setup

Baseline Algorithms. The first baseline we use is P2PEGASOSRW. If there is no message drop or mes-

sage delay, then this is equivalent to the Pegasos algorithm, since in cycle t all peers will have models

that are the result of Pegasos learning on t random examples. In case of message delay and message drop

failures, the number of samples will be less than t, as a function of the drop probability and the delay.

We also examine two variants of weighted bagging. The first variant (WB1) is defined as

hWB1(x, t) = sgn(

N
∑

i=1

〈x,w
(t)
i 〉), (18)

where N is the number of nodes in the network, and the linear models w
(t)
i are learned with Pegasos over

an independent sample of size t of the training data. This baseline algorithm can be thought of as the ideal

utilization of the N independent updates performed in parallel by the N nodes in the network in each cycle.

The gossip framework introduces dependencies among the models, so its performance can be expected to

be worse.

In addition, in the gossip framework a node has influence from only 2t models on average in cycle t.
To account for this handicap, we also use a second version of weighted bagging (WB2):

hWB2(x) = sgn(

min(2t,N)
∑

i=1

〈x,wi〉). (19)

The weighted bagging variants described above are not practical alternatives, these algorithms serve

as a baseline only. The reason is that an actual implementation would require N independent models for

prediction. This could be achieved by P2PEGASOSRW with a distributed prediction, which would impose

a large cost and delay for every prediction. This could also be achieved by all nodes running up to O(N)
instances of P2PEGASOSRW, and using the O(N) local models for prediction; this is not feasible either.

In sum, the point that we want to make is that our gossip algorithm approximates WB2 quite well using

only a single message per node in each cycle, due to the technique of merging models.

The last baseline algorithm we experiment with is PERFECT MATCHING. In this algorithm we replace

the peer sampling component of the gossip framework: instead of all nodes picking random neighbors in

10



Table 1: The main properties of the data sets, and the prediction error (0-1 error) of the baseline sequential

algorithm. In the case of Malicious URLs dataset the results of the full feature set are shown in parentheses.

Reuters SpamBase Malicious URLs (10)

Training set size 2,000 4,140 2,155,622

Test set size 600 461 240,508

Number of features 9,947 57 10

Class label ratio 1,300:1,300 1,813:2,788 792,145:1,603,985

Pegasos 20,000 iter. 0.025 0.111 0.080 (0.081)

Algorithm 4 Local prediction procedures

1: procedure PREDICT(x)

2: w← modelCache.freshest()

3: return sign(〈w, x〉)
4: end procedure

5: procedure VOTEDPREDICT(x)

6: pRatio← 0
7: for m ∈ modelCache do

8: if sign(〈m.w, x〉) ≥ 0 then

9: pRatio← pRatio +1
10: end if

11: end for

12: return sign(pRatio/modelCache.size()−0.5)

13: end procedure

each cycle, we create a random perfect matching among the peers so that every peer receives exactly one

message. Our hypothesis was that—since this variant increases the efficiency of mixing—it will maintain a

higher diversity of models, and so a better performance can be expected due to the “virtual bagging” effect

we explained previously. Note that this algorithm is not intended to be practical either.

Data Sets. We used three different data sets: Reuters [43], Spambase, and the Malicious URLs [13] data

sets, which were obtained from the UCI database repository [44]. These data sets are of different types

including small and large sets containing a small or large number of features. Table 1 shows the main

properties of these data sets, as well as the prediction performance of the Pegasos algorithm.

The original Malicious URLs data set has a huge number of features (∼ 3,000,000), therefore we first

performed a feature reduction step so that we can carry out simulations. Note that the message size in our

algorithm depends on the number of features, therefore in a real application this step might also be useful

in such extreme cases. We applied the well-known correlation coefficient method for each feature with the

class label, and kept the ten features with the maximal absolute values. If necessary, this calculation can

also be carried out in a gossip-based fashion [7], but we performed it offline. The effect of this dramatic

reduction on the prediction performance is shown in Table 1, where Pegasos results on the full feature set

are shown in parenthesis.

Using the local models for prediction. An important aspect of our protocol is that every node has at

least one model available locally, and thus all the nodes can perform a prediction. Moreover, since the

nodes can remember the models that pass through them at no communication cost, we cheaply implement

a simple voting mechanism, where nodes will use more than one model to make predictions. Algorithm 4

shows the procedures used for prediction in the original case, and in the case of voting. Here the vector

x is the unseen example to be classified. In the case of linear models, the classification is simply the sign

of the inner product with the model, which essentially describes on which side of the hyperplane the given

point lies. In our experiments we used a cache of size 10.

Evaluation metric. The evaluation metric we focus on is prediction error. To measure prediction error,

we need to split the datasets into training sets and test sets. The proportions of this splitting are shown

in Table 1. In our experiments with P2PEGASOSMU and P2PEGASOSUM we track the misclassification

ratio over the test set of 100 randomly selected peers. The misclassification ratio of a model is simply the
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Figure 1: Experimental results without failure (upper row) and with extreme failure (lower row). AF means

all possible failures are modeled.

number of the misclassified test examples divided by the number of all test examples, which is the so called

0-1 error.

For the baseline algorithms we used all the available models for calculating the error rate, which equals

the number of training samples. From the Malicious URLs database we used only 10,000 examples selected

at random, to make the evaluation computationally feasible. Note, that we found that increasing the number

of examples beyond 10,000 does nor result in a noticeable difference in the observed behavior.

We also calculated the similarities between the models circulating in the network, using the cosine

similarity measure. We calculated the similarity between all pairs of models, and calculated the average.

This metric is useful to study the speed at which the actual models converge. Note that under uniform

sampling it is known that all models converge to an optimal model.

Modeling failure. In a set of experiments we model extreme message drop and message delay. Drop

probability is set to be 0.5. This can be considered an extremely large drop rate. Message delay is modeled

as a uniform random delay from the interval [∆, 10∆], where ∆ is the gossip period in Algorithm 1. This is

also an extreme delay, orders of magnitudes higher than what can be expected in a realistic scenario, except

if ∆ is very small. We also model realistic churn based on probabilistic models in [45]. Accordingly, we

approximate online session length with a lognormal distribution, and we approximate the parameters of the

distribution using a maximum likelihood estimate based on a trace from a private BitTorrent community

called FileList.org obtained from Delft University of Technology [46]. We set the offline session lengths

so that at any moment in time 90% of the peers are online. In addition, we assume that when a peer comes

back online, it retains its state that it had at the time of leaving the network.

6.2 Results and Discussion

The experimental results for prediction without local voting are shown in Figures 1 and 2. Note that all

variants can be mathematically proven to converge to the same result, so the difference is in convergence

speed only. Bagging can temporarily outperform a single instance of Pegasos, but after enough training

samples, all models become almost identical, so the advantage of voting disappears.

In Figure 1 we can see that our hypothesis about the relationship of the performance of the gossip

algorithms and the baselines is validated: the standalone Pegasos algorithm is the slowest, while the two

variants of weighted bagging are the fastest. P2PEGASOSMU approximates WB2 quite well, with some
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Figure 2: Prediction error (upper row) and model similarity (lower row) with PERFECT MATCHING and

P2PEGASOSUM.

delay, so we can use WB2 as a heuristic model of the behavior of the algorithm. Note that the convergence

is several orders of magnitude faster than that of Pegasos (the plots have a logarithmic scale).

Figure 1 also contains results from our extreme failure scenario. We can observe that the difference in

convergence speed is mostly accounted for by the increased message delay. The effect of the delay is that

all messages wait 5 cycles on average before being delivered, so the convergence is proportionally slower.

In addition, half of the messages get lost too, which adds another factor of about 2 to the convergence

speed. Apart from slowing down, the algorithms still converge to the correct value despite the extremely

unreliable environment, as was expected.

Figure 2 illustrates the difference between the UM and MU variants. Here we model no failures. In

Section 5.2 we pointed out that—although the UM version looks favorable when considering a single

node—when looking at the full history of the learning process P2PEGASOSMU maintains more indepen-

dence between the models. Indeed, the MU version clearly performs better according to our experiments.

We can also observe that the UM version shows a lower level of model similarity in the system, which

probably has to do with the slower convergence.

In Figure 2 we can see the performance of the perfect matching variant of P2PEGASOSMU as well.

Contrary to our expectations, perfect matching does not clearly improve performance, apart from the first

few cycles. It is also interesting to observe, that model similarity is correlated to prediction performance

also in this case. We also note, that in the case of the Adaline-based gossip learning implementation perfect

matching is clearly better than random peer sampling (not shown). This means that this behavior is due to

the context-dependence of the update rule discussed in 5.2.

The results with local voting are shown in Figure 3. The main conclusion is that voting results in a

significant improvement when applied along with P2PEGASOSRW, the learning algorithm that does not

apply merging. When merging is applied, the improvement is less dramatic. In the first few cycles, voting

can result in a slight degradation of performance. This could be expected, since the models in the local

caches are trained on fewer samples on average than the freshest model in the cache. Overall, since voting

is for free, it is advisable to use it.

7 Conclusions

We proposed gossip learning as a generic approach to learn models of fully distributed data in large scale

P2P systems. The basic idea of gossip learning is that many models perform a random walk over the

network, while being updated at every node they visit, and while being combined (merged) with other
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Figure 3: Experimental results applying local voting without failure (upper row) and with extreme failure

(lower row).

models they encounter. We presented an instantiation of gossip learning based on the Pegasos algorithm.

The algorithm was shown to be extremely robust to message drop and message delay, furthermore, a very

significant speedup was demonstrated w.r.t. the baseline Pegasos algorithm due to the model merging

technique and the prediction algorithm that is based on local voting.

The algorithm makes it possible to compute predictions locally at every node in the network at any

point in time, yet the message complexity is acceptable: every node sends one model in each gossip cycle.

The main features that differentiate this approach from related work are the focus on fully distributed data

and its modularity, generality, and simplicity.

An important promise of the approach is the support for privacy preservation, since data samples are

not observed directly. Although in this paper we did not focus on this aspect, it is easy to see that the

only feasible attack is the multiple forgery attack [47], where the local sample is guessed based on sending

specially crafted models to nodes and observing the result of the update step. This is very hard to do

even without any extra measures, given that models perform random walks based on local decisions, and

that merge operations are performed as well. This short informal reasoning motivates our ongoing work

towards understanding and enhancing the privacy-preserving properties of gossip learning.
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