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jelasity@inf.u-szeged.hu
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Abstract- Characterization of trajectory structure of fit-
ness landscapes is a major problem of evolutionary com-
putation theory. In this paper a hardness measure of fit-
ness landscapes will be introduced which is based on sta-
tistical properties of trajectories. These properties are
approximated with the help of a heuristic based on the
transition probabilities between the elements of the search
space. This makes it possible to compute the measure for
some well-known functions: a ridge function, a long path
function, a fully deceptive function and a combinatorial
problem: the subset sum problem. Using the same tran-
sition probabilities the expected number of evaluations
needed to reach the global optimum from any point in
the space are approximated and examined for the above
problems.

1 Introduction

This paper is concerned with the characterization of fitness
landscapes w.r.t. optimizers that use a stochastic hill-climbing
heuristic. Members of the field of evolutionary computation
belong to this class of optimizers. The definition of hardness,
maybe the most important feature of a landscape is far from
clear (see [NK98] for a summary of the available measures)
so we need to clarify the problem we would like to tackle.

1.1 Theory or Practice?

The first question is whether one would like to give a method
for characterizing fitness functions in practice i.e. a method
which can be used to make predictions on interesting exist-
ing (maybe black box) problems or one would like to gain
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theoretical insights of the working of the optimizer.
In the first case the method needs to run fast; preferably

faster than the optimizer itself otherwise it would be easier to
run the optimizer and see what happens. There are attempts
to give such practically useful measures like those based on
the observed trajectories of several runs with some fixed set
of parameters [Kal98]. These approaches are useful for e.g.
studying the effects of certain parameter settings but from a
theoretical point of view they have their limitations especially
in the case of black box functions. The main problem is that
these methods do not take the whole search space into account
but instead only a very small fraction of it; one needs to know
at least the global optimum to give a useful characterization.
The two well-known measures: fitness distance correlation
(FDC) [JF95] and epistasis variance [Dav91] do not belong
to this first class; both need to know all the solutions in or-
der to make predictions. If based only on a relatively small
sample these measures can be highly misleading as described
in [NK98] and as confirmed by our own experience.

Theoretically motivated measures need not be computed
efficiently but they should be capable of providing a charac-
terization of easy and hard functions and maybe useful in sug-
gesting constructed easy and hard problems. While the char-
acterization suggested here belongs to this class, techniques
will be suggested that make it possible to examine relatively
small problems empirically.

1.2 Multimodality

Another question is multimodality. The main criterion of suc-
cess seems to be finding the global optimum. This practice
has serious drawbacks however. The first is that there can be
multiple global optima that may be arbitrarily far from each
other which makes the original FDC meaningless. This prob-
lem is not serious since it is possible to choose the distance
from the closest global optimum. The more serious problem
is that in engineering practice where evolutionary computa-



tion has its main applications it is not always necessary to
find a global optimum. Intuitively, it is enough to find so-
lutions that are judged good enough by the engineers. This
means that local optima are not simply obstacles in the way
of success; their distribution and the structure of their attrac-
tion areas are essential from the point of view of problem
characterization.

For example if a function has a unique global maximum
that is a “needle in the haystack” but in the same time it has
another local optimum which is almost as good as the global
one but it has a large area of attraction then this function
should be characterized as fairly easy. However, both FDC
and epistasis variance would predict that it is a hard problem
if the global and local optima are far from each other. Our
approach emphasizes the role of the local optima.

1.3 One Number?

The practice of searching for a single number as a measure
of problem hardness is is similar to the efforts of psychol-
ogists to characterize human intelligence with a single IQ.
Both have the drawback of oversimplification. Our approach
emphasizes the role of the interpretation of certain figures and
our measure of difficulty is in fact a function of the stopping
criterion of the search but is it possible to take other factors
into account as well.

1.4 The Idea

The basic idea is to examine the trajectories of the space w.r.t.
a given operator and stopping criterion. The ending points of
these trajectories form a very interesting set: these are the
points the search is expected to converge to. Statistical mea-
sures over this set w.r.t. some properties such as fitness or
probability of being the result of the search are the best can-
didates for being a hardness measure. In this paper a measure
of this kind will be suggested.

There are practical problems when such measures have to
be computed since a huge amount of calculation is needed.
As it was mentioned, it would be possible to obtain the tra-
jectories of the search by running the algorithm and collect-
ing the history of the process. Our approach is different. We
define transition probabilities between the elements of the
space. These values define the probability of every possi-
ble trajectory and also they make it possible to identify the
points the algorithm is accepted to converge to. A heuris-
tic for approximating the number of trajectories leading to a
given point will be given and statistical measures based on
this data will provide the hardness measure.

Based on these transition probabilities it is also possible
to approximate the expected number of evaluations needed to
get from a point to a given other point. This values can be
used as distance measures and plots can be drawn that depict
the convergence relations.

2 Basic Notions

This section introduces a model of stochastic hill-climbing
search. This model will be used in two ways. The first ap-
plication is an iteration formula used for approximating the
expected number of steps of reaching the global optimum or
any set of solutions from a point of the search space. The
second and maybe more original application is to charac-
terize fitness functions using the notion of endpoints. Let
S = {s1, s2, . . . , sM} be the search space. Let us fix S to
be the binary space {0, 1}l.

2.1 A novel distance notion

Let us define an ordering of the solutions as was done
in [Vos91].
Definition 1 We say that si ≤ sj iff f(si) ≤ f(sj), where f
is an arbitrary fitness function of type S → IR. This means
that sM is a global optimum.

For every mutation operator the probability of getting
from a given solution to another one can be given. For ex-
ample the operator of the stochastic hill-climber is that every
bit in the solution is flipped with a given t probability. In this
case the probability of getting from a given solution to an-
other one is td(1 − t)l−d, where d is the number of different
bits and l is the length of the solutions. This model is used in
this paper. However, any mutation or other genetic operator
can be chosen.

Let Pr
(j)
ik denote the probability of getting from sj to sk

via the application of the mutation operator j times. This
notation is important for the main iteration formula. First of
all we have to compute the values Pr

(1)
ik for every index. Let

si and sk be solutions, let the probability of flipping a bit be
t, let the Hamming distance between si and sk be d and let
the length of a bit string be l. Then

Pr
(1)
ik =







td(1 − t)l−d iff si < sk
∑

si≥sk
td(1 − t)l−d iff i = k

0 otherwise.
(1)

Note that the case i = k is very important, because Pr
(1)
ii de-

notes the probability of no motion, i.e. the sum of the prob-
abilities of constructing a worse solution by the mutation op-
erator. The only exception is the case i = M , because at this
point we have reached the global optimum and that is the end
of the search, so we choose Pr

(1)
MM = 0. This guarantees

that the following iteration formula will measure the distance
from the global optimum appropriately. Pr

(j)
iM is computed

by the following iteration formula:

Pr
(j)
iM = Pr

(1)
ii Pr

(j−1)
iM +

∑

sk>si

Pr
(1)
ik Pr

(j−1)
kM , (2)

where j = 2, 3, . . .. This formula means that Pr
(j)
iM is the

probability of getting from si to the global optimum in j
steps. If i = M i.e. the solution is the global optimum then



Pr
(j)
MM need not be computed because it is 0. The expected

value of the number of steps from a solution to the global
maximum is given by the limes of the series

E
(j)
iM = E

(j−1)
iM + jPr

(j)
iM (j = 2, 3, . . .). (3)

This formula gives a new distance notion for the stochastic
hill-climbing search which is in fact the expected number of
function evaluations. This distance is more expensive to cal-
culate than the Hamming distance, which is the basis of the
FDC, but it provides more accurate and more informative re-
sults. In the numerical experiments the following formula
was used for checking convergence:

jPr
(j)
iM < (j − 1)Pr

(j−1)
iM and jPr

(j)
iM < ε. (4)

Note that if the expected number of steps is zero then the
solution at hand is a global optimum or the global optimum
cannot be reached at all. The later is not possible with the
operator we are using.

2.2 Endpoints

Our definition of endpoints is motivated by the very simple
though quite common stopping criterion: if the best solution
does not improve after a given number of evaluations then the
program will stop. A solution will be called an endpoint if it
is not expected to improve in a given number of steps.
Definition 2 si is endpoint if P

(1)
ii is greater than a given

bound (near 1).
Note that a given bound K corresponds to a stopping criterion
of 1/(1 − K) steps without improvement. Also note that the
set of endpoints depends on this parameter; the parameter of
the stopping criterion. The notion of endpoints depends only
on the transition probabilities just like the expected number
of evaluations.

Though the notion of endpoints is independent from the
calculation of the expected number of evaluations, it is pos-
sible to generalize our above formulas to handle the set of
endpoints instead of the global optima alone. Let Z denote
the set of the endpoints. Then

Pr
(j)
iZ =

∑

z∈Z

(

Pr
(1)
ii Pr

(j−1)
iz +

∑

sk>si

Pr
(1)
ik Pr

(j−1)
kz

)

, (5)

where j = 2, 3, . . . . Note that in this case Pr
(1)
zi (z ∈ Z)

is set to 0 for all si ∈ S, similarly to the case of the global
optimum in Eq. (1). Eq. (3) is changed to

E
(j)
iZ = E

(j−1)
iZ + jPr

(j)
iZ (j = 2, 3, . . .). (6)

Note that Eq. (5) gives the probability of reaching one of the
endpoints from si in j steps and Eq. (6) gives the expected
value of the number of steps from a solution to an endpoint.

Endpoints are essential since they are the possible re-
sults of the search. This motivates our approach that statis-
tical measures of certain properties of these endpoints are the

best candidates for being a good hardness measure. Clearly
Eq. (6) says nothing about a given endpoint, only about the
set of endpoints while the most important question is: what
is the probability of reaching a given endpoint starting from
a random element of the space? This probability can be ap-
proximated using the transition probabilities which define a
weighted graph over the search space S. Let us determine
a spanning forest in this graph in the following way: let the
roots of the trees be the endpoints and for every other point
let us select the outgoing edge (transition) with the highest
probability. It is easy to see that this method provides us with
a spanning tree with a maximal weight in O(S) time. Note
that the edges of these trees point towards their roots.

The endpoints of a given function describe the expected
results of the stochastic hill-climber. The probability of
reaching a given endpoint can now be approximated with the
proportion of the points of the tree rooted from the given point
in S. For instance if |S| = 100 and the tree of a given end-
point contains 10 points then we say that the probability of
reaching that endpoint is 0.1. Using this probabilities it is
possible to approximate the average fitness of the results of
multiple optimization runs. This values can be compared to
the actual observed values as will be done in Section 3.3.

It is also possible to characterize the deceptiveness of the
problem with these probabilities. Let us introduce our decep-
tiveness coefficient, a number from [0, 1], which is based on
the notion of endpoints.
Definition 3 Let BK be a set of bounds (minimal transition
probabilities as parameters of being an endpoint) from [a, 1)
where 0 < a for a given bound K ∈ BK . Let Fmin be the
minimum, Fmax be the maximum of the fitness of endpoints,
and let E be the expected value of fitness. Let

sK = 1 −
E − Fmin

Fmax − Fmin

.

If Fmax−Fmin = 0 then let sK be 0. Then the deceptiveness
coefficient is the mean value of sK , where K takes the values
of BK .
This number characterizes the problems: 1 indicates that the
problem is misleading, 0 means that it is very friendly. In
section 3 this coefficient will be shown for some well-known
problems. Note that this coefficient depends on a set of pa-
rameters. It is possible to give a coefficient for every stopping
criterion by using the one element set containing the bound
corresponding to that criterion.

3 Empirical results

In this section our method will be demonstrated via empiri-
cal results. A stochastic hill-climber was used with the same
operator which has been mentioned in the section 2. First,
a survey will be given of the studied functions and some ex-
planation on how to read the iteration and the other figures.
Finally our heuristic for determining the probabilities of the
endpoints will be validated via some empirical results.



3.1 Studied functions

Some well-known functions have been examined with our
method. These are the Ridge function, the Long Path prob-
lem, Liepins and Vose fully deceptive problem and the Subset
Sum problem. The iteration figures (figures that show the ex-
pected number of evaluations for the space) will be shown for
these functions and the deceptiveness coefficient will also be
discussed. Note that in the iteration figures noise has been
added to the distances and fitnesses so that identical points
can be distinguished. For all the examined problems size was
set to 10 bits and the probability of the mutation operator of
the hill-climber was 0.1.

3.1.1 Ridge function

Ridge functions were introduced by Quick, Rayward-Smith
and Smith in [QRSS98]. In our experiments a 10-bit version
was used. FDC predicts that ridge functions are very mislead-
ing while the hill-climber and the GA easily solves the func-
tion. Our results show that this function is easy. The ridge
function hasn’t got local optima as it is shown in the iteration
figure. The iteration stopped after 488 steps, so the iteration
figure shows that from every point in the search space the
global maximum can be reached in 250 steps.
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Figure 1: The iteration figure of the 10 bit Ridge function

The iteration figure shows that there is a path in the search
space, as follows from the construction of the ridge function.
On the other hand, the points which are not on the path were
gathered at the beginning of it. It is also clear that from an
arbitrary point the global maximum can be reached only via
walking through the path.

Let us examine the deceptiveness figure with respect to
the number of endpoints. Obviously, from bound 1 to 0.96
there is only one endpoint, the global maximum so it is pre-
dicted that the hill-climber always finds the global optimum.
One can easily see that when the bound is 0.96 there are only
two endpoints and every other point tends to the worst one.
This is why the deceptiveness is 1. When the bound is un-
der 0.96 the number of the endpoints suddenly starts to grow,
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Figure 2: The deceptiveness figure and the number of end-
points of the 10 bit Ridge function

because all the points on the path become endpoints. This is
the explanation of the jump of deceptiveness since as it has
been mentioned the search process walks trough the path so
most of the points tend to the beginning of it. Additional de-
creasing of the bound has essentially no effect on the value
of deceptiveness because independently of the new endpoints
all the remaining points tend to the beginning of the path.

Note that our coefficient which depends on the stopping
criterion clearly shows that the friendliness of the ridge func-
tion as claimed by [QRSS98] heavily depends on the stop-
ping criterion; the allowed probability of staying in place has
to exceed 0.96 to make the problem friendly.

3.1.2 Long Path

Long Path problem is introduced by Horn, Goldberg and Deb
in [HGD94]. This problem was constructed to be difficult
for the hill-climber. First of all, note that the problem size
was set to 11 bits, because this function is defined as odd bits
problem. In this case formula (3) converged after 1257 steps
for all the points.

The iteration figure clearly reflects the structure of this
problem, surely there is a long path. In the case when some
points with low fitness are closer to the global optimum than
points which are at the beginning of the path show that these
points do not have to walk through the path, they are able
to jump into it. It is interesting that the shape of the path is
not linear. It means that inside the path bigger steps can be
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Figure 3: The iteration figure of the Long Path problem

taken i.e. there are shortcuts. Recall that the interpretation of
our plots is essentially different from the interpretation of the
FDC plots. In our case the distance is the expected number
of evaluations for reaching the optimum from the given point
and this distance is not a direct function of the encoding alone
as in the case of Hamming distance. This is why the structure
of the plot indicates shortcuts why a similar structure in an
FDC plot would simply indicate deceptiveness.

In figure 4 from bound 1 to 0.96 the situation is the same
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Figure 4: The deceptiveness figure and the number of end-
points of the Long Path problem

as with the ridge function. Under 0.96 the points of the path
gradually become endpoints. The deceptiveness of the func-
tion in the area where the points of the long path become end-
points as the bound decreases is lower than in the case of the
ridge function. This is due to the above mentioned shortcuts.
When all the points of the path become endpoints there is no
significant change anymore. Note that since in this case the
path is longer than the path of the ridge function deceptive-
ness does not increase as fast. The other interesting result to
note is that our figures clearly show the structural similarity
between the long path and the ridge function.

3.1.3 Liepins and Vose fully deceptive function

This problem was introduced in [LV91]. This function is fully
deceptive. There is one global optimum and a local one. The
global optimum is fairly independent of the whole structure
of the function so no trajectories converge to it. The only
possibility to find it is blind coin tossing.

If there is only one endpoint, the global maximum, then
Eq. (3) converges for none of the points after 20000 iteration
steps. It means that from all points of the search space the
global optimum is unreachable under these conditions. That
is why the iteration figure is meaningless though is clear that
the points are very far from the optimum. For this reason
Eqs. (5) and (6) were used.
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Figure 5: The generalized iteration figure of the Liepins and
Vose function

The generalized iteration formula with bound 0.999 re-
sults in figure 5. There are two endpoints, the global and the
local optimum. In this case all points convergent after 215
iteration steps, so it is clear that all points can easily reach the
endpoints.

Examining the deceptiveness figure it is obvious that all
points tend to the local optimum, even if the number of end-
points grows. It can be seen that this function is consistently
deceptive independently of the stopping criterion (at least in
the range we examined).
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Figure 6: The deceptiveness figure and the number of end-
points of the Liepins and Vose function

3.1.4 Subset Sum problem

The subset sum problem is a combinatorial optimization
problem. In this problem we are given a set W =
{w1, . . . , wn} of n integers and a large integer N . We would
like to find a V ⊆ W such that the sum of the elements in V
is closest to N . For more details see [KBH93]. We examined
a 10 bit problem here.

Unlike the previous functions this is a highly multimodal
function as it can be seen in the iteration figure. There
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Figure 7: The iteration figure of the Subset Sum problem

are many points with high fitnesses which are far from the
global optimum. Note that there are few points for which the
formula had not converge, but the iteration figure correctly
shows the structure of this function. Note that in this case the
maximum iteration of formula (3) was 3000 and 1005 points
converged. Let us note again that although the FDC plot of
the subset sum problem is very similar in this case it does not
mean that it means the same.

Let us examine the deceptiveness figure. Deceptiveness
never goes above 0.5 so it shows that although this problem
has many local optima most of the points tend to the end-
points with good fitness. Note that there are also large fallings
and jumps because of the few endpoints, but the deviation of
the deceptiveness is very little. So in this case the deceptive-
ness coefficient is very informative. An important observa-
tion about the figure of the number of endpoints is that in this
case the number of endpoints grows smoothly. This is the
reason why in the deceptiveness figure there is no plateau.

These results are in agreement with earlier investiga-
tions concerning the subset sum problem (e.g. [Jel97]
and [KBH93]) where it was found that the problem is easy
(with the suggested encoding and with the applied test prob-
lem generation method) and according to our earlier results
the subset sum problem indeed has an enormous number of
relatively good local optima and these local optima can be
very far from each other.
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Figure 8: The deceptiveness figure and the number of end-
points of the Subset Sum problem



3.2 Discussion

This section gives a guide on how to read the figures in gen-
eral. First notice that iteration figures are not correlation fig-
ures so the information shown by them is only indirectly re-
lated to our figures based in the approximated expected num-
ber of evaluation (referred to as iteration figures). If the itera-
tion formulas converge for all points then the horizontal axis
of the iteration figure shows the expected value of the steps
from a given solution to the global optimum (or the set of
endpoints). The structure of the plot is not necessarily impor-
tant e.g. it is not necessarily good to have a linear form like in
the case of FDC. However if there are many points with good
fitness far from the global optimum then the given function
has many good quality local optima.

The figure showing the deceptiveness coefficient as a func-
tion of the stopping criterion is very interesting. First of all it
should be noted that the coefficient is most informative if the
deviation is small. If the number of endpoints is small then
the deviation may be large since as additional endpoints jump
in with the decreasing bound the value of the coefficient may
be altered significantly. However most of the real problems
behave like the subset sum problem i.e. they have many good
local optima. On the other hand, regions with small deviation
carry much information about the structure of the problem;
the sudden change of the deception coefficient in the case of
the ridge and long path problems is related to their special
structure.

function dec.coeff. deviation
Ridge 0.63 0.46
Long Path 0.46 0.36
Liepins and Vose 0.973 0.018
Subset Sum 0.33 0.046

Table 1: The deceptiveness and its standard deviation for the
studied functions

Table 1 shows the deceptiveness coefficient and its stan-
dard deviation for the studied functions. It can be observed
that in the case of the fully deceptive problem the result is cor-
rect and the same can be said about the Subset Sum problem.
However, in the case of the other two functions these values
are not so informative because of the large deviation but here
the deceptiveness as the function of stopping criterion still
accurately shows the structure of the space.

Finally note that according to this measure the ideal func-
tion is the constant function. This is quite evident since in
that case we can reach the global optimum with zero evalua-
tions with any kind of parameter setting. Strangely enough,
there is a tendency among the known measures to regard the
constant function as hard. FDC and the measure suggested
in [NK98] are good examples. This is related to the obser-
vation that plateaus are hard for hill-climbers and if a partial
sample of the space contains similar elements then the prob-
lem can be expected to be hard. However if the plateaus have
good fitness then why would it be a problem to get stuck in

them?

3.3 Validation of the Model

In this subsection we have a look at that the expected value
of fitness as predicted by the same heuristic used for calculat-
ing the deceptiveness coefficient as was mentioned in section
2. For every bound the averages of 500 hill-climber runs are
shown.

In figure 9 it can be seen that the sudden performance
growth predicted by the spanning forest over the transition
probability graph is not followed by the hill-climber. Note
that at the sudden growth of the prediction the standard devi-
ation of the average results of the hill-climber is very large.

On the other hand in the case of the Subset Sum problem
the prediction coincides with the real result. This is related
to the fact that in this case the number of the endpoints de-
creases smoothly with the increasing bound. In the case of
the Liepins and Vose function the predictions follow the ob-
served behavior. These plots show that the heuristic used for
determining the weights of the endpoints is valid since using
the weights the weighted sum of the fitnesses of the endpoints
predict the result of the hill-climber quite well.

4 Summary

In this paper we suggested that the hardness measures of
functions should take the local optima into account. The sug-
gested measure is based on the fitnesses and weights of end-
points, the solutions to which the optimizer can be expected
to converge. The weight is the probability that the optimizer
will converge to the given point if started from a random so-
lution. This measure depends on the stopping criterion of the
optimizer since the set of endpoints depends on this parame-
ter.

A heuristic was also suggested for calculating this coeffi-
cient. The time complexity of the method is O(|S|2) so only
relatively small spaces can be considered. This method in-
volves the calculation of the transition probabilities between
solutions w.r.t. an operator. These transition probabilities
were used also for approximating the expected number of
evaluations needed to reach the global optimum and plots
were presented showing these values for several spaces.

In general if the number of relatively good local optima
is large then this measure seems to be reliable but if this is
not true then the behavior of the coefficient as a function of
the stopping criterion still carries a lot of information about
the function at hand. A possible source of problems can be
if the deviation of the fitnesses of the endpoints is too small
since the coefficient is relative to the minimal and maximal
fitness of the set of endpoints. This problem can be solved if
the lowest acceptable fitness is given as a parameter.
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Figure 9: The prediction versus the results of the hill-climber
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