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Abstract. The peer sampling service is a middleware service that provides ran-

dom samples from a large decentralized network to support gossip-based appli-

cations such as multicast, data aggregation and overlay topology management.

Lightweight gossip-based implementations of the peer sampling service have

been shown to provide good quality random sampling while also being extremely

robust to many failure scenarios, including node churn and catastrophic failure.

We identify two problems with these approaches. The first problem is related

to message drop failures: if a node experiences a higher-than-average message

drop rate then the probability of sampling this node in the network will decrease.

The second problem is that the application layer at different nodes might request

random samples at very different rates which can result in very poor random

sampling especially at nodes with high request rates. We propose solutions for

both problems. We focus on Newscast, a robust implementation of the peer sam-

pling service. Our solution is based on simple extensions of the protocol and an

adaptive self-control mechanism for its parameters, namely—without involving

failure detectors—nodes passively monitor local protocol events using them as

feedback for a local control loop for self-tuning the protocol parameters. The

proposed solution is evaluated by simulation experiments.

1 Introduction

In large and dynamic networks many protocols and applications require that the partic-

ipating nodes be able to obtain random samples from the entire network. Perhaps the

best-known examples are gossip protocols [1], where nodes have to periodically ex-

change information with random peers. Other P2P protocols that also require random

samples regularly include several approaches to aggregation [2, 3] and creating overlay

networks [4–7], to name just a few.

One possibility for obtaining random samples is to maintain a complete membership

list at each node and draw samples from that list. However, in dynamic networks this

approach is not feasible. Several approaches have been proposed to implementing peer

sampling without complete membership information, for example, based on random

walks [8] or gossip [9–11].
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Algorithm 1 Newscast

1: loop

2: wait(∆)
3: p← getRandomPeer()

4: buffer← merge(view,{myDescriptor})

5: send update(buffer) to p
6: end loop

7:

8: procedure ONUPDATERESPONSE(m)

9: buffer← merge(view,m.buffer)

10: view← selectView(buffer)

11: end procedure

12: procedure ONUPDATE(m)

13: buffer← merge(view,{myDescriptor})

14: send updateResponse(buffer) to m.sender

15: buffer← merge(view,m.buffer)

16: view← selectView(buffer)

17: end procedure

Gossip-based solutions are attractive due to their low overhead and extreme fault

tolerance [12]. They tolerate severe failure scenarios such as partitioning, catastrophic

node failures, churn, and so on. At the same time, they provide good quality random

samples.

However, known gossip-based peer sampling protocols implicitly assume the uni-

formity of the environment, for example, message drop failure and the rate at which

the application requests random samples are implicitly assumed to follow the same

statistical model at each node. As we demonstrate in this paper, if these assumptions

are violated, gossip based peer sampling can suffer serious performance degradation.

Similar issues have been addressed in connection with aggregation [13].

Our contribution is that, besides drawing attention to these problems, we propose

solutions that are based on the idea that system-wide adaptation can be implemented

as an aggregate effect of simple adaptive behavior at the local level. The solutions for

the two problems related to message drop failures and application load both involve a

local control loop at the nodes. The local decisions are based on passively observing

the local events and do not involve explicit failure detectors, or reliable measurements.

This feature helps to preserve the key advantages of gossip protocols: simplicity and

robustness.

2 Peer Sampling with Newscast

In this section we present a variant of gossip-based peer sampling called Newscast (see

Algorithm 1). This protocol is an instance of the protocol scheme presented in [12],

tuned for maximal self-healing capabilities in node failure scenarios. Here, for simplic-

ity, we present the protocol without referring to the general scheme.

Our system model assumes a set of nodes that can send messages to each other. To

send a message, a node only needs to know the address of the target node. Messages

can be delayed by a limited amount of time or dropped. Each node has a partial view

of the system (view for short) that contains a constant number of node descriptors. The

maximal size of the view is denoted by c. A node descriptor contains a node address

that can be used to send messages to the node, and a timestamp.



The basic idea is that all the nodes exchange their views periodically, and keep only

the most up-to-date descriptors of the union of the two views locally. In addition, every

time a node sends its view (update message) it also includes an up-to-date descriptor of

itself.

Parameter ∆ is the period of communication common to all nodes. Method ge-

tRandomPeer simply returns a random element from the current view. Method merge

first merges the two lists it is given as parameters, keeping only the most up-to-date

descriptor for each node. Method selectView selects the most up-to-date c descriptors.

Applications that run on a node can request random peer addresses from the entire

network through an API that Newscast provides locally at that node. The key element of

the API is method getRandomPeer. Though in a practical implementation this method is

not necessarily identical to the method getRandomPeer that is used by Newscast inter-

nally (for example, a tabu list may be used), in this paper we assume that the application

is simply given a random element from the current view.

Lastly, we note that although this simple version of Newscast assumes that the

clocks of the nodes are synchronized, this requirement can easily be relaxed. For ex-

ample, nodes could adjust timestamps based on exchanging current local times in the

update messages, or using hop-count instead of timestamps (although the variant that

uses hop-count is not completely identical to the timestamp-based variant).

3 Problem Statement

We identify two potential problems with Newscast noting that these problems are com-

mon to all gossip-based peer sampling implementations in [12]. The first problem is

related to message drop failures, and the second is related to unbalanced application

load.

3.1 Message Drop Failure

Gossip-based peer sampling protocols are designed to be implemented using lightweight

UDP communication. They tolerate message drop well, as long as each node has the

same failure model. This assumption, however, is unlikely to hold in general. For ex-

ample, when a lot of failures occur due to overloaded routers that are close to a given

node in the Internet topology, then UDP packet loss rate can be higher than average at

the node. In this case, fewer copies of the descriptor of the node will be present in the

views of other nodes in the network violating the uniform randomness requirement of

peer sampling.

Figure 1 illustrates this problem in a network where there is no failure, only at

a single node. This node experiences a varying drop rate, which is identical for both

incoming and outgoing messages. The Figure shows the representation of the node in

the network as a function of drop rate. Note the non-linearity of the relation. (For details

on experimental methodology see Section 4.3.)
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Fig. 1. Illustrations of two problems with gossip-based peer sampling. Parameters: c = 20, N =
10, 000, the number of own entries in network is the average of 100 consecutive cycles.

3.2 Unbalanced Application Load

At different nodes, the application layer can request random samples at varying rates.

Gossip-based peer sampling performs rather poorly if the required number of samples

is much higher than the view size c over a time period of ∆ as nodes participate in

only two view exchanges on average during that time (one initiated and one passive).

Figure 1 illustrates the problem. It shows the number of unique samples provided by

Newscast as a function of time at a node where the application requests random samples

at a uniform rate with a period of ∆/1000.

4 Message Drop Failure

4.1 Algorithm

We would like to adapt the period ∆ of Newscast (Algorithm 1) at each node in such

a way that the representation of each node in the network is identical, irrespective of

message drop rates. This means that ideally all the nodes should have c copies of their

descriptor since the nodes hold Nc entries altogether, where N is the number of nodes.

We make the assumption that for each overlay link (i, j) there is a constant drop

rate λi,j , and all the messages passing from i to j are dropped with a probability of λi,j .

According to [14] this is a reasonable assumption. For the purpose of performing sim-

ulation experiments we will introduce a more specific structural model in Section 4.2.

The basic idea is that all the nodes passively monitor local messages and based on

this information they decide whether they are under- or overrepresented in the network.

Depending on the result, they slightly decrease or increase their period in each cycle,

within the interval [∆min, ∆max].

Let us now elaborate on the details. All the nodes collect statistics about the in-

coming and outgoing message types in a moving time window. The length of this time

window is ∆stat. The statistics of interest (along with notations) are the following (note

that we have omitted the node id from the notations for the sake of clarity): the number



of update messages sent (uout), the number of update messages received (uin), and the

number of update response messages received (rin).

From these statistics, a node approximates its representation in the network (n).

Clearly, n is closely related to uin. The exact relationship that holds for the expectation

of uin is

E(uin) =
1

c
Pinn∆statφavg, (1)

where c is the view size, Pin is the probability that a message sent from a random node

is received, and φavg is the average frequency of the nodes in the network at which they

send update messages.

The values for this equation are known except Pin and φavg . Note however, that

φavg is the same for all nodes. In addition, φavg is quite close to 1/∆max if most of the

nodes have close to zero drop rates, which is actually the case in real networks [14]. For

these two reasons we shall assume from now on that φavg = 1/∆max. We validate this

assumption by performing extensive experiments (see Section 4.3).

The only remaining value to approximate is Pin. Here we focus on the symmetric

case, when λi,j = λj,i. It is easy to see that here E(rin) = P 2

inuout, since all the links

have the same drop rate in both directions, and to get a response, the update message

first has to reach its destination and the response has to be delivered as well. This gives

us the approximation Pin ≈
√

rin/uout.

Once we have an approximation for Pin and calculate n, each node can apply the

following control rule after sending an update:

∆(t+ 1) =











∆(t)− α+ β if n < c

∆(t) + α+ β if n > 2c

∆(t) + α(n/c− 1) + β otherwise,

(2)

where we also bound ∆ by the interval [∆min, ∆max]. Parameters α and β are positive

constants; α controls the maximal amount of change that is allowed in one step towards

achieving the desired representation c, and β is a term that is included for stability: it

always pulls the period towards∆max. This stabilization is necessary because otherwise

the dynamics of the system will be scale invariant: without β, for a setting of periods

where nodes have equal representation, they would also have an equal representation if

we multiplied each period by an arbitrary factor. It is required that β ≪ α.

Although we do not evaluate the asymmetric message drop scenario in this paper

(when λi,j 6= λj,i), we briefly outline a possible solution for this general case. As in

the symmetric case, what we need is a method to approximate Pin. To achieve this we

need to introduce an additional trick into Newscast: let the nodes send R independent

copies of each update response message (R > 1). Only the first copy needs to be a

full message, the remaining ones could be simple ping-like messages. In addition, the

copies need not be sent at the same time, they can be sent over a period of time, for

example, over one cycle. Based on these ping messages we can use the approximation

Pin ≈ rin/(Rnin), where nin is the number of different nodes that sent an update

response. In other words, we can directly approximate Pin by explicitly sampling the

distribution of the incoming drop rate from random nodes.
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Fig. 2. The topological structure of the message drop failure model.

This solution increases the number of messages sent by a factor of R. However,

recalling that the message complexity of gossip-based peer sampling is approximately

one UDP packet per node during any time period ∆, where ∆ is typically around 10

seconds, this is still negligible compared to most current networking applications.

4.2 Message Drop Failure Model

In our model we need to capture the possibility that nodes may have different message

drop rates, as discussed in Section 3.1. The structure of our failure model is illustrated in

Figure 2. The basic idea is that all the nodes have a link to the core Internet that captures

their local environment. The core is assumed to have unbiased failure rates; that is, we

assume that for any given two links, the path that crosses the core has an identical failure

model. In other words, we simply assume that node-specific differences in failure rates

are due to effects that are close to the node in the network. We define the drop rate of a

link (i, j) by λi,j = λiλj .

We assume that each message is dropped with a probability independent of previous

message drop events. This is a quite reasonable assumption as it is known that packet

loss events have negligible autocorrelation if the time lag is over 1000 ms [14].

It should be mentioned that the algorithm we evaluate does not rely on this model

for correctness. This model merely allows us (i) to control the failure rate at the node

level instead of the link level and (ii) to work with a compact representation.

As for the actual distributions, we evaluate three different scenarios:

single-drop As a baseline, we consider the model where any node i has λi = 0, except

a single node that has a non-zero drop-rate.
uniform Drop rate λi is drawn from the interval [0, 0.5] uniformly at random.
exponential Based on data presented in [14] we approximate 100λi (the drop rate ex-

pressed as the percentage of dropped messages) by an exponential distribution with

parameter 1/4, that is, P (100λi < x) = 1− e−0.25x. The average drop rate is thus

4%, and P (100λi > 20%) ≈ 0.007.

4.3 Evaluation

In order to carry out simulation experiments, we implemented the algorithm over the

event-based engine of PeerSim [15]. The parameter space we explored contains every
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Fig. 3. The effect of ∆stat on n. The fixed parameters are N = 5, 000, α = ∆max/1000,

β = α/10, exponential drop rate distribution. Message delay is zero (left) or uniform random

from [0, ∆max/10] (right).

combination of the following settings: the drop rate distribution is single-drop, uniform,

or exponential; α is ∆max/1000 or ∆max/100; β is 0, α/2, or α/10; and ∆stat is

∆max, 2∆max, 5∆max, or 20∆max. If not otherwise stated, we set a network size

of N = 5000 and simulated no message delay. However, we explored the effects of

message delay and network size over a subset of the parameter space, as we explain

later. Finally, we set c = 20 and ∆min = ∆max/10 in all experiments.

The experiments were run for 5000 cycles (that is, for a period of 5000∆max time

units), with all the views initialized with random nodes. During a run, we observed the

dynamic parameters of a subset of nodes with different failure rates. For a given failure

rate, all the plots we present show average values at a single node of the given failure

rate over the last 1500 cycles, except Figure 6 that illustrates the dynamics (convergence

and variance) of these values.

Let us first consider the role of ∆stat (see Figure 3). We see that small values intro-

duce a bias towards nodes with high drop rates. The reason for this is that with a small

window it often happens that no events are observed due to the high drop rate, which

results in a maximal decrease in ∆ in accordance with the control rule in (2). We fix the

value of 20∆max from now on.

In Figure 3 we also notice that the protocol tolerates delays very well, just like

the original version of Newscast. For parameter settings that are not shown, delay has

no noticeable effect either. This is due to the fact that we apply no failure detectors

explicitly, but base our control rule just on passive observations of average event rates

that are not affected by delay.

Figure 4 illustrates the effect of coefficients α and β. The strongest effect is that the

highest value of β introduces a bias against nodes with high drop rates. This is because

a high β strongly pushes the period towards its maximum value, while nodes with high

drop rates need a short period to get enough representation.

In general, the smaller value for α is more stable than the higher value for all values

of β, which is not surprising. However, setting a value that is too small slows down

convergence considerably. Hence we will set α = ∆max/1000 and β = α/10.
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distribution (left).

In Figure 5 we see that the algorithm with the recommended parameters produces

a stable result irrespective of network size or message drop rate distribution. There is

a notable exception: the uniform distribution, where nodes with very small drop rates

get slightly overrepresented. To see why this happens, recall that in the algorithm we

made the simplifying assumption that the average update frequency is 1/∆max. This

assumption is violated in the uniform model, where the average drop rate is very high

(0.25) which noticeably increases the average update frequency.

However, in practice, due to the skewed distribution, the average drop rate is small.

Second, in special environments where the average rate is high, one can approximate

the average rate using suitable techniques (for example, see [3]).

Finally, in Figure 6 we show the dynamics of ∆ and n with the recommended pa-

rameter settings. We observe that convergence requires approximately 500 cycles after

which the periods of the nodes fluctuate in a bounded interval. The Figure also shows n
as a function of time. Here we see that the variance is large. However, most importantly,

it is not larger than that of the original Newscast protocol where this level of variance

is normal [12].
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5 Unbalanced Application Load

5.1 Algorithm

If the application at a node requests many random samples, then the node should com-

municate faster to refresh its view more often. Nevertheless we should mention that it is

not a good solution to simply speed up Algorithm 1 locally. This is because in this case

a fast node would inject itself into the network more often, quickly getting a dispropor-

tionate representation in the network. To counter this, we need to keep the frequency of

update messages unchanged and we need to introduce extra shuffle messages without

injecting new information.

To further increase the diversity of the peers to be selected, we apply a tabu list as

well. Algorithm 2 implements these ideas (we show only the differences from Algo-

rithm 1).

Shuffle messages are induced by the application when it calls the API of the peer

sampling service; that is, procedure getRandomPeer: the node sends a shuffle message

after every S random peer requests. In a practical implementation one might want to

set a minimal waiting time between sending two shuffle messages. In this case, if the

application requests random peers too often, then it will experience a lower quality of

Algorithm 2 Extending Newscast with on-demand shuffling

1: procedure GETRANDOMPEER

2: p← findFreshPeer()

3: tabuList.add(p)

4: counter← counter+1

5: if counter=S then

6: counter← 0

7: send shuffleUpdate(view) to p
8: end if

9: return p
10: end procedure

11: procedure ONSHUFFLEUPDATERESPONSE(m)

12: buffer←m.buffer

13: counter← 0
14: end procedure

15:

16: procedure ONSHUFFLEUPDATE(m)

17: (buffer1,buffer2)← shuffle(view,m.buffer)

18: send shuffleUpdateResp(buffer1) to m.sender

19: buffer← buffer2
20: end procedure



service (that is, a lower degree of randomness) if we decide to simply not send the

shuffle message; or a delayed service if we decide to delay the shuffle message.

We should add that the idea of shuffling is not new, the Cyclon protocol for peer

sampling is based entirely on shuffling [10]. However, Cyclon itself shares the same

problem concerning non-uniform application load; here the emphasis is on adaptively

applying extra shuffle messages where the sender does not advertise itself.

The tabu list is a FIFO list of fixed maximal size. Procedure findFreshPeer first

attempts to pick a node address from the view that is not in the tabu list. If each node in

the view is in the tabu list, a random member of the view is returned.

Note that the counter is reset when an incoming shuffle message arrives. This is

done so as to avoid sending shuffle requests if the view has been refreshed during the

waiting period of S sample requests.

Finally, procedure shuffle takes the two views and for each position it randomly

decides whether to exchange the elements in that position; that is, no elements are

removed and no copies are created.

5.2 Evaluation

Like in Section 4.3, we ran event-driven simulations over PeerSim. Messages were

delayed using a uniform random delay between 0 and a given maximal delay.

In all the experiments, we worked with a scenario where peer sampling requests are

maximally unbalanced: we assumed that the application requests samples at a high rate

on one node, and no samples are requested on the other nodes. This is our worst case

scenario, because there is only one node that is actively initiating shuffle requests. The

other nodes are passive and therefore can be expected to refresh their own view less

often.

The experimental results are shown in Figure 7. The parameters we examine are

S, the size of the tabu list, network size (N ) and the maximal delay. The values of

the maximal delay go up to 0.3∆, which is already an unrealistically long delay if we

consider that practical values of ∆ are high, around 10 seconds or more. In fact, in the

present adaptive version ∆ can be much higher since randomness is provided by the

shuffling mechanism.

First of all, we notice that for many parameter settings we can get a sample diversity

that is almost indistinguishable from true random sampling, especially when S and the

maximal delay are relatively small. For S = 2 and S = 4 the returned samples are still

fairly diverse, which permits one to reduce the number of extra messages by a factor of

2 or even 4. The tabu list is “free” in terms of network load, so we can set high values,

although beyond a certain point having higher values appears to make no difference.

The algorithm is somewhat sensitive to extreme delay, especially during the initial

sample requests. This effect is due to the increased variance of message arrival times,

since the number of messages is unchanged. Due to variance, there may be large inter-

vals when no shuffle responses arrive. This effect could be alleviated via queuing the

incoming shuffle responses and applying them in equal intervals or when the application

requests a sample.
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Fig. 7. Experimental results with adaptive shuffling for N = 104 if not otherwise indicated. In

B/W print, lines are shown in the same line-type: the order of keys matches the order of curves

from top to bottom.

Since large networks are very expensive to simulate, we will use just one parameter

setting for N = 105 and N = 106. In this case we observe that for large networks

randomness is in fact slightly better, so the method scales well.

6 Conclusions

In this paper we identified two cases where the non-uniformity of the environment can

result in a serious performance degradation of gossip-based peer sampling protocols,

namely non-uniform message drop rates and an unbalanced application load.

Concentrating on Newscast we offered solutions to these problems based on a sta-

tistical approach, as opposed to relatively heavy-weight reliable measurements, reliable

transport, or failure detectors. Nodes simply observe the local events and based on that

they modify the local parameters. As a result, the system converges to a state that can

handle non-uniformity.

The solutions are cheap: in the case of symmetric message drop rates we require no

extra control messages at all. In the case of application load, only the local node has

to initiate extra exchanges proportional to the application request rate; but for any sam-

pling protocol that maintains only a constant-size state this is a minimal requirement.
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