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Abstract—Peer-to-peer file-sharing has been increasingly
popular in the last decade. In most cases file-sharing com-
munities provide only minimal functionality, such as search
and download. Extra features such as recommendation are
difficult to implement because users are typically unwilling
to provide sufficient rating information for the items they
download. For this reason, it would be desirable to utilize
user behavior to infer implicit ratings. For example, if a user
deletes a file after downloading it, we could infer that the
rating is low, or if the user is seeding the file for a long time,
the rating is high. In this paper we demonstrate that it is
indeed possible to infer implicit ratings from user behavior.
We work with a large trace of Filelist.org, a BitTorrent-based
private community, and demonstrate that we can identify a
binary like/dislike distinction over the set of files users are
downloading, using dynamic features of swarm membership.
The resulting database containing the inferred ratings will be
published online publicly and it can be used as a benchmark
for P2P recommender systems.
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I. INTRODUCTION

Without doubt the popularity of P2P file-sharing has

been steadily growing in the past decade. Apart from the

basic functionalities of filename search and downloading,

there is demand for extra functionality such as high quality

personalized recommendations.

Most approaches for recommender systems take a rating

matrix as input. The ratings are often taken from a small

numeric range, but in any case, one needs at least two

different values, which stand for “dislike” and “like”. This

matrix usually contains explicit ratings of items by the users.

Since users have to make an effort to rate items, ratings are

often scarce and of dubious quality. For this reason, it has

long been observed that inferring ratings from user behavior

is an important way of enhancing the rating matrix and thus

the quality of recommendations. For example, [1] provides

an overview of many such methods.

Inferring ratings is a must, when no explicit information

is available. This is often case in P2P systems. For example,

[2] discusses the case of P2P TV, where ratings are inferred

from channel zapping behavior.

We will focus on BitTorrent file-sharing communities,

where users do not provide any ratings explicitly. We will

work with a large Filelist.org trace collected by the Technical

University of Delft. From this trace we shall use swarm

membership information as a function of time, and based

on dynamic changes in swarm membership, we will infer a

binary classification of file-rating (“like”/“dislike”).

Our contribution is threefold. First, we will define a

method for inferring ratings from dynamic swarm member-

ship data. Second, we will argue that the inferred ratings

“make sense”, through demonstrating that both the “like”

and “dislike” classes of ratings can be captured by several

statistical learning methods. This is remarkable because

the original swarm membership data does not contain any

information that can be interpreted as “dislike” (if a user is

a member of a swarm, then our best guess is that the user

likes the corresponding file, but lack of membership does not

imply that the user does not like the file). Furthermore even

the “like” ratings can be predicted better from our inferred

data, since swarm membership at a certain time does not

always imply the user likes the file. Third, we will make our

inferred database publicly available so that it could serve as

a baseline for P2P recommender systems.

The outline of the paper is as follows. Section II describes

the Filelist.org trace we used for our analysis. Section III

discusses the methodology we used to create the inferred

dataset from the raw trace. In Section IV we present the

results of several statistical learning methods on the original

raw dataset as well as the inferred dataset. Section V

concludes the paper.

II. FILELIST.ORG TRACE

In this section we will provide a brief overview of the

dataset that is the basis of our benchmark. The data source

we present originates from a BitTorrent-based [3] P2P file-

sharing community called FILELIST.ORG 2 [4].

A. BitTorrent basics

In a BitTorrent P2P network, each peer (user) downloads

and uploads data simultaneously. The torrent file format

describes one or more files that are to be shared. The

files are then split up into chunks or pieces, which are

2This site is now defunct. Older, archived pages are available at
http://archive.org.
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transferred in blocks. The peers can acquire these pieces

in any order. A swarm is the set of peers participating in

downloading a common torrent. Each swarm is identified

by its Info Hash, that is the SHA-1 hash of the data used

to uniquely describe a torrent (file list, file sizes, etc). With

this, each node can assure that the right content is being

requested while interacting with other peers, as well as

verify the integrity of the downloaded data. The peers that

have completed downloading all the pieces of a torrent are

called seeds, whereas the ones still trying to get some of

them are called leeches. The sharing ratio is defined as the

uploaded/downloaded value for each session, as well as for

the lifetime of the membership, if a (private) community is

involved.

A tracker is typically a central database-driven website

that coordinates the peers and keeps track of their uploads,

downloads, sharing ratios, client versions and so on. The

trace we work with was collected via downloading this

tracker database regularly.

Peers start a session by registering at the tracker, and re-

questing a random subset of online peers’ 〈IP Address, Port〉
pairs from the tracker. After registering, they can initiate

connections to other peers, and also receive connections.

Note that they may be firewalled (or NAT-ed) peers which

cannot receive incoming connections, thus limiting their

ability to communicate.

B. The FILELIST.ORG community

FILELIST.ORG is a private community [5], [6], meaning

that members have to be invited by a senior member in

order to be able to join the community website. Also, they

have to comply with specific rules regarding their overall

sharing ratio. Users that have a sharing ratio below given

thresholds may have to wait hours before being able to start

downloading a newly added torrent, or (in worse cases), be

excluded from the community. This type of community is

general and quite frequent when the main interaction activity

is file-sharing. The tracker website announces the private

torrent files which are categorized, so users can check back

regularly for new content.

C. The original FILELIST.ORG trace

We will base our benchmark dataset on the trace files

gathered by Jelle Roozenburg at the Technical University

of Delft [7] between 9th December, 2005 and 12th March,

2006. Over the course of 93 days, 91, 745 peers (users)

were observed in 3, 068 swarms (sets of users participating

in downloading the same file). For the files that were

followed, 5, 477 TB of data was reported to have been

exchanged (2, 979 TB up, 2, 498 TB down) among all the

users combined. Normally these two values should be equal,

but there are some factors that can change this property

in our system. For example, some clients might misreport,

or might be deleted from the website over time (for not

obeying the rules). Also, content can ”leak”, i.e., can be

mistakenly or deliberately distributed to peers that are not

part of the private tracker and thus do not report to it (Peer

Exchange, Distributed Hash Table). As regards the churn

rate, 9, 574, 290 joins and leaves were observed.

For the measurements, the tracker website is periodically

crawled to obtain a partial state of the P2P network. These

measurements can be more accurate than active measure-

ment since we have a central knowledge of each peer.

After crawling the websites and archiving the HTML

pages, the parsing phase yields two datasets, namely swarm

churn and peer behavior. Here we shall only examine the

peer behavior files. The peer behavior dataset is made up of

directories representing swarms and files representing each

peer’s participation. Each line of these files contains an event

the following properties:

• the UNIX timestamp of the event

• a bit indicating whether the peer is online

• a bit indicating whether the peer can be connected by

other peers

• the uploaded and downloaded amount of data in KB

• the average upload and download speed in KB/s

• the sharing ratio, i.e. uploaded/downloaded

• the completion of the file in %

• the connection time in minutes

• the client version string

The original trace is rich in data as it consists of

691, 319, 475 events.

When analyzing this trace, we came across patterns. We

split the online events into two groups (leech and seed) based

on the completion field (< 100% and =100%, respectively),

then we observed that the peers act according to one of the

following patterns:

• (72%) Start as leech, end up as a seed. We conclude

that the peer has successfully downloaded the torrent.

• (15%) Remain as a leech all the time. We conclude that

the peer tried, but could not successfully download the

torrent.

• (10%) Remain as a seed all the time. We conclude that

the peer is either an injector (the one that introduces the

torrent to the community and therefore has the content

initially) or has acquired the torrent from another source

and would like to contribute.

• (3%) Various patterns of repeated transitions from

being a leech and a seed. We speculate that this

(very small) portion of users have (intentionally or

not) deleted the torrent and/or joined the swarm from

a different computer. Also, super-seeding [8], [9] (or

initial seeding) might have played a role in creating

these patterns.
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Table I
ONLINE SESSION INTERPOLATION RULES

Online sessions

front end fill

0 0 0
0 1 1
1 0 0
1 1 1

Table II
OFFLINE SESSION INTERPOLATION RULES

Offline sessions

front end fill

0 0 0
0 1 0
1 0 0
1 1 1

III. INFERRING RATINGS FROM THE TRACE

A. Preprocessing Raw Data

The original raw dataset detailed above was first converted

into a more convenient format, removing any unnecessary

information, then the remaining table consisted of the fol-

lowing fields: user ID, item ID, timestamp, online/offline,

completion.

These discrete points define a sequence of online and

offline sessions for each user in each swarm. Using these

sessions, we extrapolated file-ownership at any point in

time as follows. We first filled the inner parts of each

online session using the interpolation rules given in Table

I. Afterwards, we filled the offline sessions of each user-

file pair by applying the rules given in Table II. From these

intervals we were able to generate a user-item database for

any given point in time.

A user-item database that corresponds to a point in time

contains two kinds of entries: “has file” and “does not have

file”. That is, if a user has already completed downloading

the given file, and has not removed the file, then he has the

file. Note that if a user is downloading a file, but has not

yet completed the downloads, then he does not have the file

and is just like a user who has never attempted to download

it.

Note that we could have retained information on swarm

membership as well; that is, introduce the third label “down-

loading file”. Though possible, we eventually decided not to

do it so as to simplify the problem and avoid the semantic

problems associated with this label. Also note that it is

possible that a user has the file, but is not seeding it, so

we still say “does not have file”. However, it is impossible

to decide whether a user removed the file because he does

not like it or because he does not want to seed it. Overall,

one has to be careful with interpreting these labels, but, as

our evaluation will show, this labeling does result in useful

results despite these problematic issues.
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Figure 1. Sparsity changes during trace interval.

B. Sparsity of the Dataset

Sparsity is the ratio of the known and unknown ratings.

In our case, we took the label “has file” to be the known

rating; otherwise we considered the rating as unknown.

Sparsity is one of the most important characteristics of

recommender benchmarks [10]. If the data is very sparse

(as in the case of the BookCrossing benchmark [11]) then

numerous problems arise such as difficulties with measuring

the similarity between users or building statistical models.

The sparsity of a recommender database is an important

factor in the difficulty of making recommendations based

on the given dataset.

For this reason, we examined the dynamics of sparsity as

a function of time, as shown in Figure 1. We can observe

that sparsity is fairly stable, and has a small value; that is,

the data is sparse. Figure 1 shows the number of online users

and the number of active files as well, as a function of time.

The plateaus of the curves correspond to missing data.

C. Inferring Ratings

In order to infer the preference of users, we first fixed a

point in time, and took the corresponding user-item matrix.

Originally we took three different points in time, but our

preliminary results indicated that there is no visible differ-

ence in performance over time, so we kept the time point

indicated by an arrow in Figure 1.

Our baseline (or naive) dataset is given directly by the

user-item matrix we selected earlier. From the point of

view of ratings, we took “has file” to be a positive rating

(indicated by the numeric value 1), otherwise we indicated

a lack of rating. In other words, in the baseline user-item

matrix we did not have any entries indicating a negative

rating, since we have no basis to infer a negative rating

from this data.

To infer negative ratings, and to make the positive ratings

more precise, we used information that varied in time: we
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Table III
RATING CONVERSION RULES

Dataset labeling

before actual after inference

0 0 0 unspecified
0 0 1 unspecified
0 1 0 0 (dislike)

0 1 1 1 (like)

1 0 0 0 (dislike)
1 0 1 unspecified
1 1 0 unspecified
1 1 1 1 (like)
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Figure 2. Similarity as a function of time.

looked at file ownership before and after the timestamp of

the baseline dataset. The amount of shift in time was the

same in both directions. This way, for each user-item pair

we got a triplet, which we converted to ratings, as indicated

in Table III. These rules are entirely heuristic and are based

on common sense. This way we can create negative ratings

(with a numeric value of 0).

It is interesting to observe the similarity of the user-

item matrices (ratio of entries with an identical label) as a

function of time shift. Figure 2 shows the difference between

our baseline dataset and the user-item matrix with the given

time shift. The figure indicated that there is a significant

change in the user-item matrix, and thus the the dynamics

might indeed convey useful extra information.

IV. EVALUATION

Since we do not have any ground truth available for the

actual like/dislike ratings of users, we need to apply an

indirect approach to test the labels we assigned to user-item

pairs.

The method we propose is based on the learnability of

the labels. That is, if statistical learning algorithms are able

to predict the labels based on a training set (which is the

subset of the data we generated), then we can at least say

that the labels do correspond to some regular property of the

data. This regularity might come from an unintended source

as well. To deal with this possibility, during the evaluation

we explicitly attempted to single out some trivial sources of

regularity such as one label being more frequent than the

other, etc. In the experiment we could not find any trivial or

unintended reasons for the learnability of the labels.

A. Performance of Learning Algorithms

For learning we decided to use the following algorithms

available from the WEKA Java library [12]:

• SMO: a support vector machine implementation in

WEKA, with default parameters

• J48: a decision tree learning implementation in WEKA,

with default parameters

• Naive Bayes: WEKA implementation, default parame-

ters

• Logistic: WEKA implementation for logistic regres-

sion, default parameters

In order to generate features from the user-item ratings,

we adopted the proposals described in [13]. These features

are specifically designed for sparse datasets like ours.

For the baseline user-item matrix, the training set was

generated by first selecting 90% of the user-item entries

with the “has file” (1) label, and then we selected the same

number of entries with the “does not have file” label. The

test set was composed of the remaining 10% of the “has

file” entries, and the same number of “does not have file”

entries, disjunct from the training set.

A similar method was used for the time-shift based

datasets, for all the given time-shift values. The only dif-

ference is that there we had three labels: 1 (like), 0 (dislike)

and null (don’t know). Accordingly, to define a two-class

learning problem, we created two pairs of training and test

sets: one for the “like” class, and one for the “dislike” class.

The results are shown in Figure 3. The F-measure is the

usual indicator for evaluating learning algorithms. It is de-

fined as the harmonic mean of precision and recall. Precision

is defined as the number of true positive predictions divided

by all the positive predictions (how many of the positive

predictions are indeed positive), while recall is given by

the true positive predictions divided by the sum of the true

positive and false negative predictions (how many of the

positives do we catch).

It is evident that all the classes are learnable (randomly

assigning labels to data results in an F-measure of 0.5).

Besides, it is also evident that both classes achieve a higher

F-measure score than the baseline does. That is, clearly,

applying the time-shift preprocessing, we were able to

achieve a better quality dataset.

B. The published database

The published database is available for research purposes

and can be downloaded from [14]. Currently, an inferred

dataset from the [−60; +60] hour interval is available in
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Figure 3. F-measure scores of the different time-shift datasets for positive
(1) and negative (0) ratings (a larger value means a better performance
score).
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the following format: three numerical columns separated by

a tabulator which are the user ID, the item ID, and the

rate (which is either 1 or 0, meaning the item was liked or

disliked, respectively). We conducted experiments with the

above-mentioned methods on this database, whose results

are shown in Figure 4. In this evaluation case we split the

database into train and test sets in the ratio 9:1. We chose the

samples of sets at random from a uniform distribution. We

used the mean absolute error (MAE) measure to demonstrate

the performance of the baseline methods on the database.

V. CONCLUSIONS

In this paper we tackled the problem of inferring ratings

from user behavior in a BitTorrent community. We proposed

a method based on the dynamic features of file-ownership.

To simplify it slightly: we supposed that a user likes a file

that he keeps seeding, and we supposed that a user does not

like a file that he downloads and then deletes, or that he

does not seed.

While heuristics of this nature are far from precise, we

were able to demonstrate that the negative rating of a file we

predict this way is far from random; that is, a wide range of

machine learning algorithms are able to learn it to achieve

high precision (note that in the raw data set there are no

direct negative ratings at all). Using our method, the positive

ratings are more learnable as well. While this is only implicit

evidence (since we have no ground truth available), we

believe that our approach significantly improves the rating

data reflecting real user preferences.

We have made our inferred database publicly available as

well [14].
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