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Abstract Privacy preserving algorithms allow several participants to com-
pute a global function collaboratively without revealing local information to
each other. Examples of applications include trust management, collabora-
tive filtering, and ranking algorithms such as PageRank. Most solutions that
can be proven to be privacy preserving theoretically are not appropriate for
highly unreliable, large scale, distributed environments such as peer-to-peer
networks because they either require centralized components, or a high degree
of synchronism among the participants. At the same time, in peer-to-peer net-
works privacy preservation is becoming a key requirement. Here, we propose
an asynchronous privacy preserving communication layer for an important
class of iterative computations in peer-to-peer networks, where each peer pe-
riodically computes a linear combination of data stored at its neighbors. Our
algorithm tolerates realistic rates of message drop and delay, and node churn,
and has a low communication overhead. We perform simulation experiments
to compare our algorithm to related work. The problem we use as an exam-
ple is power iteration (a method used to calculate the dominant eigenvector
of a matrix), since eigenvector computation is at the core of several practical
applications. We demonstrate that our novel algorithm also converges in the
presence of realistic node churn, message drop rates and message delay, even
when previous synchronized solutions are able to make almost no progress.

Keywords asynchrony · churn · power iteration · privacy preservation · P2P

Final version published in Computing 94(8-10):763–782, 2012, doi:10.1007/s00607-012-0200-
5

J.A.M. Naranjo and L. G. Casado
Dept. of Computer Architecture and Electronics, University of Almería,
Agrifood Campus of International Excellence (ceiA3), Spain
Telephone: +34 950 214393, E-mail: jmn843@ual.es

Márk Jelasity
University of Szeged, and Hungarian Acad. Sci., Research Group on AI, Hungary



2 J.A.M. Naranjo et al.

1 Introduction

Large scale fully distributed networked systems are becoming more and more
widespread. Examples include peer-to-peer systems, sensor networks, smart
power grids, pervasive systems, and more recently, networks of people with
smart phones. High performance computing and even multi-core computing
architectures increasingly resemble these systems as well, as the number of
computing elements is scaling up.

In these systems many useful functions can be implemented through global
computations based on local attributes of the nodes. Some examples of the
extensive literature on the topic include algorithms for data aggregation [16,
18, 26], spectral analysis [19], trust management [17], and distributed ranking
and data mining [6,10,25]. These algorithms can simply monitor a system, or
they can be used for control and optimization as well.

These networks face two important challenges. The first is that in any
application, synchronization is a potential source of major performance and
reliability issues. The reason is that in a large scale system there will always
be nodes that fail, which makes synchronization points very complicated to
implement. In addition, with synchronization load balancing becomes a ma-
jor issue. The advantages of asynchronous algorithms have long been known
(see [11] for a survey) and in the systems we target they are the only viable
alternative. The second challenge is the unreliability of communication. Failing
nodes can cause synchronization, load balancing, and reliability problems, but
unreliable communication channels (for example, if a message can get lost un-
detected) can cause numerical inaccuracies, deadlocks, and other inconsistent
behavior as well.

At the same time, the aspect of privacy preservation has been receiving
increasing attention in recent years, due to legal and ethical concerns with the
practice of the IT industry of collecting and analyzing vast amounts of personal
data centrally. Peer-to-peer (P2P) networks are viewed as natural candidates
for providing an alternative to centrally managed databases of user profiles
and user behavior.

P2P networks are characterized by their large scale, and their extreme
dynamism and unreliability. Computing global functions is already a challenge
in these systems, but achieving an acceptable degree of privacy as well is
even more complicated. In particular, if we wish to achieve a provable, non-
stochastic, level of security, then the inherent unreliability of a P2P network
that might involve nodes joining and leaving, and messages that are lost and
delayed is a key factor to consider.

Privacy preservation has long been an active area of research in data min-
ing [2, 20] and security [29]. A common approach to privacy preserving data
mining involves adding noise to data records in such a way that noise is can-
celed out in the final result. In this paper, we seek a stronger sense of pri-
vacy based on cryptographic primitives that provide provable guarantees in
well-specified circumstances. Cryptographic approaches often involve features
that make them unsuitable for P2P networks, such as relying on a centralized
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component, extensive communication involving all nodes, a large overhead to
achieve privacy, or a requirement for synchronization. The nearest approach
to our work was proposed by Bickson et al [5]. However, their algorithm also
suffers from a number of drawbacks related to flexibility and synchronization.

The class of computations we tackle consists of iterative algorithms that
rely on calculating a linear combination of values at neighboring nodes in each
iteration. Our contribution is twofold: (1) we present a privacy preserving al-
gorithm for distributed iteration that is extremely fault tolerant and has a
low privacy-related overhead and (2) we evaluate the algorithm experimen-
tally using the power method as an example, where we demonstrate that the
algorithm tolerates realistic message drop rates and message delay, unlike syn-
chronized solutions, and show that it converges in the presence of churn as
well.

The outline of the paper is as follows. After discussing related work in Sec-
tion 2, Sections 3 and 4 introduce the background and the motivation for our
work. Section 5 describes our proposed algorithm and discusses its properties.
Next, the strength of the privacy we provide is discussed in Section 6. Sec-
tion 7 presents experimental results for different failure scenarios. Section 8
concludes the paper.

2 Related work

Techniques for privacy preservation have been summarized in several good
surveys [1,2,20]. Privacy preserving algorithms are often distributed, since the
point is to avoid collecting data to a central location. Clifton et al presented
an early conceptual framework that identified primitives for creating privacy
preserving distributed data processing algorithms [8] based on secret sharing
schemes [30]. The primitives described include sum, set intersection and set
union computations. These primitives can be combined to implement a large
number of different algorithms.

Out of these primitives, computing the sum securely has received a lot
of attention. For example, He et al [14] study global sum computation in
wireless sensor networks. However, they do not achieve full asynchronism and
node churn is not addressed either. Besides, their algorithm is not iterative in
nature. Das et al [9] focus on sum computations in P2P networks. The solution
they propose is similar to ours in that nodes can adjust their desired level of
privacy. However, it is not fully asynchronous as message loss and node churn
have not been taken into account.

Despite their potential applications mentioned in the Introduction, fully
distributed privacy preserving iterative computing has not yet been studied
very widely. Iterative computations can be implemented in a surprisingly fault
tolerant way [11, 21]. A large class of such computations can also be imple-
mented using sum as a primitive operation; this time in a local sense: nodes
calculate the sum of the values of their neighbors, or in general a separable
function of the neighbor values [24]. As mentioned above, the only study in
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this area we are aware of was published by Bickson et al [5, 7]. Their solution
can cope with message loss to some degree, but it cannot tolerate high failure
rates and node churn.

3 Background

We assume that we are given a set of N nodes. The nodes communicate by
exchanging messages. In order to send a message, the sender node needs to
know only the network address of the target node. The messages can be lost
or delayed. Each node can send a message to any other node provided that the
address of the target is known. We assume that each node is known by at least
k other nodes. The “knows about” relation defines a directed overlay network.
From now on, when we refer to the network, we mean the overlay network
of N nodes defined above. The overlay network is assumed to be dynamic:
nodes can leave but they are assumed to rejoin eventually remembering their
previous state and neighbors.

We assume that each node i has a variable xi, and that each overlay link
(i, j) is assigned a weight wij . First, at each node i we would like to compute
the sum ∑

j∈IN [i]

wjixj , (1)

in a privacy preserving way, where IN [i] is the set of in-neighbors of i. We
also define OUT [i] as the set of out-neighbors of i. By computing the sum in
a privacy preserving way we mean that we require that the private value xj

for each node j remains a secret, that is, no other node in the network will
learn this value during the computation, yet the correct sum is computed and
becomes known to node i only.

Once we are able to compute this sum, we can compute global functions,
with additional assumptions. For example, if these sums are computed it-
eratively in a synchronized fashion, then we can implement many iterative
methods including one for solving linear systems of equations or finding the
dominant eigenvector of the matrix W = [wij ]

N
i,j=1 [13]. For example, the

well-known power method [3] for calculating the dominant eigenvector of W
is based on the iteration defined by

x
(t+1)
i =

∑

j∈IN [i]

wjix
(t)
j , (2)

where the vector [x
(t)
i ]Ni=1 converges to the dominant eigenvector of W under

very mild conditions provided that the spectral radius of W is 1. Several key
algorithms—including PageRank—rely on finding the dominant eigenvector of
an appropriate matrix [4].

If we relax the assumption on synchronization, then many of the algorithms
mentioned above can still be executed in a rather simple way, under very
similar conditions [11,15,21]. This is a crucial point, because in P2P networks
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it is essential to apply asynchronous methods. However, not all approaches for
implementing privacy preservation tolerate asynchronism equally well. Our
contribution lies in supporting asynchronous methods.

Let us now define a few basic concepts taken from cryptography that will be
used to propose a privacy preserving layer for the problem above. The notion
of k-out-of-n secret sharing (k ≤ n) refers to a method that is used to share a
secret with n nodes in such a way that any subset of k nodes can recover the
secret by combining the information they have, but no subset of at most k− 1
nodes is able to do so. One example is Shamir’s secret sharing [27]: let node
i have a secret s ∈ F , where F is any algebraic field. Node i first generates
k−1 random coefficients a1, . . . , ak−1 to define the random polynomial P (x) =
s+a1x+ · · ·+ak−1x

k−1 over F . Note that P (0) = s, so the polynomial can be
used to recover the secret. Now, node i can send the value of the polynomial
at different random points to n different nodes. For example, if nodes have
a unique ID from F , then node j can receive P (j). It is clear from algebra
that any k nodes can determine the original coefficients of the polynomial via
interpolating it using their point-value pairs, hence they can recover the secret.
It is also easy to see that any k − 1 nodes will have no information about the
secret at all.

Finally, we let the adversary model be the so-called semi-honest adversary
model, a common assumption in cryptography literature [12]. In this model it
is assumed that the nodes follow the protocol, but the adversary has access to
the internal state of corrupted nodes as well as all the messages they receive.
It is important to note that here adversaries are not assumed to have the
power to eavesdrop on arbitrary overlay links without corrupting nodes. This
is not a crucial restriction, since secure messaging using asymmetric encryption
eliminates eavesdropping.

4 How to Share the Secret?

Our motivation is to propose an efficient and scalable algorithm that tolerates
realistic failure scenarios. The algorithm that most closely fulfills our goal was
proposed by Bickson et al [5, 7]. In this section, we compare this algorithm
with our novel proposal.

Bickson et al compute the sum in (1) based on Shamir’s secret sharing
scheme. From now on, we call their algorithm the SSS method. We note that
although the SSS method has been extended to cope with malicious adversaries
[7], it has not been extended to deal with the realistic failure models we target
in this paper, so we discuss the version presented in [5].

As mentioned above, the SSS algorithm is based on Shamir’s secret sharing
algorithm. Let us assume that we need to compute (1), and node i has |IN [i]| =
n neighbors. Let us pick a constant k ≤ n, which will define the strength of the
scheme. The SSS algorithm requires each j ∈ IN [i] to first share its value wjixj

with all the other neighbors of i using the k-out-of-n Shamir’s secret sharing
scheme. As a result, a node j ∈ IN [i] will receive the values P1(j), . . . , Pn(j)
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from the other neighbors of i, where Pl is the polynomial generated by node
l. Now, let us define polynomial P of degree k − 1 by

P (x) =
∑

l∈IN [i]

Pl(x) (3)

The key observation is that P (0) equals the sum in (1). Furthermore, a node

j ∈ IN [i] can compute P (j) locally. In the final step, all the neighbors of i send
P (j) to node i. This allows node i to interpolate polynomial P (if at least k

messages are received), and then to find the sum in (1) by calculating P (0).

The algorithm tolerates the loss of up to |IN [i]| − k messages to node i

containing values P (j), but each in-neighbor j of i must receive every share
sent to it by all the other in-neighbors of i in order to be able to send a correct
P (j) value to i.

The message complexity of the above scheme is O(n2 + n) for each node

because all the possible pairs of nodes in the set IN [i] have to communicate
with each other, and then they all send a message to node i. Furthermore,
the neighbors of node i have to agree on a common value of k. Nodes are not
allowed to make unilateral decisions to, for example, increase or decrease k to
adapt to observed failure scenarios. In general, any change in parameter values
has to be agreed on in the neighbor-set of each node.

Apart from having to agree on a common parameter k, the members of a
neighbor set IN [i] have to agree on group membership as well. A node cannot
make a unilateral decision on joining or leaving the group. Any change in the
membership has to be communicated and agreed on by the group, since the
correctness of the protocol crucially depends on all nodes expecting input from
the same set of nodes; otherwise it cannot be guaranteed that all nodes send
an evaluation of the same polynomial P to node i.

The basic idea behind our proposal is to apply a k-out-of-k secret sharing
scheme based on splitting the secret value into a random sum [22]. That is, for
a secret s ∈ F , let the first k−1 shares be random elements of F : s1, . . . , sk−1 ∈
F , and let

sk = s−

k−1∑

i=1

si. (4)

We can apply this scheme as a privacy layer to calculate (1) similarly to
Shamir’s secret sharing: all the neighbors of i send shares of their secret value
to other neighbors of i, these are then summed up and sent to i. In the final
step, node i simply needs to sum all messages it receives. This way we can
relax many assumptions of SSS. For example, now every node j ∈ IN [i] can
set its own value of k, since nodes in IN [i] no longer need to collect input from
the same set of nodes. Also, each node j ∈ IN [i] may choose a different set of
share recipients.

We apparently pay a price for this increased flexibility: we lose some of the
redundancy in the final step, when the neighbors of i send their summaries to
i, since all the neighbor messages have to reach node i, while in SSS it was
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sufficient to receive k out of n neighbor messages. However, in reality, the sum-
splitting scheme is more robust. To see this, one has to take into account every
message that must be delivered successfully, not only those that are sent in the
final step, since the overall message complexity determines the probability of a
successful round. The message complexity of the splitting-based secret sharing
algorithm in one round is O(nk + n), while for SSS it is O(n2 + n). If k ≈ n

then the robustness of the two schemes are similar. If k ≪ n then O(nk + n)
is much more favorable than O(n2 +n) so, despite the reduced redundancy in
the final step, the significantly fewer messages that have to pass through mean
more robustness to benign failure overall. For the sake of completeness, we
should mention that in our complete final algorithm O(n) additional control
messages are sent in one round as well, but this does not affect the above
conclusion.

Most importantly, our secret sharing approach allows us to support fully
chaotic asynchronous iterations. Asynchronism is desirable, because achiev-
ing strictly synchronous rounds of updates in highly unreliable environments
is extremely difficult and expensive, especially in the presence of churn. An
asynchronous iteration method does not rely on rounds, instead, each mes-
sage can be processed independently. Such an adaptation is possible only if
the iterative numerical computation that is being implemented also supports
asynchronism [11, 15, 21]. But this is not enough: the secret sharing scheme
also has to be flexible enough to fully support the asynchronous version of the
computation.

The sum-splitting secret sharing scheme meets this requirement owing to
the following property: any share can be computed from the secret value and
the subset of the other k − 1 shares. This allows node j to recompute sk
whenever its secret value changes without refreshing the rest of the shares. In
addition, any node can change any of its secret shares without changing the
remaining shares.

In contrast to this, polynomial interpolation as used in SSS is less com-
patible with asynchronism because the value of the polynomial computed by
each node directly depends on all the secret values. As a change in any se-
cret value or any random coefficient in the neighborhood of node i affects all
the neighbors, it is clear that a complete round has to be executed after any
change.

5 Implementing Power Iteration

From now on, we concentrate on power iteration (see (2)), and we present
our asynchronous algorithm in this context. For other numerical methods that
support asynchronism, like those that solve systems of linear equations, the
same method is applicable with trivial modifications. The implementation is
based on the asynchronous method of Lubachevsky and Mitra [21].

We first introduce some notations to express the ideas presented in the
previous section in this context, and then we describe the protocol. Let us
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pick a node j ∈ IN [i]. As mentioned before, node j will have to use the k-
out-of-k secret sharing method based on random sums. For this, node j needs
a set of collaborators from IN [i]. The size and composition of this set can be
freely chosen by node j. Let us denote this collaborator set by OC [ji] ⊆ IN [i]

(out-collaborators).
According to the random sum secret sharing method, node j generates a

random share s[jαi] for each α ∈ OC [ji]. The value s[jαi] will be shared with
node α, while node j keeps

m[ji] = wjixj −
∑

α∈OC [ji]

s[jαi]. (5)

This equation is equivalent to (4) using our new notation.
During the iteration, s[jαi] has to be occasionally changed to maintain

security. It is up to node j when it changes these values (that is, when it
generates new ones); all nodes can do this independently. Since we assume
there is no synchronization, we assign a version number t to the shares, and

we use the notation s
[jαi]
t . From now on, when the version number t is omitted

from the notation, we assume t is the latest existing version.
Node j can also be part of the collaborator group of other nodes from IN [i].

We denote the set of nodes that have node j in their collaborator group by
IC [ji] (in-collaborators). That is, IC [ji] = {β | j ∈ OC [βi]}. Assuming that

both IC [ji] and OC [ji] are available at node j, as well as the random shares
from all the nodes in IC [ji], node j can compute

M [ji] = m[ji] +
∑

β∈IC [ji]

s[βji] = wjixj −
∑

α∈OC [ji]

s[jαi] +
∑

β∈IC [ji]

s[βji], (6)

which is the value that must be sent to node i. If we could guarantee that
there is no delay or message loss, and that all nodes have completely up-to-
date information about the secret shares, then node i could simply compute

xi =
∑

j∈IN [i]

M [ji] =
∑

j∈IN [i]

wjixj (7)

to update its own state according to the power iteration.
Figure 1 illustrates one round of the synchronous version of the commu-

nication scheme we propose, using the notation defined above. Let us assume
nodes {2, 3, 4, 5} = IN [1] want to share a linear combination of their private
values with node 1. The left part of the figure depicts the nodes sending ran-
dom shares to other randomly chosen in-neighbors of 1. Note that the number
of shares, i.e., the value of k, can be different for every node. The right part
of the figure shows the nodes sending the final messages to 1. Node 1 simply
adds these final messages to obtain the linear combination.

However, we do assume that there is delay, message loss, and churn, so it
is not guaranteed that the information that reaches node i is consistent: secret
shares that belong to a given node can have different version numbers, or the
collaborator set views could be inconsistent at different members of the set.
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(a) (b)

Fig. 1: Communication during the sum-splitting scheme.

To handle this problem, node j has to send additional information along
with M [ji] to make it possible to check the consistency at node i, so node j

also sends two sets to node i:

LOC [ji] = {(j, α, t) | α ∈ OC [ji]} (8)

LIC [ji] = {(β, j, t) | β ∈ IC [ji]}, (9)

where j, α, β, t are taken from s
[jαi]
t and s

[βji]
t . Based on these sets, node i will

update its value according to (7) only if the following condition is satisfied:

⋃

j∈IN [i]

LOC [ji] =
⋃

j∈IN [i]

LIC [ji], (10)

which expresses the fact that all collaborator groups are consistent, and use
the same version of the secret shares.

Due to our unreliable message passing model, node j needs proof that a
given out-collaborator l actually uses the latest share that it was sent. Out-
collaborators can be offline, and messages can get lost or delayed. If node j

incorrectly assumes that node l uses the latest version of the share, then the
iteration will not progress due to inconsistency. For this reason, node j requires
proof that a new share was delivered and at least one message with this share
has reached node i, before actually switching to the latest version.

Note that this proof is needed on a node-by-node basis, hence we need no
consensus among the collaborators. In fact, it is typical that a different number
of share-updates are performed by node j with different collaborators. This
also means that if node l has not actually received the new share, node j will
not switch, and the iteration will progress, even if node l is offline.
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To provide proof, in each round, node i sends back all active share-parameters
that involve j. That is, node i sends back the set of triplets (j, α, t) and (β, j, t)
that refer to j. Hence, j can now check which version of the shares are effec-
tively in use. If the version of some of the shares is not the latest, node j

resends the corresponding shares. We call the above set of triplets a checklist,
and will denote it by CH [ji].

5.1 Algorithm Description

After having introduced the notations and the basic ideas, we can now elab-
orate on the algorithm, which is based on asynchronous message passing. We
specify three types of messages:

Type 1 (random share): node j ∈ IN [i] sends s
[jαi]
t to node α ∈ OC [ji].

Type 2 (checklist): node i sends to j ∈ IN [i] two sets,

CH
[ji]
t = {(j, α, t) ∈

⋃

α∈IN [i]

LIC [αi], (β, j, t) ∈
⋃

β∈IN [i]

LOC [βi]},

and

online_nodes
[i]
t = {γ ∈ IN [i], that i believes to be online},

Type 3: node j ∈ IN [i] sends V
[ji]
t = (M [ji],LOC [ji],LIC [ji]) to node i.

Note that the subscripts t do not necessarily refer to the same value, they
are relative to the entity they index. In the case of Type 2 and Type 3 messages
a sequence number t is added so that nodes can drop delayed out-of-order

messages. In s
[jαi]
t the index t denotes the active version number. The set

online_nodes
[i] is maintained by each node i based on recording the senders

of recently received messages. In a Type 2 message, node i sends this set to
node j.

All the nodes execute the same algorithm. At every node, the algorithm
is divided in two threads that run in parallel. The active thread is mainly in
charge of sending information to other nodes, while a passive thread waits
for incoming messages and reacts accordingly. One of the tasks of the passive
thread is to update the secret state of the node when a Type 3 message arrives
and the conditions for updating are satisfied. Note that the updating frequency
of the secret state is only determined by incoming messages and that it has
no influence on the sending rate.

The algorithm at a node j takes as input the local structure of the com-
munication graph (the overlay network), that is, OUT [j], IN [i] and wji for all

nodes i ∈ OUT [j], where wji is the link weight. In addition, node j has an
initial secret value xj , and a period ∆ that determines the frequency of the
execution of the loop in the active thread. Note that all the nodes could in
principle select a different ∆ or they could execute their active thread even
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Algorithm 1 async. privacy preserving power method, active thread

1. for-each node λ ∈ IN [j] #initialize incoming type 3 msgs
2. V [λj] ← (0, {}, {}, timestamp)
3. choose random s_timeout [ji] and a randomly sized set of nodes OC [ji] ∈ IN [i]

4. for-each node α ∈ OC [ji] #send shares

5. send type 1 msg (s
[jαi]
t=0 ) to α

6. while(true)

7. online_nodes [j] ← {} #it is updated in the passive thread
8. wait(∆) #determines message sending frequency

9. if i ∈ online_nodes [j] and s_timeout [ji] ≤ 0 #renew one share

10. if OC [ji] ∩ online_nodes [j] = {} and IN [i] ∩ online_nodes [j] 6= {}

11. add a node α to OC [ji] from IN [i] ∩ online_nodes [j]

12. if OC [ji] ∩ online_nodes [j] 6= {}

13. choose one node α ∈ OC [ji] ∩ online_nodes [j]

14. generate new share s
[jαi]
t←t+1

15. send new type 1 msg (s
[jαi]
t ) to α # t was increased by 1

16. choose new random s_timeout [ji]

17. for-each share s
[jαi]
t #check shares and versions in checklist

18. if (j, α, t) /∈ CH [ji]

19. resend s
[jαi]
t to α #resend the share if needed

20. for-each node l ∈ IN [j] #send type 2 messages
21. compose CH [lj] according to its definition
22. send type 2 message: (CH [lj], online_nodes [j], timestamp) to node l

23. LOC [ji] ← {} #send type 3 messages
24. M [ji] ← wjixj

25. for-each (j, α, t) ∈ CH [ji] #share version t from checklist[ji]

26. M [ji] ←M [ji] − s
[jαi]
t

27. store (j, α, t) in LOC [ji]

28. for-each (β, j, t) ∈ received_shares [ji] #shares received from in-collaborators

29. if β ∈ online_nodes [j] #decide which version of the share to use

30. M [ji] ←M [ji] + s
[βji]
t with t the newest version received

31. store (β, j, t) in LIC [ji]

32. else

33. M [ji] ←M [ji] + s
[βji]
t′

with t′ obtained from CH [ji]

34. store (β, j, t′) in LIC [ji]

35. if LOC [ji] = {} and LIC [ji] = {} #happens only during bootstrap
36. send type 3 message V [ji]: (0,LOC [ji],LIC [ji], timestamp) to node i
37. else

38. send type 3 message V [ji]: (M [ji],LOC [ji],LIC [ji], timestamp) to node i

irregularly, since the asynchronous iteration tolerates this. For simplicity we
assume that all the nodes use the same period ∆.

Algorithm 1 shows the active thread of the protocol at node j ∈ IN [i] that
is responsible for sending information to node i. An instance of this thread is
run at node j for all i ∈ OUT [j], that is, for all the nodes i, for which j ∈ IN [i].

The algorithm first initializes several variables: a copy of the last received
Type 3 message from each in-neighbor (line 1), the set OC [ji] and a timeout
for updating the shares of the members of the set (line 3). The first set of
shares is sent in line 5.
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Algorithm 2 async. privacy preserving power method, passive thread
1. while(true)
2. msg ← receive_message()

3. if type 1: s
[βji]
t , β ∈ IN [i] # s

[βji]
t received

4. store s
[βji]
t in received_shares [ji] (replace s

[βji]
t−1 if exists)

5. online_nodes [j] ← online_nodes [j] ∪ β

6. else if type 2: CH [ji], online_nodes [i] # checklist received from i

7. store CH [ji] (replace older version if exists)

8. online_nodes [j] ← online_nodes [j] ∪ online_nodes [i] ∪ i

9. else if type 3: V [λj], λ ∈ IN [j] #V msg received
10. store V [λj] (replace older version if exists)

11. online_nodes [j] ← online_nodes [j] ∪ λ

12. if ∪
λ∈IN [j]LOC [λj] = ∪

λ∈IN [j]LIC
[λj] then #check Eq. (10)

13. xj ←
∑

λ∈IN [j] M [λj] #update internal state

14. s_timeout [ji] ← s_timeout [ji] − 1

The main loop runs with a period of ∆ time units that defines the frequency
of sending messages. First, we clear the set of nodes that j estimates to be
online. This set is filled in the passive thread during the waiting period (see
Algorithm 2). Then, if the share renewal timeout expires, we first identify those
out-collaborators that are probably online, we try to add new collaborators
if the old ones seem to be offline (line 11), and then we send the new shares
(line 15). Note that sending new shares to collaborators that are offline is not
a problem, and via adding new collaborators we speed up the convergence.
From line 17 to 19, the freshest available checklist is used to discover which
shares s[jαi] have not been installed successfully, and these are re-sent. Node
j then creates new Type 2 messages for its own in-neighbors (line 20).

Finally, a Type 3 message is created and sent to node i in line 38. For those
shares sent by j (lines 25 and 27), node j uses the version in the checklist
received from i. This way j makes sure it is using the last share that reached i.
The case of shares received by j is more interesting. The sender β wants proof
that node j has started using the new version before switching to it itself.
However, if β is offline, it can get the proof only when it comes back online,
which may in fact never happen. So node j is cautious and switches to the new
version only if there is a good chance that β will detect it, and will switch too.
This is only a heuristic, as with a small probability it might happen that β is
incorrectly considered to be online. However, this is not a problem, because
node j will switch back to the working version included in the checklist in the
next round, should β stay offline.

The passive thread in Algorithm 2 handles message arrivals at node j,
updates its private state when possible and fills the set online_nodes [j]. If the
incoming message is of Type 1 (line 3) then the received share is stored (line 4).

For a Type 2 message (line 6) the checklist is stored and the set online_nodes [i]

is added to online_nodes [j] (line 8). Incoming Type 3 messages are stored and
if the condition in (10) holds (line 12) then the internal state xj is updated
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and the corresponding share timeout is decreased. Note that it is not necessary
to update shares if the private state is not changing, so in that case we do not
decrement the timer. The sender of any message is added to online_nodes [j]

(lines 5, 8 and 11).

5.2 Message Complexity

Let us now discuss the message length overhead added by our solution in
relation to SSS in order to tolerate churn, message loss and delay. SSS uses
two types of messages. The first one conveys a share for an out-collaborator,
but must also indicate the IDs of the sender and central nodes, as well as
some time information in order to discard old messages (we assume the latter
since it is necessary for the correct operation of the algorithm, though it is
not mentioned in the article). The second message carries a sum of shares, as
well as the sender and central node IDs, and time information. Assuming the
use of integer data types to represent node IDs and timestamps (the round
number, for example) and double data types to store shares and share sums,
each message is at least 3 · 32 + 64 = 160 bits long. In one round, for a given
node, there are n2 messages of the first type, and n messages of the second
type.

In our scheme Type 1 messages are similar to the share messages of SSS:
they include two node IDs, time information and the share itself therefore

they are 160 bits long. Type 2 messages contain two different lists: CH
[ji]
t of

at most 2 · k · 3 · 32 = 192k bits (assuming an average k for every node), and

online_nodes
[i]
t with at most 32n bits. Hence Type 2 messages are at most

192k + 32n bits long. Finally, Type 3 messages include a share (64 bits) and

the LIC [ji] and LOC [ji] lists with 3 · 32 · k bits each. This gives a total of
192k+ 64 bits. In one round, for a given node, there are nk Type 1 messages,
n Type 2 messages, and n Type 3 messages.

It is easy to see that our messages are larger than those of SSS; this is
the price we pay for an increased robustness. At the same time, k ≤ n is a
parameter that can be freely selected, therefore k2 can be much smaller than
n2.

5.3 Notes on Asynchrony

In our scheme, each node i can update its private state upon the receipt of a
single Type 3 message from any neighbor, provided that the condition in (10)
holds. This permits a chaotic asynchronous communication model in contrast
to the model used in SSS. Hence our scheme can cope with high rates of
message loss, message delays and node churn.

In the synchronous SSS model a single iteration may progress if and only
if at least k messages arrive at node i within the iteration (which need to be
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preceeded by many more successful message transmissions among the neigh-
bors of i during the same iteration, as explained earlier). For this reason, the
method is practically unable to progress in the presence of significant message
loss and delay, let alone node churn.

5.4 Node Churn

In the churn model that we consider every node can leave and then rejoin using
its previous state and neighbors. In other words, we assume that the output of
the computation (the eigenvector in our case) is assumed not to change. This
makes performance evaluation more informative, since at any point in time we
can compare the actual solution to a known correct output.

Let us explain some of the advantages of our method over SSS in the
presence of churn. On one hand, SSS requires each neighborhood to agree on
the parameter k which determines both the degree of the polynomial used in
the secret sharing scheme and the minimum number of out-collaborators per
node. If, due to churn, the number of online nodes in a neighborhood falls
below k, then the remaining nodes must renegotiate a new k. This issue is not
discussed in [5] and it is not straightforward. However, if we picked a static
value of k for the whole network, neighborhoods with less than k nodes would
not be able to progress at all.

On the other hand, our scheme can adapt to churn. First, a node chooses
its collaborator set (its members and its size) freely. Second, there is no lower
bound on the number of collaborators that are needed to be online for a node
to progress. For example, node j can still send valid Type 3 messages to i

even if all its out-collaborators are offline. There is only one case, however, in
which node i will not be able to update its state, namely when share version
inconsistencies occur at node i and all the nodes that could resolve it are
offline. This may happen only if the two nodes involved in a version update
go offline at the same time after having used a different share version in their
last Type 3 messages.

In addition, our scheme allows each individual node to increase its indi-
vidual degree of privacy by choosing new out-collaborators when it is time to
update a share but no out-collaborator is found online.

6 Privacy

As mentioned previously, we assume the semi-honest adversary model where
the adversary knows the private state and the incoming messages of corrupted
nodes, but eavesdropping on arbitrary links is not allowed.

As mentioned earlier, the SSS algorithm tolerates the collusion of up to
k−1 compromised nodes, but any subset of IN [i] of size at least k compromised
nodes can recover the secret values of all members of IN [i] [5]. From the point
of view of privacy, our algorithm has two main differences compared to SSS:
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it is based on the random sum secret sharing scheme, and it allows nodes to
reuse their shared values so as to save bandwidth. We examine the effect of
both of these differences.

First, we note that due to the random sum scheme we do not only gain
flexibility, but we also markedly increase the level of security against collusion.
To see this, let us assume that each node j ∈ IN [i] has a set OC [ji] of size
k, with k < |IN [i]|. Let us also assume that we implement the scheme in a
synchronous fashion, and new shares are generated in each round. Now, we ask
how many nodes we need to compromise to learn the private value of node j.
Obviously, we assume we cannot compromise j directly. One observation is that
we have to compromise at least one node i ∈ OUT [j], since the nodes that are
not out-neighbors of j never receive anything that is related to the private value
of j; they only receive random numbers from j. This extra constraint already
improves security. Let us assume that we have a compromised node i ∈ OUT [j].
In this case i does not receive a share from j, but the value M [ji] = wjixj −∑

α∈OC [j] s[jαi] +
∑

β∈IC [j] s[βji]. Clearly, we need to know
∑

α∈OC [j] s[jαi] +
∑

β∈IC [j] s
[βji]
j in order to recover wjixj . Given that |OC [ji]| = k, it is clear

that |OC [ji]|+ |IC [ji]| ≥ k. Thus, the collusion of at least k nodes, and node i,
is needed to recover the value of j. But note that to recover the private values
of nodes other than j (

∑
β∈IC [j] s[βji]), another set of colluding nodes might

be needed, as opposed to SSS. In sum, we have proven that the random sum
scheme offers a strictly higher theoretical degree of privacy than SSS.

Now let us turn to the second difference; namely that shares are reused to
save bandwidth. This weakens the scheme because with a small probability the
expression M [ji] = wjixj−

∑
α∈OC [j] s[jαi]+

∑
β∈IC [j] s[βji] could be a constant

apart from the secret value wjixj . This means that node i can calculate the
variation of the secret value. However, it is a highly non-trivial question to use
the variation to guess what the actual value is. The reason is that in the initial
phase of the computation wjixj is dominated by xj that can be selected at
random in the initialization phase, and after the solution has converged the
variation becomes very small and provides little guidance. In addition, even if
we can guess wjixj , it is still difficult to guess xj and wji separately.

Finally, it is interesting to remark that the fact that nodes can choose
different k values allows them to adjust the privacy level on a node-by-node
basis. Moreover, nodes can even change k in real time should they wish to
modify the initial privacy settings.

7 Experimental results

In our simulation experiments, we used the event-based PeerSim simulator [23].
We implemented the SSS algorithm and our random sum based proposal.
Parameter ∆ is the cycle length for both schemes, see Algorithm 1.

Recall that in this paper we focus on the power method, in particular,
its asynchronous version [21]. The power method is an iterative algorithm for
finding the dominant eigenvector of a matrix. In our distributed setting, each
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node calculates a single element of the dominant eigenvector, and network links
correspond to non-zero elements of the matrix. For the sake of comparison,
each node’s private value was initialized to 1.0, although in a real environment
a random initial value should be used where possible to mask variations in the
private value.

The method described in [21] works only with non-negative, irreducible
matrices with a spectral radius of one. We used artificially generated sparse
matrices derived from the adjacency matrix of two directed graphs presented in
[15], each with 5000 nodes. The matrices are called “random k-out normalized”
(Rnd) and “small gap normalized” (SmlG).

In Rnd, 8 random out-links are added to each node. SmlG was generated
starting with an undirected ring, and adding two random out-links from all
the nodes. The result is a matrix with a small gap between its two largest
eigenvalues: this characteristic makes the power method converge slowly. Both
matrices were normalized so the sum of each column is 1, which ensures that
the spectral radius is one.

To provide a fair comparison, the privacy parameter k was given a constant
small value of 3. This corresponds to tolerating a relatively large number of
messages lost for SSS, at the expense of a lower level of privacy. Analogously,
the size of the set of out-collaborators in our scheme was randomly chosen from

[1, |IN
[i]|

2 ], which is a close setting to that of SSS. Recall from Section 5 that
our scheme looks for new out-collaborators at the time of share renewal if no
collaborators are thought to be online. The s_timeout parameter is randomly
drawn from [150∆, 300∆].

The aim of our experiments was to show that our method can cope with
unreliable and heterogeneous links. The message loss rates used were Drop=0
(no loss) and Drop=0.1 (10% of the messages are lost). The message delays
were 0 (ideal conditions, immediate arrival), or a uniformly distributed random
value from [0, 0.1∆], or from [0, ∆].

Three churn scenarios were considered, which are based on measurements
presented in [28]. Let Weibull(a, b) denote the Weibull distribution with a

denoting the shape parameter and b the scale parameter. The first scenario in-
volves no churn so that we can compare the best performance of both schemes.
Second, a scenario with online session lengths drawn from Weibull(0.4, 20∆)
and offline session lengths drawn from Weibull(0.4, 40∆) was applied. We call
this scenario fast churn. Third, a scenario characterized by a slower churn was
used that we call slow churn: here online session lengths follow Weibull(0.4, 40∆),
while offline lengths are drawn from Weibull(0.4, 80∆). Note that simulating
a slower churn with the same ∆ is equivalent to assuming the same fast churn
but with a smaller cycle length ∆.

The metric used to test convergence was the following. The correct dom-
inant eigenvector w was pre-calculated. During simulations, we tested the
distance between the current solution x in the network and w by calculating

the angle between the two vectors given by arccos ||wT ·x||
||w|| ||x|| . With convergence,
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SSS Ours
no churn no churn fast churn slow churn

Drop Delay mean std mean std mean std mean std
0 0 145 0 52 0 3,438 209 4,678 731
0 ∈ [0, 0.1∆] 144 0 54 0 3,393 347 5,565 1,079
0 ∈ [0,∆] 745 0 117 0 6,776 258 10,031 369
0.1 0 225 32 80 0 4,772 397 7,604 1,278
0.1 ∈ [0, 0.1∆] 248 32 90 0 5,125 232 8,234 1,367
0.1 ∈ [0,∆] 9,774 186 169 0 7,068 424 12,621 1,199

Table 1: Average number of messages sent per node on Rnd. The mean and
the standard deviation are shown for three independent runs. In the presence
of churn we could not run simulations long enough to reach convergence with
SSS.

SSS Ours
no churn no churn fast churn slow churn

Drop Delay mean std mean std mean std mean std
0 0 1,273 0 139 0 56,272 3,215 165,930 45,496
0 ∈ [0, 0.1∆] 1,279 10 155 2 63,027 1,529 161,080 25,684
0 ∈ [0,∆] 14,079 1,305 303 6 68,345 4,776 158,360 23,254
0.1 0 2,548 35 175 2 63,369 11,877 116,800 6,329
0.1 ∈ [0, 0.1∆] 2,609 82 191 0 63,010 2,308 140,560 20,666
0.1 ∈ [0,∆] 67,538 3,883 346 7 70,144 8,101 133,420 19,621

Table 2: Average number of messages sent per node on SmlG. The mean and
the standard deviation are shown for three independent runs. In the presence
of churn we could not run simulations long enough to reach convergence with
SSS.

this angle tends to zero. Our stop condition for convergence was that the angle
be less than ǫ. For Rnd, ǫ = 0.05 and for SmlG, ǫ = 0.1.

Our main measure of performance is the speed of convergence measured
in terms of the average number of messages sent per node until convergence.
The reason we applied this metric was the necessity of finding a fair compar-
ison between synchronous and asynchronous schemes, given that the concept
of iteration makes little sense in the asynchronous approach. This measure
also takes different message complexities into account in a natural way. The
total number of messages sent throughout the network can be easily found by
multiplying the average number of messages per node by the network size.

Tables 1 and 2 show the average number of messages sent per node under
different scenarios over the two matrices. Statistics are shown for three inde-
pendent runs, rounded to an integer. Figures 2 to 5 depict the convergence
trend for the same cases. The figures show a single run for each scenario.

In the case of the scenarios involving no churn (Figures 2 and 3), it is
clear from the results that our scheme outperforms SSS in the case of both
matrices. The first reason for this is the lower message complexity that allows
our method to converge faster even in the failure-free scenario. The second
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Fig. 2: Matrix Rnd with no churn, and message drop probability 0 (left) and
0.1 (right).
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Fig. 3: Matrix SmlG with no churn, and message drop probability 0 (left) and
0.1 (right).

reason is the increased fault tolerance, that is most apparent in the long delay
scenario. One interesting consequence of this result is that with our method
the iteration period ∆ can be reduced to very small values, still resulting in
a proportional speedup, while the SSS scheme will suffer from the increasing
relative message delay that eventually makes convergence impossible.

In the churn scenarios SSS is not able to make observable progress, so
the corresponding results are omitted. Our algorithm in contrast tolerates all
scenarios. We observe a proportional slowdown in convergence as nodes spend
more and more time offline, relative to the period ∆. This effect is stronger in
the case of the SmlG matrix. One interesting conclusion is that in the case of
slower churn it does not make sense to maintain the original iteration period
∆: one can increase ∆ without slowing down convergence, while saving on
communication. This is because increasing ∆ is equivalent to speeding up the
churn. An adaptive mechanism to optimize ∆ would be an interesting direction
for future research.
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Fig. 4: Matrix Rnd with churn, and message drop probability 0 (left) and 0.1
(right).

 0.1

 0.3

 0.5

 0.7

 10  100  1000  10000  100000

an
g

le

avg. num. of messages per node

fast churn, delay=0
fast churn, delay∈[0, ∆]
slow churn, delay=0
slow churn, delay∈[0, ∆]

 0.1

 0.3

 0.5

 0.7

 10  100  1000  10000  100000

an
g

le

avg. num. of messages per node

fast churn, delay=0
fast churn, delay∈[0, ∆]
slow churn, delay=0
slow churn, delay∈[0, ∆]

Fig. 5: Matrix SmlG with churn, and message drop probability 0 (left) and 0.1
(right).

In addition, note that this slowdown is in fact a side-effect of our setup,
namely that we measure convergence as the distance from a global correct
solution. In a different setup we could assume that the set of nodes is changing,
and that we follow a moving target, that is, where the correct solution would
depend on the set of nodes that are currently online.

8 Conclusions

Here we introduced an asynchronous privacy preserving communications layer
for distributed iterative algorithms, focusing on its application in peer-to-peer
networks, and other unreliable large scale networks under realistic conditions.
We developed our approach for the case of power iteration. To the best of
our knowledge, it is the first analysis of an asynchronous privacy preserving
approach for this problem. Our algorithm was compared experimentally with
a recent synchronous solution called SSS, and the advantages of using an
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asynchronous approach were demonstrated: experiments included the failure-
free scenario as well as scenarios with message loss, message delay and node
churn.

Apart from asynchrony, our random sum secret sharing scheme was also
shown to be clearly preferable to SSS in terms of flexibility and the guaranteed
level of privacy, even in a fully reliable environment.

We would like to add that, though we focused on power iteration, the layer
can be applied along with any iterative method that is based on calculating
local sums of neighbor values, and also has an asynchronous implementation.
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