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Abstract. Federated learning is a well-known machine learning approach
over edge devices with relatively limited resources, such as mobile phones.
A key feature of the approach is that no data is collected centrally; in-
stead, data remains private and only models are communicated between
a server and the devices. Gossip learning has a similar application do-
main; it also assumes that all the data remains private, but it requires
no aggregation server or any central component. However—one would
assume—gossip learning must pay a price for the extra robustness and
lower maintenance cost it provides due to its fully decentralized design.
Here, we examine this natural assumption empirically. The application
we focus on is making recommendations based on private logs of user
activity, such as viewing or browsing history. We apply low rank matrix
decomposition to implement a common collaborative filtering method.
First, we present similar algorithms for both frameworks to efficiently
solve this problem without revealing any raw data or any user-specific
parts of the model. We then examine the aggregated cost in both cases
for several algorithm-variants in various simulation scenarios. These sce-
narios include a real churn trace collected over mobile phones. Perhaps
surprisingly, gossip learning is comparable to federated learning in all the
scenarios and, especially in large networks, it can even outperform feder-
ated learning when the same subsampling-based compression technique
is applied in both frameworks.

1 Introduction

Mobile phones represent a key source of data and a very important platform not
only for running pre-trained models but also for learning [17]. This is because
collecting data centrally has become more and more problematic over the past
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few years due to novel data protection rules [7] as well as the increasing public
awareness to privacy issues. For this reason, there is an increasing interest in
methods that keep the raw data on the device and process it using distributed
algorithms.

Google introduced federated learning to answer this challenge [10, 12]. Not
unlike the well-known parameter server architecture [6], a server maintains the
current model and regularly distributes it to the workers who in turn calculate
a gradient update and send it back to the server, where the updates are ag-
gregated. In federated learning, this framework is optimized so as to minimize
communication between the server and the workers. For this reason, the local
update calculation is more thorough, and compression techniques can be applied
when uploading the updates to the server. Gossip learning has also been pro-
posed to address the same challenge [9,14]. This approach is fully decentralized,
no parameter server is necessary. Nodes exchange and aggregate models directly.
Since no infrastructure is required, and there is no single point of failure, gos-
sip learning enjoys a significantly cheaper scalability and better robustness than
centralized approaches.

However, it is not clear whether gossip learning is competitive in terms of con-
vergence time and communication cost. To shed light on this question, we carry
out an empirical comparison of the two approaches. To do this, we implement a
recommender system in both paradigms, based on low-rank matrix decomposi-
tion. The gossip learning implementation is based on our previous work [9]. We
propose a federated learning implementation as well, following the same design,
but adapted to the centralized communication pattern. Also, inspired by [10],
we apply subsampling to reduce communication in both approaches.

The result of our comparison is that gossip learning is in general comparable
to the centrally coordinated federated learning approach, and in some scenarios
it actually outperforms federated learning. One should obviously not jump to
conclusions based on one empirical study, but our results suggest that fully
decentralized algorithms perhaps deserve more attention in the future.

To sum up our key original contributions in the present study: (1) we propose
an efficient collaborative filtering method for federated learning; (2) we improve
several details of our previous solution [9] as well including the introduction of
coordinate-based age parameters to manage aggregation and the application of
an optimized version of subsampling to gossip learning; and (3) we compare
the two methods empirically based on a realistic churn trace collected by the
application Stunner [2].

We are aware of only two (at the time of writing, unpublished) studies that
address the specific problem of recommender systems in federated learning. The
first is based on the idea of meta-learning [4]. Here, it is assumed that the devices
have enough data to learn a model based only on local data. Then, federated
learning is used to find the optimal hyperparameters for the algorithm, using
the devices to calculate gradients for the hyperparameters. We are interested in
scenarios where there is not much local data, so meta-learning is not an option.
The second study is closer to our approach [1] in spirit. However the authors as-



sume a different setup with only implicit binary feedback as data (e.g., a movie
was watched or not). Due to this, their input data is a dense matrix (there are
no ratings labeled as “unknown”) so compressed communication is more prob-
lematic. We focus on modeling only the known ratings (a small minority of all
ratings) and make predictions based on these. Also, the optimization algorithm
they approximate is alternating least squares with a federated gradient optimiza-
tion step in the inner loop, while we use simple SGD which is more robust to
failure and asynchrony.

We note that both approaches offer mechanisms for explicit privacy protec-
tion, apart from the basic feature of not collecting data. In federated learning,
Bonawitz et al. [3] describe a secure aggregation protocol, whereas for gossip
learning one can apply the methods described in [5]. Here, we are concerned
only with the efficiency of the different communication patterns and do not
compare security mechanisms.

The outline of the paper is as follows. In Section 2, we describe the low rank
matrix decomposition problem, formulated as a machine learning problem. Here,
we also present the key ideas to solve this problem in a decentralized setting. In
Section 3, we describe the basics of solving the problem with federated learning
while in Section 4 we present the gossip learning algorithm for the same problem.
In Section 5 we present the key details of the learning algorithm that are common
to both approaches. These include the details of the update rule, the subsampling
technique, and the initialization. Finally, in Section 6, we present our empirical
results.

2 Rank-k matrix approximation

Here, we present the problem definition in the form of a model and a corre-
sponding loss function. We also describe our approach and main assumptions—
common to both federated learning and gossip learning—regarding the optimiza-
tion of the model.

2.1 Problem definition

The problem of rank-k matrix approximation [11] is defined in the following way.
Let A ∈ IRm×n be a matrix that contains our data (for example, user ratings
of items such as movies, songs, or locations). The goal is to find two matrices
X ∈ IRm×k and Y ∈ IRn×k that minimize the error function

J(X,Y ) =
1
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We consider the matrix XY T an optimal rank-k approximation of A. Note that
the rank of X and Y T (and therefore XY T ) is at most k. Usually a k much
smaller than m and n is chosen to significantly compress the data. X and Y T



can be interpreted as high level features (e.g. genres of movies and tastes of
users) that compactly represent the original data.

Often in practice we have only partial information regarding A; that is, some
values in A might be unknown. As an important generalization of the problem
above, here we are looking for a rank-k decomposition that approximates only
the known values. A common approach is to minimize the error function
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where I contains the indices of the known values of A. We can then use the
decomposition XY T to approximate the unknown values in A, since XY T is
fully defined. Note the here we also included additional regularization terms and
the regularization parameter λ. This helps stabilize the optimization process in
a machine learning context.

Another practical technique used is to add bias terms to the model. The bias
terms b ∈ IRm×1 and c ∈ IR1×n are incorporated into the model via the loss
function

J(X,Y, b, c) =
1
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For example, in a recommender system, the bias can represent the fact that some
users tend to give higher or lower scores than others, and some movies tend to get
higher or lower scores. Intuitively, the bias represents average scores, and X and
Y represent relative differences. This often enhances the prediction performance.
With bias, the approximation of A (both known and unknown values) is given
by XY T + b1n + cT1m where 1k is a row vector of k ones.

2.2 Optimization approach

Our targeted application environment consists of a potentially large set of per-
sonal devices holding private data. We follow the approach in our previous pa-
per [9] and we will adapt the same approach to federated learning. We shall
assume that each row in matrix A is stored on exactly one device. We shall also
assume that each device will host exactly one row. This setup covers applica-
tions where one row of the matrix belongs to one user and the devices belong to
exactly one user, as in the case of mobile phones. One matrix row can naturally
represent any kind of private user activity, such as watching movies. We should
add though that if more than one row is stored on a device, the algorithms are
still applicable.

The main idea is that matrix X will also be stored in a similar manner; that
is, every device will store the row of X that belongs to the row of A stored on
the device. This way, the matrix X that contains information about the users
is completely private, every device knows only its own row. However, the entire



Algorithm 1 Federated Learning Master

1: (t, Y, c) ← initY()
2: loop
3: (t̃, Ỹ , c̃)← (0n, 0n,k, 0n)
4: for every node i in parallel do ⊲ non-blocking (in separate thread(s))
5: send (t, Y, c) to i
6: receive (t′, Y ′, c′) from i ⊲ model gradient
7: (t̃, Ỹ , c̃)← (t̃+ t′, Ỹ + Y ′, c̃+ c′)
8: end for
9: wait(∆f ) ⊲ the round length

10: for j ← 1 . . . n do
11: if t̃j 6= 0 then
12: Yj ← Yj + Ỹj/t̃j
13: cj ← cj + c̃j/t̃j
14: tj ← tj + 1
15: end if
16: end for
17: end loop

matrix Y will be shared among all the devices. This is safe, because matrix Y
contains only user-independent information about all the items the users might
consume.

The gradient of Y computed by a single user may leak private data. In
federated learning, Bonawitz et al. [3] describe a secure aggregation protocol
with additional measures to prevent this kind of information leakage. In gossip
learning, one can apply the secure distributed mini-batch methods described
in [5]. We do not include such additional techniques in our present study.

Using the loss function defined in Equation (3), and assuming that every
device has a copy of Y , the gradient of both its own row of X and the global
matrix Y can be computed by each device locally, w.r.t. the local row of A.
Devices can use these gradients to update their own row of X locally. Therefore,
all we need to take care of is to somehow aggregate the gradients of Y over the
devices and then redistribute new versions of Y . Federated learning and gossip
learning offer two, rather different alternative solutions to this problem. (Note
that the bias vectors b and c are handled similarly to X and Y , respectively.)

3 Federated Learning

Here, we present the well-known federated learning algorithm [10, 12], adapted
to the problem of rank-k matrix decomposition.

In this framework, there is a master node that runs Algorithm 1, and several
worker nodes that execute Algorithm 2. The master first initializes the global
model (t, Y, c) that contains matrix Y , the bias vector c and an age vector t. For
each row j, tj counts how many times Yj and cj have been updated. Having a
separate counter for each row is necessary because there can be a very different



Algorithm 2 Federated Learning Worker

1: (xi, bi)← initX()
2:
3: procedure onReceiveModel(t̃, Ỹ , c̃)
4: ((t, Y, c), (xi, bi))←update((t̃, Ỹ , c̃), (xi, bi), ai) ⊲ ai: the local ratings
5: (t′, Y ′, c′)← (t− t̃, Y − Ỹ , c− c̃)
6: send (compress(t′, Y ′, c′)) to master
7: end procedure

number of examples for each item, and thus there can be a different number of
updates applied to each row (see below).

Similarly, each worker node initializes its private model (xi, bi) that contains
its own row of X , xi, and the corresponding bias bi. After initialization, in every
round, the master sends the global model to all the workers. The workers then
update the received global model and their own local user model using the local
ratings, and they then send the (potentially compressed) model gradient to the
master. In this message to the master, the vector t′ can contain only ones and
zeros, indicating which rows of Y (and elements of c) were updated. At the end of
each round, the server updates the global model with the average of the received
gradients.

Each row Yj (and value cj) will typically have different associated t̃j values
depending on how many valid (non-missing) values are there in the matrix col-
umn Aj , and also on which clients manage to send a message to the master in
the given round. We can think of t̃j as the effective mini-batch size correspond-
ing to updating Yj and cj. Thus, by normalizing with t̃j , we effectively perform
parallel mini-batch updates on Yj and cj .

Note that in the federated learning framework it is typically assumed that the
workers are synchronized; that is, the master has to wait until all (or most of)
the nodes send a gradient in the given round and, most importantly, the workers
have to wait as well for the next globally aggregated model from the master
to process. Although asynchronous distributed learning is common, federated
learning also seeks to handle the non-uniform sampling of training data, which
is expected to make asynchronous implementations less stable.

The methods update, compress, initX and initY shall be explained in detail
in Section 5. Note that the same methods are used in gossip learning as well.

4 Gossip Learning

In gossip learning, there is no master node. All the participants are equivalent,
and form a P2P network [14]. All the nodes run Algorithm 3. The nodes first
initialize their own copy of the global model (t, Y, c) as well as the private model
(xi, bi). Then, in each cycle, they send their (potentially compressed) copy of the
global model to a random online neighbor in the P2P network. Upon receiving a



Algorithm 3 Gossip Learning

1: (t, Y, c)← initY()
2: (xi, bi)← initX()
3: loop
4: wait(∆g)
5: p← selectPeer()
6: send (compress(t, Y, c)) to p
7: end loop
8:
9: procedure onReceiveModel(t̃, Ỹ , c̃)

10: (t, Y, c)←merge((t, Y, c), (t̃, Ỹ , c̃))
11: ((t, Y, c), (xi, bi))←update((t, Y, c), (xi, bi), ai)
12: end procedure

Algorithm 4 Various versions of the merge function

1: procedure mergeNone((t, Y, c), (t̃, Ỹ , c̃))
2: return (t̃, Ỹ , c̃)
3: end procedure
4:
5: procedure mergeAverage((t, Y, c), (t̃, Ỹ , c̃))
6: for j ← 1 . . . n do
7: if t̃j 6= 0 then

8: w←
t̃j

tj+t̃j

9: tj ← max(tj, t̃j)

10: Yj ← (1− w)Yj + wỸj

11: cj ← (1−w)cj + wc̃j
12: end if
13: end for
14: return (t, Y, c)
15: end procedure

model, the node merges it into its own, then updates both the resulting merged
new global model and the local model, using the local ratings.

As mentioned above, methods update, compress, initX and initY shall be
explained in detail in Section 5. Note that the same methods are used by feder-
ated learning as well.

Method merge, however, is specific to gossip learning, and it is responsible
for aggregating the updates computed at the devices. Possible implementations
of this method are listed in Algorithm 4. The first option is not to perform any
aggregation, in which case different versions of the global model perform random
walks in the network independently. The other option is to take the average of
the two models row by row, weighted by the corresponding elements of the age
vectors so that the more converged copy has a larger effect.

An important effect of this weighted merging technique is that the freshly
initialized rows of the model of any newly joined node are ignored. This is because



Algorithm 5 Model initialization

1: procedure initX()
2: for d← 1 . . . k do
3: xd ← rand() ·

√
(Rmax −Rmin)/k ⊲ rand() ∼ U(0, 1)

4: end for
5: b← Rmin/2
6: return (x, b)
7: end procedure
8:
9: procedure initY()

10: for j ← 1 . . . n do
11: tj ← 0
12: (Yj , cj)←initX()
13: end for
14: return (t, Y, c)
15: end procedure

if a row has never been updated, then the age is zero for the given row. The
new model will be assigned the maximum of the two merged ages. This is a
conservative heuristic that performed better in our preliminary experiments than
possible alternatives such as the sum of the two ages. Note that the age of the
different rows can differ significantly because the number of known ratings for
different items typically has a large variance.

Since gossip learning uses a P2P network, we have to make our assumptions
about this network explicit. We assume that there is a membership service in
our system. This service provides unique identities to the participants that might
include public and private keys for public key cryptography that are tied to the
network address of the node. The membership service also offers peer sampling,
accessed through method selectPeer. That is, all the nodes are assumed to have
access to addresses of live nodes from the network. In practice, peer sampling
can have a decentralized implementation that can be dynamic [16] or it can be
based on a static network with random neighbors [15] that is able to handle
NAT devices as well. It can also be implemented as a centralized service. Ideally,
the neighbors returned by the peer sampling service should be uniform random
samples of the live nodes, but in practice it suffices if the network has good mixing
when, for example, the neighbors are sampled from a fixed overlay network graph.

5 Shared Methods

Here, we present those methods that are used by both federated learning and
gossip learning. Let us begin with the initialization methods in Algorithm 5.
Both X and Y are initialized with uniform random numbers from the range
[0,

√
(Rmax −Rmin)/k], and the initial bias is set to Rmin/2, where Rmax and

Rmin are the largest and the smallest possible ratings, respectively. This ensures



Algorithm 6 Model update rule

1: procedure update((t, Y, c), (xi, bi), ai)
2: for all j where aij is defined do
3: tj ← tj + 1
4: err← aij − xiY

T
j − bi − cj

5: (Yj , xi)← ((1− ηλ)Yj + η · err · xi, (1− ηλ)xi + η · err · Yj)
6: cj ← cj + η · err
7: bi ← bi + η · err
8: end for
9: return ((t, Y, c), (xi, bi))

10: end procedure

that when a prediction xiY
T
j +bi+cj is made using initial values, the result falls

in the range [Rmin, Rmax].
As for learning, both models use a stochastic gradient descent (SGD) update

rule with the fixed learning rate η (see Algorithm 6). The age vector t is incre-
mented in positions corresponding to updated rows of Y (that is, for those items
that the user rated). The update rule simply follows from the partial derivatives
of (3). Note that this version of the update rule uses a constant learning rate,
but other implementations might also use the age vector passed to the update
method.

Let us now turn to the compression methods. In this study, we focus on sub-
sampling as a simple compression technique. That is, only s rows of Y are sent
along with the corresponding elements of t and c, where s is the compression
parameter (see Algorithm 7). Subsampling is performed randomly without re-
placement from the updated rows (that is, those rows where the corresponding
rating is known) and, if there is still room left, from the remaining, non-updated
rows. Note that sending non-updated rows in fact makes sense because in such
cases the given node might act as a forwarding agent. In other words, such rows
might be useful for the recipient nodes.

6 Experiments

Here, we present our simulation experiments with gossip learning and federated
learning over the MovieLens database in several scenarios.

6.1 Datasets

The MovieLens data sets [8] were collected by the GroupLens Research Project
at the University of Minnesota. The data was collected through the MovieLens
website (movielens.org) over various periods of time, depending on the size of
the set. The main properties of the MovieLens data sets are shown in Table 1
and Figure 1. Each data set is split into a training matrix and a test matrix
in such a way that for each user, there are either 0 or 10 defined values in the



Algorithm 7 Various versions of the compress function

1: procedure compressNone(t, Y, c)
2: return (t, Y, c)
3: end procedure
4:
5: procedure compressSubsampling(t, Y, c)
6: U ← {1, . . . , n}
7: D ← {j ∈ U |aij is defined}
8: Jd ← random subset of D of size min(s, |D|)
9: Ju ← random subset of (U \D) of size (s− |Jd|)

10: for all j ∈ Jd ∪ Ju do
11: t′j ← tj
12: Y ′

j ← Yj

13: c′j ← cj
14: end for
15: return (t′, Y ′, c′) ⊲ we assume a sparse vector representation
16: end procedure

Table 1. The main properties of the MovieLens data sets and algorithm parameters

100K 1M 10M

# users (m) 943 6,040 69,878

# movies (n) 1,682 3,952 10,677

# ratings 100,000 1,000,209 10,000,054

Density 6.3% 4.2% 1.3%

Training / Test 90.57% / 9.43% 93.96% / 6.04% 93.01% / 6.99%

Time period 20.09.97 - 22.04.98 25.04.00 - 28.02.03 09.01.95 - 05.01.09

η/λ/k 10−2/10−1/5 10−2/10−1/5 10−2/10−1/5

message size 0.6 Mbit 1.5 Mbit 4.1Mbit

test matrix. Each row of the training matrix (representing the ratings of a given
user) was assigned to a unique node in the simulation experiments.

6.2 System Model

In our simulations, fixed random 20-out graphs were used as the overlay network.
The number of nodes was equal to the number of users in the given data set. In
the churn-free scenario, every node stayed online for the whole experiment. A real
availability trace, gathered from smartphones, was used in the churn scenario.
A message was considered successfully delivered if and only if both the sender
and the receiver remained online during the transfer. Peer selection (method
selectPeer) returned online nodes only.

The nodes had the same upload and download bandwidths. The motivation
for this was that it is likely that in a real application there will be a low, uniform,
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Fig. 1. Visualization of the distribution of the number of rated items per user. Users
are sorted according to the number of their rated items for all three databases.

configured bandwidth cap. The server had infinite bandwidth (which favors fed-
erated learning, as gossip learning does not use a server). The transfer time of a
full model was assumed to be 1728 s (irrespective of the data set used) in the low
bandwidth scenario, and 172.8 s in the high bandwidth scenario. This allowed
for around 100 and 1000 iterations over the course of 48 hours, respectively.

The cycle length parameters ∆g and ∆f were set so that the two approaches
fully utilized the available bandwidth. In our case this also means that the two
algorithms transfer the same amount of data overall in the network in the same
amount of time, making comparisons of convergence dynamics fair. The gossip
cycle length ∆g is exactly the transfer time of a model, which is proportionally
smaller when compression is used. The cycle length ∆f of federated learning is
the round-trip time, that is, the sum of the upload and download times. In this
case, only the upstream transfer is compressed.

Note that we use rather low bandwidth settings because in the churn sce-
nario if the transfer is very fast, the network hardly changes during the learning
process, the models are learned over an effectively static subset of the nodes.
Slower transfer is more challenging, because more transfers fail, just like in the
case of very large machine learning models such as deep neural networks. (This
issue is completely irrelevant in the churn-free scenario, since the dynamics are
identical apart from the scale of time.)

6.3 Smartphone Traces

We used a trace collected by STUNner, a locally developed, openly available
smartphone application [2]. In short, the app monitors and collects information
about the battery level, charging status, bandwidth, and NAT type.
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The trace contains time series spanning varying lengths of time, originating
from 1191 different users. Based on the UTC hour of day, we split the data into
2-day segments (with a one-day overlap), resulting in 40,658 segments altogether.
Using this, we can simulate a virtual 48-hour period by assigning a segment to
each simulated node.

To make our algorithm phone and user friendly, we consider a device to be
online (available) when it has been on a charger and connected to the Internet
(with a bandwidth of at least 1 Mbit/s) for at least a minute, therefore we do
not use battery power at all.

The main properties of the trace are shown in Figure 2. The plot on the
right illustrates churn by showing what percentage of the nodes left, or joined
the network (at least once) in any given hour. Notice that at any given moment
about 20% of the nodes are online. The mean online session length is 81.368 min.

6.4 Hyperparameters

The learning rate η and regularization parameter λ were optimized in the churn-
free, low-bandwidth, uncompressed scenario. The resulting values are η = 10−2

and λ = 10−1, as shown in Table 1. We used rank-5 factorization.

6.5 Results

We used PeerSim [13] for the simulations. We measured performance with the
help of the root-mean-square deviation

RMSE =

√
1

|T |

∑

i,j∈T

(ri,j − xiyTj )
2,

where R ∈ IRm×n is the test matrix, and T is the set of indices defined in R. In
the case of gossip learning, the error is calculated using the models stored in the
currently online nodes and the corresponding rows of R. In the case of federated
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Fig. 3. Churn-free scenario with 1 epoch (left) and 10 epochs (right).

learning, the aggregated global model is used instead of the local ones. Figure 3
contains our results without churn, and Figure 4 shows the same experiments
over the smartphone trace. The evaluated algorithms are

Gossip Learning: no merging and no subsampling. Here, the cycle length
equals the time needed for one full model transmission.

Gossip Learning Merge: with merging but no subsampling, so the cycle length
is still one full transmission.

Gossip Learning 10%: with merging and subsampling with s = n/10. Here,
the cycle length corresponds to 0.1 full transmissions.

Federated Learning: no subsampling, so the cycle length corresponds to two
full transmissions: upload and download.



Federated Learning 10%: the uploaded model is subsampled with s = n/10,
so the cycle length corresponds to 1.1 full transmissions.

In Figure 3 we include results with 1 and 10 epochs of local learning in the
left and right columns, respectively. In the case of 10 epochs, the local gradi-
ent update step is iterated 10 times. Clearly, for both methods, increasing the
number of epochs improves convergence speed without any extra communica-
tion. The compressed variants consistently perform better. Federated learning
has an initial advantage, which disappears after a few hours. In fact, for the
largest problem, gossip learning is almost identical to federated learning, and
the difference between the two methods seems to decrease with increasing net-
work size. Interestingly, when only 1 epoch is performed, gossip learning actually
outperforms federated learning by a significant margin especially on the largest
network.

In Figure 4 we ran one local epoch in each experiment, but the plots on
the right show the effect of speeding up communication. Faster communication
results in a dramatically better performance, simply because the convergence
speed is able to “beat” the speed of churn. Apart from this observation, the
other conclusions are similar, namely compression helps both methods and gossip
learning performs relatively better in larger networks. Overall, federated learning
and gossip learning have a very similar performance, despite the disadvantage of
gossip learning of not relying on a central server for aggregation and broadcast.

7 Conclusions

In this study, our main goal was to explore the differences between federated
learning and gossip learning over a collaborative filtering task. Since gossip learn-
ing does not rely on central servers, one might expect it to pay a performance
penalty in terms of convergence speed, when given the same communication
budget.

Our main conclusion based on our empirical study is that federated learning
does not seem to have a clear performance advantage. In fact, in certain sce-
narios gossip learning proved to be preferable. Obviously, the design space for
both protocols is very large, and there are many possibilities for improving the
communication efficiency in both paradigms. It is also a non-trivial question of
how one should model communication constraints and costs, since this depends
on many factors. However, it is interesting, and perhaps non-trivial, that gossip
learning is clearly comparable in performance. This might motivate further re-
search into fully decentralized methods that otherwise have clear benefits such
as a very low cost of entry that is not dependent of the network size, or the
robustness due to the lack of any critical components.
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