
A Critical Note on Experimental Research
Methodology in EC

A.E. Eiben and Márk Jelasity
Department of Artificial Intelligence, Free University of Amsterdam

De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

Abstract— In this paper we point to some essential shortcomings in
contemporary practice in performing and documenting experimental re-
search in EC. We identify some crucial problems and the limitations of
this practice, and elaborate on research directions that should be pursued
to improve the quality and relevance of experimental research.

I. INTRODUCTION

T
HE aim of this paper is to deliver a contribution to im-
proving the commonly practiced experimental research

methodology within evolutionary computing. Our main goal
is to initiate a discussion about the means and ends of experi-
mental EC research. In the long term we hope that this discus-
sion will result in a widely accepted and practiced, sound re-
search methodology supporting research results that are better
founded and more relevant than today. Studying the literature
it is clear that there are already some publications that can be
related to various aspects of this subject. For the present treat-
ment we deliberately chose a “light” citation policy in order to
avoid the impression of an annotated bibliography and to em-
phasize the messages better, while acknowledging inspiring
contributions from fellow researchers. Furthermore, let us ex-
plicitly state that much of our criticism on the present practice
is applicable to some of our own work too.

We approach the methodology question here from the an-
gles of generalizability, performance measures, and repro-
ducibility. For an illustration of the nature of problems we
wish to address here let us consider the following imaginary
example of a paper representing common practice in experi-
mental EC research. (Note however, that our discussion will
not be restricted to this kind of papers.) The imaginary pa-
per proposes a new feature in EAs and shows the merits of
the new feature by experiments. The experimental section is
structured as follows:
1. A testbed of functions, respectively problem instances, is
specified.
2. The new EA and a “standard” EA are run on these func-
tions (problem instances).
3. The outcomes of the experiments are reported by present-
ing some performance measures in graphical or table form.
Thereafter, conclusions are drawn on the merits of the new
EA, arguing that the newly added feature – the main contribu-
tion of the paper – improves performance.

In Proc. of the 2002 Congress on Evolutionary Computation (CEC 2002),
IEEE, pp. 582–587.

A.E. Eiben: gusz@cs.vu.nl.
M. Jelasity: jelasity@cs.vu.nl, also at RGAI, Univ. of Szeged, Hungary

The problem with this imaginary paper, and with all others
it represents, is that:
1. The testbed of functions (problem instances) is chosen in
an ad hoc manner, without motivating the choices. For in-
stance, 15 functions are chosen from the literature with the
implicit suggestion that the selection criterion was “others use
these functions too”.
2. The outcomes are given in terms of some performance
measures, averages, standard deviations, etc., but these mea-
sures are used without relating them to the research objectives
and the expectations w.r.t. the investigated algorithms.
3. The conclusions are formulated in general, e.g., “the new
feature improves EA performance”. The authors do not re-
strict the scope of their claims to these test functions and sug-
gest that the claims hold for many other functions too, without
specifying what kind of functions.
4. The results are hard to reproduce, because many details of
the EAs are not explicitly specified and the source code is not
made available.

In the remainder of this paper we discuss these and other,
related problems. That is, we do not restrict the discussion
to this illustrative example, but adopt a more general context.
Section II concerns the issue of generalizability, correspond-
ing to items 1 and 3 in the previous list. Performance measures
and statistics are considered in section III, related to item 2
above, while section IV addresses related experimental objec-
tives. The issue of reproducibility is handled in section V. We
close the paper with a summary of the most important issues,
also carrying hints on further research.

II. GENERALIZATION OF RESULTS

The essence of empirical science is generalization, i.e. gen-
erating scientific knowledge from empirical data through in-
duction. The most important methodological issue is therefore
to establish a framework in which this process becomes pos-
sible.

Although a large part of evolutionary computing is mainly
empirical in nature, the present practice is more like fact
collection without real generalization. Progress in the last
decades into this direction seems to be only that the size of
test suites increased from 5 (the famous De Jong functions)
to twentysomething. The underlying hidden assumption was
that if EA-A performs better on such a test suite than EA-B
then EA-A is probably better in general. While it is true that
more data gives a more reliable picture, this increase in the
number of test functions is purely quantitative.



Probably the most straightforward idea towards a qualita-
tive improvement is to divide test functions into classes such
that functions within one class are similar and functions from
different classes are different. Then the generalization could
be performed w.r.t. these classes, e.g. one could state that EA-
A works better on problem class P than EA-B. Clearly, if we
could find a way that allows us to defend these kinds of state-
ments, we could:
• say more than simply establishing that EA-A outperforms
EA-B on 10 (arbitrarily) selected functions and
• clarify the scope of our results by making it explicit.
The second item is related to the wide-spread skepticism over
general-scope or undefined-scope claims which is a result
partly of the NFL theorem [1] debate and partly of the growing
evidence supporting the superiority of approaches that deploy
domain specific algorithmic components and/or representa-
tion.

The remaining part of this section elaborates on the issues
raised by the above paragraphs, i.e. on the possibilities of clas-
sification of problem instances and the proper justification of
inductive claims.

A. Problem Classes

Let us define an optimization problem instance as the prob-
lem of finding the minimum of a function f : F → R, where
F is called the search space or phenotype space. A prob-
lem class is a set of problem instances with a common search
space. For the sake of simplicity we exclude constrained prob-
lems and multicriteria problems but the discussion could have
been extended to these cases too.

To be useful for our purposes, a problem class should be
neither too general nor too specific. It should be general
enough for reasonable induction but specific enough to be
able to differentiate between algorithms or algorithm classes.
The instances within a class can be quite diverse but they
should have at least some common properties expressible by
some form of knowledge. One possibility is to find a specific
neighborhood relation that reflects the structure of the prob-
lem class, i.e. specific operators optimized for the problem
class or special representations.

Obviously, quite some research is needed to draw borders
between problem classes in a meaningful way. In the follow-
ing, we want to express caveats about careless usage of no-
tions.

A.1 Useless Classes

Unfortunately it is general practice to use inappropriate
class labels. One mistake is to use terms that were defined
for other purposes, like NP-hardness or the class of schedul-
ing problems. Another mistake is to use a given vocabulary
for composing classes that turn out to be inhomogeneous w.r.t.
EA behavior. In the following we will discuss three features
that prevent a class from being useful in EC research by the
following examples:
• The class of NP-hardness is irrelevant.
• The class of “scheduling problems” is too general.
• Some classes defined by a selection of function properties
are not distinguishing for EAs.

A.1.a NP-hardness. For a definition of NP-hardness see
e.g. [2]. This label is often used in the research literature to
suggest that a problem instance is hard. This is extremely mis-
leading because NP-hardness is not even a property of a prob-
lem, it is a property of problem classes! Furthermore, only an
infinite problem class can be NP-hard. We can think of this
property as a characterization of the infinite problem instance
size.

While useful in complexity theory this label is completely
meaningless in heuristic optimization. Note that sometimes
even the notion NP-complete is used which characterize de-
cision problems, not optimization problems. This adds yet
another mistake. Furthermore, if we consider a problem in-
stance from a problem class that is NP-hard we might very
well have a problem in question that is easy to solve.

Instead of using the label NP-hard it is advisable to turn
to theoretical results which exist for many NP-hard problem
classes describing which instances are really hard. This might
be a possible way to define meaningful and challenging prob-
lem classes. In Sections II-A.4 and II-A.3 we return to this
question.

A.1.b Scheduling problems. Anyone seriously involved in
solving real life scheduling problems would agree that there
is no such thing as a scheduling problem in general. Any
mathematical definition of a scheduling problem is too gen-
eral and turns out to be equivalent with almost everything else
(e.g. by resulting in an NP-hard class, see above) making in-
duction practically impossible. Claims like “my scheduling
algorithm is better in general” are therefore questionable. In
other words, the main problem of this class is that it is too
general to help meaningful induction.

Another well-known semi-practical problem to illustrate
this matter is that of graph coloring. While it sounds nar-
row enough to make up a meaningful problem class it is well-
known that specific features of the graphs to be colored have
a great impact on the hardness of instances within the sub-
classes defined by these features. Think, for instance, of flat
graphs, equipartiate graphs, etc., [3].

A.1.c Commonly used test suites. The importance of com-
posing proper test suites has been well noticed in EC [4].
Nevertheless, there has been not much effort in explicitly
addressing the appropriateness of the classes of test func-
tions resulting from the commonly used features, such as
(multi)modality, separability, etc. The few attempts into
this direction indicate that this vocabulary (and the problem
classes definable with this vocabulary) is inappropriate. For
instance, [5] explicitly aimed at relating EA behavior to prob-
lem classes defined along the traditional lines, but failed in
achieving this because the experiments showed significantly
different EA behavior within the classes in question. This,
and similar other experiences, strongly indicate that a new vo-
cabulary is needed to capture EC-relevant properties of test
functions.

A.2 Natural Classes

Classes of problem instances that emerge from a specific
real life situation we will call a natural class. For instance,



timetabling on a university or even on universities within a
country specifies a natural problem class. In our perception,
such a class conforms to our requirements to be useful (i.e.
general enough) because it emerges from a real situation even
if it consists of only a few instances. On the other hand suf-
ficient specificity normally follows from the particular con-
straints and circumstances that are present in a typical real life
setting.

A.3 Artificial Classes

Beside the natural classes it is a very interesting research
field to find artificial classes that are general enough for rea-
sonable induction but specific enough to be able to differen-
tiate between algorithms or algorithm classes. We list direc-
tions and motivations for such research:
1. Find hard or easy problem classes for specific algorithms.
This has been a flourishing field for many years. Finding hard
or easy (royal road) problems helps us justify our existing the-
ories of the behavior of algorithms and helps us develop new
theories.
2. Find classes that somehow capture properties of natural
classes (see Section II-A.2) while being easier to handle and
experiment with, and also easier to describe theoretically.
These classes would help develop and test algorithms that are
likely to work well on the corresponding natural class.
3. Find classes that are simply interesting because they have
the required balance between generality and specificity and
are able to differentiate between algorithms. They might be-
come useful later.

In case of artificial classes it must be shown that these
classes are indeed appropriate. In order to to this one could
develop a problem instance generator that generates instances
from the class in question. Then it could be demonstrated
that this class is relevant using any appropriate statistical and
experimental method. We do not intend to prescribe how it
should be done, but one example could be to show that an al-
gorithm can be tuned to perform better over the whole class
using statistical evidence.

An additional research field can aim at finding methods that
recognize instances of a class from some kind of sample from
the search space. Such methods (in the context of hard/easy
problem classes) have already been suggested. This way prop-
erties of natural classes could be identified in terms of already
existing and established artificial classes which would allow
selection of appropriate optimizers or techniques in a well
grounded way.

A.4 Problem instance generators

For some problems that have been the subjects of intensive
study in the algorithmic community there exist random prob-
lem instance generators that create instances from the class
in question. Typically such a generator needs a random seed
and some problem specific parameters to be set by the user.
A great advantage of such a generator is that is enables a sys-
tematic study: varying the given parameters algorithm behav-
ior can be related to problem features. Well-known examples
are graph coloring or 3SAT problems, where not only gener-

ators are available, but also the location of hard instances is
known in terms of the parameters of the given generator. The
collection of generators at [6] is a good initiative for example,
although experimental and/or theoretical justification of the
usefulness of the generators would be a desirable extension to
the list.

B. The Relationship of Algorithms and Problem Classes

Once a set of well established problem classes is available
(natural or artificial) scientific research has to clarify the re-
lationship between these classes and the different algorithms.
(Note that without well established problem classes it is not
possible.) The outcome of such research projects can be very
diverse. Some examples follow here: EA-A and EA-B are
equivalent over problem classes C1 . . . Cn; for problem class
C1 the best algorithm to date is EA-X; the best problem class
for algorithm EA-Y is C1; etc.

Such claims can make sense if the problem classes are well
established and the research is based on sound experimental
methodology and statistical methods. Again, it would be im-
possible to prescribe every way of doing proper experiments.
We give one example in Section II-B.1 and we discuss some
more theoretically oriented possibilities in Section II-B.2.

B.1 Learning the Best Algorithm

As an example we give a scenario for doing proper exper-
iments for finding the best parameter set for a given problem
class C1 for a given algorithm. This scenario is used in the ma-
chine leaning community for inductively find optimal models
of databases (i.e. knowledge):
• choose a number of functions (problem instances) from C1

for calibrating the algorithm: the training set,
• choose a number of different functions (problem instances)
from C1 for evaluating the algorithm: the test set,
• run the algorithm on functions (problem instances) from the
training set to calibrate (tune) the algorithm,
• run the calibrated versions of the algorithm on functions
(problem instances) from the test set,
• report the outcomes of the experiments on the test set,

This kind of techniques are widely used in machine learning
and are called wrapping [7]. The point is that the evaluation
is done on the test set and not the training set, which is not
common practice in the EA community. As a result of the
application of these techniques we gain much more reliable
indicators of a given algorithm on a given class. This idea can
be generalized to many more cases when we are interested in
the relationship between algorithms and problem classes.

B.2 Fitness Landscapes

A more theoretical approach is possible with the tools of
fitness landscape analysis. As we mentioned earlier the prob-
lem instances usually have landscapes as well. This is due
to the fact that the search space usually has some structure
in the form of a distance function or neighborhood relation.
This way the problem classes become in fact fitness landscape
classes. This offers a next level of abstraction when the ac-
tual details of a problem are ignored and only the landscape



is taken into account. The situation would be analogous to
calculus where e.g. continuity of real functions can be gener-
alized to any topological space. For an established problem
class one could try to characterize it in terms of landscapes.

An EA defines another landscape through the applied rep-
resentation and operators and maybe through other miscel-
laneous features like elitism, etc. This can be thought of as
a transformation of the landscape. A promising research di-
rection could be looking at successful algorithms for given
problem classes and trying to reverse engineer the way the al-
gorithm transforms the problem landscape.

These results might become directly applicable in practice
when and if the fitness landscape of a natural problem class
turns out to belong to a known landscape class. Then we could
apply off-the-shelf landscape transformations (i.e. algorithms)
with the appropriate operators and representation.

Of course a huge obstacle is the lack of powerful methods
to characterize landscapes from sampling data (either algo-
rithm trajectories or random samples). But it is not unlikely
that meaningful landscape classes could be found which could
be recognized using such methods with a sufficient reliability.
Especially if we are thinking of a long term solution when a
huge amount of data can be collected from a given landscape
while using less advanced algorithms on it.

III. PERFORMANCE MEASURES AND STATISTICS

Experimental comparisons of two (or more) evolutionary
algorithms – and the discussion in the foregoing sections –
assume the usage of some algorithm performance measures.
Claims on ranking algorithms are always meant as claims on
ranking their performances. By the stochastic nature of EAs
a number of experiments needs to be conducted to gain suffi-
cient experimental data and performance measures within EC
are based on some statistics. In this section we discuss perfor-
mance measures and their usage, emphasizing that their usage
and the interpretation of results should follow the goals pur-
sued with the EAs in question.

A. Different performance measures

For problems where the (optimal) solution can be recog-
nized one can easily define a success criterion: finding an (op-
timal) solution. For this type of problems the Success Rate
(SR) measure can be defined as the percentage of runs termi-
nating with success. For problems, where the optimal solu-
tions cannot be recognized, the SR measure cannot be used.
In general, this is the case if the optimum of the objective
function is unknown, perhaps not even a lower/upper bound
is available. As an example, think of a university timetabling
problem.

The Mean Best Fitness measure (MBF) can be defined for
any problem that is tackled with an EA – after all any EA is
using a fitness measure. For each run of a given EA the best
fitness can be defined as the fitness of the best individual at
termination. The MBF is the average of the these best fitness
values over all runs.

Note, that although SR and MBF are related, they are dif-
ferent and there is no general advice on which one to use for

algorithm comparison. The difference between the two mea-
sures is rather obvious, SR cannot be defined in a meaningful
way for some problems, while the MBF is always a sound
measure. Furthermore, all possible combinations of low/high
SR/MBF values can occur. For example, low SR and high
MBF is possible and it indicates a good approximizer algo-
rithm: it gets close consistently, but seldomly really makes it.
Such an outcome could motivate increasing the length of the
runs hoping that this allows the algorithm to finish the search.
An opposite combination of a high SR and low MBF is also
possible indicating a “Murphy” algorithm: if it goes wrong it
goes very wrong. That is, those few runs that terminate with-
out an (optimal) solution end in a disaster, a very bad best
fitness value deteriorating MBF. Clearly, whether the first or
the second type of algorithm behavior is preferable, depends
on the problem. As mentioned above, for a timetabling prob-
lem the SR measure is not even meaningful, so one is inter-
ested in a high MBF. To demonstrate the other situation, think
of solving the 3SAT problem with the number of unsatisfied
clauses as fitness measure. In this case a high SR is pursued,
since the MBF measure – although formally correct – is use-
less because the number of unsatisfied clauses at termination
says, in general, very little about how close the EA got to a
solution. Notice, however, that the particular application ob-
jectives (coming from the original problem solving context)
might necessitate a refinement of this picture. For instance, if
the 3SAT problems to be solved represent practical problems
with some tolerance for a solution, then measuring MBF and
striving for a good MBF value might be appropriate.

For both aforementioned measures it is assumed that they
are taken under an a priori specified limit of computational ef-
forts. That is, SR and MBF always reflect performance within
a fixed (maximum) amount of computing. The complemen-
tary approach is to specify when a candidate solution is sat-
isfactory and measure the amount of computing needed to
achieve this solution quality. Roughly speaking, this is the is-
sue of algorithm speed. Within EC algorithm execution times
are typically measured by the number of evaluations, rather
then CPU times or system times. Clearly, this is meant to
eliminate effects of particular implementations, software, and
hardware, thus making comparisons independent from such
practical details. The corresponding speed measure is the Av-
erage number of Evaluations to a Solution (AES), defined over
those runs that terminate with a solution (a candidate with
satisfactory quality). Sometimes the average number of eval-
uations to termination measure is used instead of the AES,
but this has clear disadvantages. Namely, for runs finding no
solutions the specified maximum number of evaluations will
be used when calculating this average. Hereby, this measure
mixes the AES and the SR measures and the outcome figures
are hard to interpret. Using the AES measure generally gives
a fair comparison of algorithm speed, assuming that all fitness
evaluations cost the same amount of computing and that fit-
ness evaluations consume most of the execution time of the
algorithm. Hence, AES can be misleading in two cases. First,
if some evaluations take longer than others. For instance, if
a repair mechanism is applied, then evaluations invoking this



repair take (much) longer. An EA with good variation opera-
tors could then proceed by chromosomes that do not have to
be repaired, while another EA my need much repair. The AES
values of the two may be close, but the second EA would be
much slower, and this is not an artifact of the implementation,
etc. The second case is, when evaluations can be done very
fast. Then the AES does not reflect algorithm speed correctly,
for other components of the EA have a relatively large impact.

Algorithm speed, or rather the pace of progress, can be also
measured in cases where one cannot specify satisfactory solu-
tion quality in advance. In these cases the best (worst/average)
fitness value of the consecutive populations is plotted against a
time axis – typically the number of generations or fitness eval-
uations. Clearly, such a plot provides much more information
than the AES and therefore it can also be used when a clear
success criterion is available. In particular, a progress plot
can help ranking two algorithms that score the same on AES.
For example, progress curves might disclose that algorithm A
has achieved the desired quality already halfway of the run.
Then the maximum number of evaluations might be lowered
and the competition redone. The chance is high that algo-
rithm A keeps its performance, e.g., its MBF, and algorithm B
does not, thus a well-motivated preference can be formulated.
Another possible difference between progress curves of algo-
rithms can be the steepness towards the end of the run. If, for
instance, curve A has already flattened out, but curve B did
not, one might extend the runs. The chance is high that B will
make further progress in the extra time, but A will not, thus
again, the two algorithms can be distinguished.

B. Peak vs. average performance

For some performance measures (not for all of them) there
is an additional question whether one is interested in peak per-
formance or average performance considered over all these
experiments. In EC it is typical to suggest that algorithm A is
better than algorithm B if its average performance is better. In
practical applications, however, one is often interested in the
best solution found in X runs or within Y days (peak perfor-
mance), and the average performance is not that relevant. To
be more precise, assume that the algorithm under investigation
is meant to solve real-life problems. The type of problems and
the context these problems arise from have implications for
the typical problem solving session where the algorithms are
applied. Then the following cases can be distinguished.
1. In a problem solving session there is time for more runs on
the given problem and the final solution can be selected from
the best solutions of these runs. For instance, creating the
timetables for a university might take a few weeks, allowing,
say, 25 runs of the GA doing the job. In this case an algorithm
setup with high peak performance is appropriate even if its
average performance is not too good.
2. In a problem solving session there is only time for one run
that must deliver the solution. This might be the case if a
computationally expensive simulation is needed to calculate
fitness values, or a real-time application. For this kind of prob-
lems an algorithm with high average performance is the best
option, since this carries the lowest risk of missing the only

chance we have.

Notice that the first kind of problem solving seems to be
the most frequently occurring one in practice. In this light, it
is strange that the huge majority of experimental EC research
is comparing average performances of algorithms.

B.1 Example

What we consider here is the interpretation of figures con-
cerning averages and standard deviations. In EC it is com-
mon to express preferences for algorithms with better aver-
ages for a given performance measure, e.g., higher MBF or
lower AES, especially if a better average is coupled to a lower
standard deviation. This attitude is never discussed, but it
is less self-evident than it might seem. The key is again to
consider the objectives of applying the algorithms. Remain-
ing with the timetabling example assume that two algorithms
are compared based on 50 independent runs and the resulting
MBF results that are given in figure 1. Then it is tempting to

-50
51-60

61-70
71-80

81-90
91-100

Alg A

Alg B

0

5

10

15

20

25

30

N
r.

 o
f 

ru
ns

 e
nd

in
g 

w
it

h 
th

is
 f

it
ne

ss

Best fitness at term ination 

Perform ance of algorithm s

Alg A

Alg B

Fig. 1. Comparing algorithms by the best found fitness values

conclude that algorithm A is better because of the (slightly)
higher MBF and the more consequent behavior (lower vari-
ation in best fitness values at termination). Notice, however,
that 6 runs of algorithm B terminated with a solution qual-
ity algorithm A has never achieved. Therefore, if a typical
problem solving session allows 50 runs of the given EAs, then
algorithm B is preferable because of the higher chance of de-
livering a better time-table. Obviously, this reasoning can be
applied to any problem or problem context, where peak per-
formance is desirable.

This discussion of performance measures is far from ex-
hausting. However, it is sufficient to illustrate the point that
for a sound comparison it is necessary to specify the objec-
tives of the algorithms in the light of some problem solving
context and derive the performance measures used for com-
parison from these objectives. In other words, the choice of
how we evaluate and compare EAs should be a consequence
of what we want the EAs to do.



IV. EXPERIMENT OBJECTIVES

Throughout this paper we have not made an explicit dis-
tinction between possible goals of experimentation. Roughly
speaking we can distinguish two such goals: optimizing and
understanding algorithms.

Optimizing is the commonly practiced sport of designing an
EA that beats others on a given problem or set of problems.
This kind of experimental research finishes with establishing
the fact of the superiority of a given EA. This is a fully legit-
imate research programme, our discussion so far implies two
caveats:
1. The scope of claims regarding algorithm superiority must
be established carefully – see section II.
2. The usage performance measures and the interpretation of
statistics should not be done blindly, but according to how the
algorithm will be used – see section III.

A research programme aiming at understanding goes fur-
ther than fact finding. In particular, it is not limited to es-
tablishing that an EA is better than another, but also inves-
tigates why. Very often, developing a good understanding is
also meant to serve for (later) optimization, but only implic-
itly. To name a simple example we can take one problem
class and one EA variant, for instance a bit-string GA, still
having many degrees of freedom in the exact algorithm setup
by various operators, selection mechanisms, and population
sizes. Trying to understand how different combinations of al-
gorithm features influence algorithm behavior needs a careful
design of experiments, because the brute force approach of
trying all combinations is not practicable. We will not go into
general principles of experiment design, good treatments of
this subject can be found for instance in [8], [9]. Here we only
note that in this case the weaponry of algorithm performance
measures is extended with indicators of algorithm behavior.
The leading question behind such indicators is “What hap-
pens during execution?”, rather than “How far can we get?”.
Commonly used indicators include population distribution in
the phenotype space, allele distribution in the genotype space,
progress rates during execution and alike.

V. REPRODUCIBILITY OF RESULTS

Verifying results found in the literature is in practice almost
impossible. That is, running a reportedly good algorithm on
one’s own data is a difficult task. The details presented in a
typical paper are insufficient to ensure that one would imple-
ment the same algorithm. To overcome this difficulty there are
more possibilities. The one we advocate here is a rather ide-
alistic solution: standardization of code. In particular, devel-
oping and using a standardized evolutionary algorithm library
would be a double edged sword. On the one hand, individ-
ual researchers would be freed from implementing algorithms
from scratch. Coding a new EA could be restricted to writing
the code for the newly invented features with the guarantee
that the rest of the code is thoroughly tested and works cor-
rectly. On the other hand, fellow researchers, thus the whole
EC community, would have a simple way of reproducing the
experiments. If they use the same library the new code can be
fetched from the author’s electronic repository and tested on

one’s own problems in one’s own environment.

VI. CONCLUDING REMARKS

In this paper we have discussed various aspects of current
practice in experimental research within evolutionary comput-
ing. Briefly summarizing we touched upon the following is-
sues.
• Investigations are not targeted at acquiring generalizable
knowledge. The “wrapping approach” from machine learning
should be imported into EC to improve the inductive power of
results.
• Well-defined and appropriate problem classes (that are nec-
essary to follow the “wrapping approach”) are lacking. Inten-
sive research efforts are needed to develop such classes for EC
research.
• Objectives of the experimentation and the studied algo-
rithms should be explicit. Performance measures and statistics
should be used in line with these objectives.
• Reproducibility of experiments and verification of others’
results should be improved.

We are well aware of the fact that our treatment is not exten-
sive. We do not consider all problems and we do not provide
ready solutions to the problems we do discuss. However, we
hope to initiate more awareness concerning these issues and
in general about the lack of a solid experimental methodology
in EC. The discussions and follow-up publications we wish to
trigger will hopefully lead to a widely accepted and practiced,
sound research methodology supporting research results that
are better founded and more relevant than today.

ACKNOWLEDGMENTS

The authors are indepted to Ben Paechter for his valuable
comments on earlier versions of this paper.

REFERENCES

[1] David H. Wolpert and William G. Macready, “No free lunch theorems
for optimization,” IEEE Transactions on Evolutionary Computation, vol.
1, no. 1, pp. 67–82, Apr. 1997.

[2] Martin Grötschel, László Lovász, and Alexander Schrijver, Geometric
Algorithms and Combinatorial Optimization, Springer-Verlag, 2nd edi-
tion, 1993.

[3] E.P.K. Tsang, Foundations of Constraint Satisfaction, Academic Press
Limited, 1993.

[4] Thomas Bäck and Zbigniew Michalewicz, “Test landscapes,” in Hand-
book of Evolutionary Computation, Thomas Bäck, David B. Fogel, and
Zbigniew Michalewicz, Eds., pp. B.2.7:14–B.2.7:20. Institute of Physics
Publishing and Oxford University Press, 1997.

[5] Agoston E. Eiben and Thomas Bäck, “An empirical investigation of
multi-parent recombination operators in evolution strategies,” Evolution-
ary Computation, vol. 5, no. 3, pp. 347–365, 1997.

[6] William M. Spears, “Genetic algorithms (evolutionary algorithms):
Repository of test problem generators,” http://www.cs.uwyo.edu/
˜wspears/generators.html.

[7] Ron Kohavi and George H. John, “The wrapper approach,” in Fea-
ture Extraction, Construction and Selection: A Data Mining Perspective,
Huan Liu and Hiroshi Motoda, Eds., vol. 453 of The Kluwer Interna-
tional Series in Engineering and Computer Science. Kluwer, 1998.

[8] Richard S. Barr, Bruce L. Goldena, James P. Kelly, Mauricio G.C. Re-
sende, and William R. Stewart, Jr, “Designing and reporting on compu-
tational experiments with heuristic methods,” Journal of Heuristics, vol.
1, no. 1, pp. 9–32, 1995.

[9] J. N. Hooker, “Testing heuristics: We have it all wrong,” Journal of
Heuristics, vol. 1, no. 1, pp. 33–42, 1995.


