
Overlay Management for Fully Distributed User-based

Collaborative Filtering⋆

Róbert Ormándi1, István Hegedűs1 and Márk Jelasity2

1 University of Szeged, Hungary

{ormandi,ihegedus}@inf.u-szeged.hu
2 University of Szeged and Hungarian Academy of Sciences, Hungary

jelasity@inf.u-szeged.hu

Abstract. Offering personalized recommendation as a service in fully distributed

applications such as file-sharing, distributed search, social networking, P2P tele-

vision, etc, is an increasingly important problem. In such networked environ-

ments recommender algorithms should meet the same performance and reliabil-

ity requirements as in centralized services. To achieve this is a challenge because

a large amount of distributed data needs to be managed, and at the same time

additional constraints need to be taken into account such as balancing resource

usage over the network. In this paper we focus on a common component of many

fully distributed recommender systems, namely the overlay network. We point

out that the overlay topologies that are typically defined by node similarity have

highly unbalanced degree distributions in a wide range of available benchmark

datasets: a fact that has important—but so far largely overlooked—consequences

on the load balancing of overlay protocols. We propose algorithms with a favor-

able convergence speed and prediction accuracy that also take load balancing into

account. We perform extensive simulation experiments with the proposed algo-

rithms, and compare them with known algorithms from related work on well-

known benchmark datasets.

1 Introduction

Offering useful recommendations to users of fully distributed systems is clearly a desir-

able function in many application domains. Some examples for larger efforts towards

this goal are the Tribler platform [1] and more recently the Gossple project [2]. A fully

distributed approach is also more preferable relative to centralized solutions, due to the

increasing concerns over privacy.

However, the problem is also extremely challenging. Apart from the fact that cen-
tralized recommender systems—although working reasonably sometimes—are still far

from perfect, offering good recommendations in fully distributed systems involves a

number of special problems like efficiency, security and reliability, to name just a few.

In this work we focus on a class of recommender systems, the so called user-based

collaborative filtering algorithms that are fairly simple, yet provide a reasonable perfor-

mance [3]. The key concept is a similarity metric over the users, and recommendations

are made on the basis of information about similar users.

⋆ The original publication is available at www.springerlink.com in Euro-Par 2010, LNCS 6271,

pp446–457, Springer (doi:10.1007/978-3-642-15277-1 43). M. Jelasity was supported by the

Bolyai Scholarship of the Hungarian Acad. Sci. This work was partially supported by the FET

programme FP7-COSI-ICT of the EC through project QLectives (grant no.: 231200).

This idea also naturally lends itself to a distributed implementation, as it can be

easily supported by similarity-based overlay networks as a simple service, that also

have applications in other domains such as search. Indeed, many distributed protocols

from related work follow this path in some way or another.

In this work we would like to shed light on the effects of the basic design choices in
this domain with respect to recommendation performance, convergence time, and the

balancing of the network load that the system generates during its operation.

Our contribution is threefold. First, we draw attention to the potential load bal-

ancing problem in distributed systems that manage similarity-based overlays for any

purpose including recommendation or search. Second, we propose novel algorithms

for similarity-based overlay construction. Third, we perform extensive simulation ex-
periments on large benchmark datasets and compare our set of algorithms with each

other and with a number of baselines. We measure prediction performance, examine its

convergence and dynamics, and we measure load balancing as well.

2 Related Work

First we overview relevant ideas in recommender systems in general, and subsequently
we discuss related work in the fully distributed implementations of these ideas, as well

as additional related work that are based on similar abstractions.

A recommender system can be viewed as a service which supports e-commerce

activities by providing items of interest for the users [4]. These algorithms are often

centralized and Web-based operating on huge amounts of data—mainly on the previous

ratings of the users. The algorithms which are based on the previous ratings of other
similar users follow the so-called collaborative filtering (CF) approach. They are based

on the simple heuristic that people who agreed (or disagreed) in the past will probably

agree (or disagree) again. Thus, the predicted rate of an unseen item for a given user

can be estimated on the basis of the rates of other users with similar tastes.

In the field of CF algorithms there exist numerous approaches. User-based ap-
proaches try to model the rating of a given item for a user by an aggregation of ratings

of other users on the same item [3]. Although these approaches are very simple and

intuitive, they provide a relatively good performance [5]. User-based CF algorithms

are modular, hence they can be used with different aggregation methods and similarity

metrics. One widely-used aggregation method is

r̂u,i =

∑
v∈Nu

su,v (rv,i − r̄v)
∑

v∈Nu
|su,v|

+ r̄u (1)

defined in [6], where ru,i and r̂u,i denote the known and the predicted rate of item i
by user u, r̄u and Nu denote the average rate and the neighbor set of user u, and su,v
measures the similarity between user u and v (e.g. Cosine similarity [3] or Pearson

similarity [3] can be employed).

Our preliminary experiments showed that (among several variants) the aggregation

method in (1) combined with the Cosine user similarity gives the best performance on

our particular benchmarks. Since the focus of the present work is not recommendation

performance per se, but the analysis of several distributed implementations of the basic
idea of user-based CF, we fixed these methods in our experiments.

We should mention that there are numerous other approaches for recommendation

such as the ones based on machine learning [7, 8], matrix factorization [9], generative

models [10], clustering [11, 8], and dimension-reduction [7, 12].

Moving on to distributed methods, we emphasize that we focus on P2P recommen-

dation, and not on parallel implementations of centralized recommender techniques

(such as matrix factorization, etc.). We consider only works that go beyond a simple
idea and present at least some evaluations on benchmarks.

The largest group of methods define an overlay network based on some sort of

similarity, and define a recommender algorithm on this network. For example, [4] and

[13] follow this approach, although the overlay construction itself is not discussed or it

is assumed to be done offline. The recommender algorithms then perform a search in

this overlay up to a certain depth or up to a certain level of similarity, and aggregate the
matching users with a standard method.

A slightly weaker approach is described in [14], where only a random network is

assumed and the recommendation problem is treated as a search problem where a node

needs to find similar users using a flooding based unstructured search.

A somewhat surprising result is described by Bakker at al [15], where they argue

that in fact it is enough to take a random sample of the network and use the closest

elements of that sample to make recommendations. Our results are consistent with this
observation, although we describe better and equally cheap alternatives.

A more sophisticated approach is described by Bickson et al [16]. They define rec-

ommendation as a smoothing operation over a social network, which is expressed as a

minimization problem using an objective function that expresses the requirements for

the recommendation. The problem is solved by using an iterative method. Unfortunately

no results are given on recommender system benchmarks due to the slightly different
formulation of the basic problem.

It is of course possible to apply distributed hash tables [17]. Here, users are stored in

a hash table and they are indexed by (item, rate) pairs as keys. Using this data structure,

the users for a given item and rate are available from the distributed hash table (DHT)

on demand. This method is not scalable if there are many recommendations to be made

in the system, since the necessary information is not always available locally.
One of the most detailed studies on distributed recommender systems with perfor-

mance evaluation can be found in [18]. The proposed models were implemented on the

basis of the BUDDYCAST [19] overlay management service, which is the main overlay

management method of the Tribler file sharing protocol [1]. We used our own imple-

mentation of this model as a baseline method, since the original study [18] did not carry

out load balancing measurements.

Finally, although not directly related to the recommender systems, the area of ex-
ploiting semantic proximity for search also involves building overlay networks based

on node similarity and therefore our algorithms and observations are relevant in this

area as well. Examples of research in this area are described in [2, 20–22].

3 Interesting Properties of CF Datasets

In our simulations we applied three different benchmark datasets, namely the Movie-

Lens [5] dataset, the Jester [12] dataset and the BookCrossing [23] dataset. In this

section we introduce these benchmarks and show some of their properties that raise
interesting—and so far largely overlooked—problems in distributed environments.

 1

 10

 100

 1000

 1 10 100 1000 10000 100000

fr
e
q

u
e
n

c
y

in-degree

MovieLens

k=100
k=200

 1

 10

 100

 1000

 1 10 100 1000 10000 100000

fr
e
q

u
e
n

c
y

in-degree

Jester

k=100
k=200

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000

fr
e
q

u
e
n

c
y

in-degree

BookCrossing

k=100
k=200

Fig. 1. In-Degree Distribution of Benchmark Datasets

Table 1 summarizes some basic statistics of our datasets. In the case of MovieLens

we used the official ra partition so that its evaluation set contained 10 ratings per user.

For Jester and BookCrossing we produced the evaluation set as proposed in [15]: we

withheld 6 ratings from the training set where possible (if the user under consideration

had at least 6 rated items). In this table ’# items ≥’ means the minimal number of
items rated by some user. Sparsity denotes the ratio of existing and possible rates in the

training sets. The value MAE(med) is a trivial baseline for prediction performance; it

is defined as the mean absolute error (MAE) computed on the evaluation set using the

median-rate of training set as a prediction value. Clearly, a very significant difference

can be found in properties related to sparsity. This will have significant implications on

the performance of our algorithms, as we show later.

As mentioned before, in distributed settings one suitable and popular approach is to

build and manage an overlay that connects similar users. This overlay can be viewed

as a graph where each node corresponds to a user and there is a directed edge between
user A and B if and only if user B belongs to the most similar users of A. This overlay

plays an important role in a P2P recommender system. First, the performance of the

recommendation depends on the structure of the overlay. Second, the costs and load

balancing of the overlay management protocol depend on the topology of this similarity

network.

To the best of our knowledge, the second role of the similarity overlay has not been

addressed so far in the literature. Nevertheless it is an important issue, since the load

generated by the overlay management process might correlate with the number of nodes

Table 1. Basic statistics of datasets

MovieLens Jester BookCrossing

users 71,567 73,421 77,806

items 10,681 100 185,974

size of train 9,301,274 3,695,834 397,011

sparsity 1.2168% 50.3376% 0.0027%

size of eval 698,780 440,526 36,660

eval/train 7.5127% 11.9195% 9.2340%

items ≥ 20 15 1

rate set 1, . . . , 5 −10, . . . , 10 1, . . . , 10

MAE(med) 0.93948 4.52645 2.43277

that link to a given node as one of its most similar nodes. More precisely, the load of

a node might correlate with its in-degree in the overlay network. Thus, if the in-degree

distribution of the overlay network is extremely unbalanced (e.g. if it has a power-law

distribution), some of the nodes can experience a load that is orders of magnitudes

higher than the average. Thus, it is very important to consider the in-degree distribution

of the overlay when planning a P2P recommender system, and examine the incurred
loads on the individual nodes as a function of this distribution.

Figure 1 shows the in-degree distributions of the k nearest neighbor (kNN) overlay

of each benchmark dataset. In this overlay each node has k directed outgoing edges to

the k most similar nodes. As can be seen from the plots, the BookCrossing dataset has

an almost power-law in-degree distribution, with many nodes having incoming links

from almost every other node (note that the size of this dataset is around 77,806 users).
To see whether this might be a general property of high dimensional datasets, we

need to consider some basic properties of high dimensional metric spaces. If we gen-

erate high dimensional uniform random datasets from the unit cube and construct their

kNN graphs, we will find that most of the points lie on the convex hull of the dataset.

These points are mostly situated at the same distance from each other. The nodes cor-

responding to these points have a mostly uniform and relatively small in-degree in the

kNN graph. The very few points inside the convex hull are close to a huge number of
points on the convex hull, and so have high in-degree.

These observations indicate that we have to explicitly take into account load bal-

ancing when building a recommender system in a fully distributed manner.

4 Algorithms

The algorithms we examine all rely on building and managing a user-similarity overlay.

In the top level of the protocol hierarchy, they apply the same user-based CF algorithm
for making recommendations, strictly using locally available information (that is, infor-

mation about the neighbors in the overlay).

Since we focus on overlay management, we fix the recommender algorithm and

not discuss it any further. As it was mentioned in the previous sections, for this we

need an aggregation method and a user similarity metric. We selected the aggregation

shown in (1), proposed in [6]. Our similarity metric is Cosine similarity, which achieved

the best performance on our benchmarks. Note that the selected user similarity is of
course known to the overlay management algorithm and is used to direct the overlay

construction.

We also assume that the local views of the nodes contain not only the addresses of

the neighbors, but also a descriptor for each neighbor, that contains ratings made by the

corresponding user. This implies that computing recommendation scores do not load

the network since all the necessary information is available locally. However, there is
a drawback; namely the stored information is not up-to-date. As we will show later,

this is not a serious problem since on the one hand, recommendation datasets are not

extremely dynamic and, on the other hand, the descriptors are in fact refreshed rather

frequently due to the management algorithms.

In sum, the task of overlay management is to build and maintain the best possible

overlay for computing recommendation scores, by taking into account bandwidth usage

at the nodes. We expect a minimal, uniform load from overlay management even when
the in-degree distribution of the expected overlay graph is unbalanced.

Algorithm 1 Random Nodes based Overlay Management

Parameters: k: the size of view; r: the number of randomly generated nodes

1. while true do

2. samples← getRandomPeers(r)

3. for i = 1 to r do

4. peer← get(samples, i)

5. peerDescriptor← descriptor(peer)

6. insert(view, peerDescriptor)

4.1 BUDDYCAST based Recommendation

As we mentioned earlier we applied the BUDDYCAST overlay management protocol
as a baseline method. Now we give a very brief overview of this algorithm and its

numerous parameters; for details please see [19].

The algorithm maintains a number of lists containing node descriptors. The taste

buddy list contains the most similar users (peers), all those who communicated with the

node before. The recommendation for a peer is calculated based on this list.

The BUDDYCAST algorithm contains a mechanism for load balancing: a block list.

Communication with a peer on the block list is not allowed. If a node communicates

with another peer, it is put on the block list for four hours.

Finally, a node also maintains a candidate list, which contains close peers for po-

tential communication, as well as a random list that contains random samples from
the network. For overlay maintenance, each node periodically (in every 15 seconds by

default) connects to the best node from the candidate list with probability α, and to a

random list with probability 1− α, and exchanges its buddy list with the selected peer.

4.2 kNN Graph from Random Samples

We assume that a node has a local view of size k that contains node descriptors. These

will be used by the recommender algorithm.

In Algorithm 1 each node is initialized with k random samples from the network,

and they iteratively approximate the kNN graph. The convergence is based on a random

sampling process which generates r random nodes from the whole network in each

iteration. These nodes are inserted into the view which is implemented as a bounded
priority queue. The size of this queue is k and the priority is based on the similarity

function provided by the recommender module.

Applying a priority queue here on the basis of similarities means that nodes re-

member the most similar nodes from the past iterations. This means that since random

samples are taken from the entire network, each node will converge to its kNN view

with positive probability.

Method GETRANDOMPEERS can be implemented, for example, using the NEWS-

CAST [24] protocol.

This algorithm does converge, as argued above, albeit very slowly. However, it is

guaranteed to generate an almost completely uniform load since the only communi-

cation that takes place is performed by the underlying peer sampling implementation
(NEWSCAST), which has this property.

4.3 kNN Graph by T-MAN

We can manage the overlay with the T-MAN algorithm as well [25]. This algorithm

manages a view of size k, as in the random algorithm above. T-MAN periodically up-

dates this view by first selecting a peer node to communicate with, then exchanging its
view with the peer, and finally merging the two views and keeping the closest k descrip-

tors. This is very similar to Algorithm 1, but instead of r random samples the update is

performed using the k elements of the view of the selected peer.

In this paper we examine the following methods for T-MAN which are employed as

peer selection methods:

Global: This approach selects the node for communication from the whole network
randomly. This can be done by using a NEWSCAST layer as it was described in the pre-

vious section. We expect this approach to distribute the load in the network uniformly

since with this selection the incoming communication requests do not depend on the

in-degree of the kNN graph at all.

View: In this approach the node for communication is selected from the view of the

current node uniformly at random. The mechanism of this selection strategy is similar

to the previous one, but the spectrum of the random selection is smaller since it is
restricted to the view instead of the whole network.

Proportional: This approach also selects a node for view exchange from the view of

the current node, but here we define a different probability distribution. This distribution

is different for each node and it is reversely proportional to the value of a selection

counter, which measures the load of the node in the previous time interval. The exact

definition of the selection probability for a neighbor j of node i is

pi,j =

1

selj+1
∑

k∈V iewi

1

selk+1

, (2)

where selk is the value of the selection counter of the kth neighbor. This information is
stored in the node descriptors. The motivation for this selection method is to reduce the

load on the nodes that have a high in-degree in the kNN graph, while maintaining the

favorable convergence speed of the T-MAN algorithm.

Best: The strategy that selects the most similar node for communication without any

restriction. We expect that this strategy converges the most aggressively to the perfect

kNN graph, but at the same time it results in the most unbalanced load.

4.4 Randomness is Sometimes Better

Our experimental results (to be presented in Section 6) indicated that in certain cases it

is actually not optimal to use the kNN view for recommendation. It appears to be the
case that a more relaxed view can give better recommendation performance.

To test this hypothesis, we designed a randomization technique that is compatible

with any of the algorithms above. The basic idea is that we introduce an additional

parameter, n ≤ k. The nodes still have a view of size k, and we still use the same

recommender algorithm based on these k neighbors. However, we apply any of the

algorithms above to construct a (k-n)NN overlay graph (not a kNN graph), and we fill

the remaining n elements in the following way: we take r ≥ n random samples (not
necessarily independent in each cycle) and we take the closest n nodes from this list.

With n = k we get the algorithms proposed in [15], and with n = 0 this modification

has no effect, so we get the original algorithm for constructing the kNN graph.

5 System Model

We consider a set of nodes connected through a routed network. Each node has an ad-

dress that is necessary and sufficient for sending a message to it. To actually communi-

cate, a node has to know the address of the other node. This is achieved by maintaining
a partial view (view for short) at each node that contains a set of node descriptors. Views

can be interpreted as sets of edges between nodes, naturally defining a directed graph

over the nodes that determines the topology of an overlay network.

Although the class of algorithms we discuss has been shown to tolerate unpre-

dictable message delays and node failures well [25, 24], in this work we focus on load

balancing and prediction performance, so we assume that messages are delivered reli-

ably and without delay, and we assume that the nodes are stable.

Finally, we assume that all nodes have access to the peer sampling service [24] that

returns random samples from the set of nodes in question. We will assume that these
samples are indeed random. The results presented in [24] indicate that the peer sampling

service has realistic implementations that provide high quality samples at a low cost.

6 Empirical Results

We implemented our protocols and performed our experiments in PeerSim [26, 27]. We

performed a set of simulations of our algorithms with the following parameter value

combinations: view update is random or T-MAN; peer selection for T-MAN is GLOBAL,

VIEW, BEST or PROPORTIONAL; and the number of random samples is 20, 50, or 100
for random, and 0 or 100 for T-MAN.

The BUDDYCAST algorithm was implemented and executed with the following pa-
rameters: the size of the buddy list and the candidate list was 100, the size of the random

list was 10, and α was 0.5. The size of the block list had to be restricted to be 100 as

well, in order to be able to run our large scale simulations. The view size for the rest

of the protocols was fixed at k = 100 in all experiments for practical reasons: this

represents a tradeoff between a reasonably large k and the feasibility of large scale

simulation.

In these simulations we observe the prediction performance in terms of the MAE
measure and the distribution of the number of incoming messages per cycle at a node.

Note that the number of outgoing messages is exactly one in each case.

Let us first discuss the effect of parameter r. This is a crucial parameter for random

view update, while in the case of T-MAN the role of random samples is merely to help

the algorithm to avoid local optima, and to guarantee convergence. Figure 2 shows the

effect of r in the case of the MovieLens database. The effect of r on the other databases

and for other settings is similar.

We can observe that in the case of a random view update, r simply is a multiplicative

factor that determines the speed of convergence: twice as many samples per cycle result

in a halving of the necessary cycles to achieve the same value. In the case of T-MAN,
the version with random samples converges faster, while the generated load remains the

same (not shown). Accordingly, in the following we discuss T-MAN algorithms only

with r = 100, and random view update algorithms only with r = 100.

In Figure 3 we show the results of the experiments, where the MAE and the maximal
load is illustrated. The maximal load is defined as the maximal number of incoming

messages any node receives during the given cycle. The first interesting observation is

that the load balancing property of the different algorithms shows a similar pattern over

the three datasets, however, the convergence of the MAE is rather different (see also

Table 1). In particular, in the case of the MovieLens and BookCrossing benchmarks the

MAE reaches a minimum, after which it approaches the top-k based prediction from

below, whereas we do not see this behavior in the much denser Jester database.

Indeed, the reason for this behavior lies in the fact that for the sparse datasets a

larger k is a better choice, and our setting (k = 100) is actually far from optimal. In

the initial cycles the view approximates a random sample from a larger k parameter. To
verify this, we calculated the MAE of the predictions based on the algorithm described

in Section 4.4. The results are shown in Figure 4 later on.

It is clear that for a small k it is actually better not to use the top k from the entire

network; rather it is better to fill some of the views with the closest peers in a relatively
small random sample from the network. Especially for the smallest k we examined (k =
100) this technique results in a significant improvement in the MAE compared to the

recommendation based on the closest k peers in all datasets. This algorithm can easily

be implemented, since we simply have to combine any of the convergent algorithms

with an appropriate setting for k (such as k = 50) and use a peer sampling service to

add to this list the best peers in a random sample of a given size.

As a closely related note, the random view update algorithms can be “frozen” in the

state of minimal MAE easily, without any extra communication, provided we know in

advance the location (that is, the cycle number) of the minimum. Let us assume it is

in cycle c. Then we can use, for a prediction at any point in time, the best k peers out
of the union of c · r random samples collected in the previous c cycles, which is very

similar to the approach taken in [15].

Clearly, the fastest convergence is shown by the T-MAN variants, but these result in

unbalanced load at the same time. The PROPORTIONAL variant discussed in Section 4.3
reduces the maximal load, however, only when the topology has already converged.

During the convergence phase, PROPORTIONAL behaves exactly like the variant VIEW.

Quite surprisingly, the best compromise between speed and load balancing seems

to be GLOBAL, where the peer is selected completely at random by T-MAN. In many

 0.76

 0.77

 0.78

 0.79

 0.8

 0.81

 0.82

 0.83

 0.84

 1 10 100

M
A

E

cycles

MovieLens, random view update (k=100)

r=20
r=50

r=100

 0.76

 0.77

 0.78

 0.79

 0.8

 0.81

 0.82

 0.83

 0.84

 1 10 100

M
A

E

cycles

MovieLens, T-Man (k=100)

best, r=100
best, r=0

view, r=100
view, r=0

Fig. 2. Effect of parameter r in a few settings

 0.76

 0.77

 0.78

 0.79

 0.8

 0.81

 0.82

 0.83

 0.84

 1 10 100

M
A

E

cycles

MovieLens (k=100, r=100)

T-Man best
T-Man proportional

T-Man view
T-Man global

random
kNN overlay

BuddyCast

 10

 100

 1 10 100

m
ax

im
al

 l
oa

d
(c

on
ta

ct
s)

cycles

MovieLens (k=100, r=100)

T-Man best

T-Man view

T-Man proportional

T-Man global, random

BuddyCast

 3.38

 3.4

 3.42

 3.44

 3.46

 3.48

 3.5

 3.52

 3.54

 1 10 100

M
A

E

cycles

Jester (k=100, r=100)

T-Man best
T-Man proportional

T-Man view
T-Man global

random
kNN overlay

BuddyCast

 10

 100

 1 10 100
m

ax
im

al
 l

oa
d

(c
on

ta
ct

s)

cycles

Jester (k=100, r=100)

T-Man best

T-Man view
T-Man proportional

T-Man global, random

BuddyCast

 2.15

 2.2

 2.25

 2.3

 2.35

 2.4

 2.45

 2.5

 2.55

 1 10 100

M
A

E

cycles

BookCrossing (k=100, r=100)

T-Man best
T-Man proportional

T-Man view
T-Man global

random
kNN overlay

BuddyCast

 10

 100

 1000

 1 10 100

m
ax

im
al

 l
oa

d
(c

on
ta

ct
s)

cycles

BookCrossing (k=100, r=100)

T-Man best

T-Man view

T-Man proportional

T-Man global, random

BuddyCast

Fig. 3. Experimental results. The scale of the plots on the right is logarithmic.

topologies, such as a 2-dimensional grid, a random peer possesses no useful information

for another node that is far from it in the topology, so we can in fact expect to do worse

than the random view update algorithm. However, in target graphs such as kNN graphs

based on similarity metrics, a large proportion of the network shares useful information,

namely the addresses of the nodes that are more central.

On such unbalanced graphs T-MAN GLOBAL is favorable, because it offers a faster

convergence than a pure random search (in fact, it converges almost as fast as the more

aggressive T-MAN variants), however, the load it generates over the network is com-

pletely identical to that of random search, and therefore the maximal load is very small:

the maximum of N samples from a Poisson distribution with a mean of 1 (where N is
the network size). In addition, the node with the maximal load is different in each cycle.

Finally, we can observe that on the BookCrossing database some algorithms, es-

pecially BuddyCast and T-MAN with BEST peer selection, result in an extremely un-

balanced degree distribution (note the logarithmic scale of the plot). This correlates

with the fact that the BookCrossing database has most unbalanced degree distribution
(see Figure 1). Even though we have not optimized the parameters of BuddyCast, this

 0.72

 0.73

 0.74

 0.75

 0.76

 0.77

 0.78

 0.79

 0.8

 100 1000

M
A

E

r

MovieLens

k=100, n=50
k=200, n=100
k=400, n=200
k=800, n=400

Fig. 4. Effect of adding randomness to the view. Thin horizontal lines show the n = 0 case.

result underlines our point that one has to pay attention to the in-degree distribution of

the underlying kNN graph.

7 Conclusions

In this paper we tackled the problem of the construction of similarity-based overlay
networks with user-based collaborative filtering as an application. We pointed out that

similarity-based overlays can have a very unbalanced degree distribution, and this fact

might have a severe impact on the load balancing of some overlay management pro-

tocols. The main conclusion that we can draw is that in highly unbalanced overlays

(that are rather frequent among similarity-based networks) the overlay construction con-

verges reasonably fast even in the case of random updates; or, with T-MAN, uniform

random peer selection from the network. At the same time, the traditional, aggressive
peer selection strategies that have been proposed by other authors should be avoided

because they result in a highly unbalanced load experienced by the nodes.

In sum, in this domain T-MAN with global selection is a good choice, because it

has a fully uniform load distribution combined with an acceptable convergence speed,

which is better than that of the random view update. However, care should be taken be-

cause this conclusion holds only in these unbalanced domains, and in fact this algorithm
is guaranteed to perform extremely badly in large-diameter topologies.

References

1. Garbacki, P., Iosup, A., Doumen, J., Roozenburg, J., Yuan, Y., Brinke, T.M., Musat, L., Zin-

del, F., van der Werf, F., Meulpolder, M., Others: Tribler protocol specification

2. Kermarrec, A.M.: Challenges in personalizing and decentralizing the web: An overview of

GOSSPLE. In: Proc. 11th Intl. Symposium on Stabilization, Safety, and Security of Dis-

tributed Systems (SSS 2009). Volume 5873 of LNCS., Springer (2009) 1–16

3. Adomavicius, G., Tuzhilin, E.: Toward the next generation of recommender systems: A

survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowledge and Data

Engineering 17 (2005) 734–749

4. Pitsilis, G., Marshall, L.: A trust-enabled P2P recommender system. In: Proc. 15th IEEE Intl.

Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET-

ICE ’06). (2006) 59–64

5. Herlocker, J.L., Konstan, J.A., Borchers, A., Riedl, J.: An algorithmic framework for per-

forming collaborative filtering. In: Proc. 22nd annual Intl. ACM SIGIR Conf. on Research

and development in information retrieval (SIGIR ’99), ACM (1999) 230–237

6. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: Grouplens: an open architec-

ture for collaborative filtering of netnews. In: Proc. 1994 ACM Conf. on Computer supported

cooperative work (CSCW ’94), ACM (1994) 175–186

7. Billsus, D., Pazzani, M.J.: Learning collaborative information filters. In: Proc. 15th Intl.

Conf. on Machine Learning (ICML ’98), Morgan Kaufmann (1998) 46–54

8. Park, Y.J., Tuzhilin, A.: The long tail of recommender systems and how to leverage it. In:

Proc. 2008 ACM Conf. on Recommender systems (RecSys ’08), ACM (2008) 11–18

9. Takács, G., Pilászy, I., Németh, B., Tikk, D.: Scalable collaborative filtering approaches for

large recommender systems. Journal of Machine Learning Research 10 (2009) 623–656

10. Lawrence, N.D., Urtasun, R.: Non-linear matrix factorization with gaussian processes. In:

Proc. 26th Annual Intl. Conf. on Machine Learning (ICML ’09), ACM (2009) 601–608

11. O‘Connor, M., Herlocker, J.: Clustering items for collaborative filtering. Workshop on

Recommender Systems at 22nd ACM SIGIR (1999)

12. Goldberg, K., Roeder, T., Gupta, D., Perkins, C.: Eigentaste: A constant time collaborative

filtering algorithm. Information Retrieval 4(2) (2001) 133–151

13. Castagnos, S., Boyer, A.: Modeling preferences in a distributed recommender system. In:

Proc. 11th Intl. Conf. on User Modeling (UM ’07), Springer-Verlag (2007) 400–404

14. Tveit, A.: Peer-to-peer based recommendations for mobile commerce. In: Proc. 1st Intl.

workshop on Mobile commerce (WMC ’01), ACM (2001) 26–29
15. Bakker, A., Ogston, E., van Steen, M.: Collaborative filtering using random neighbours

in peer-to-peer networks. In: Proc. 1st ACM Intl. workshop on Complex networks meet

information & knowledge management (CNIKM’09), ACM (2009) 67–75

16. Bickson, D., Malkhi, D., Zhou, L.: Peer-to-Peer rating. In: Proc. 7th IEEE Intl. Conf. on

Peer-to-Peer Computing, 2007. (P2P ’07), IEEE Computer Society (2007) 211–218

17. Han, P., Xie, B., Yang, F., Shen, R.: A scalable P2P recommender system based on distributed

collaborative filtering. Expert Systems with Applications 27(2) (2004) 203–210

18. Wang, J., de Vries, A.P., Reinders, M.J.T.: Unified relevance models for rating prediction in

collaborative filtering. ACM Trans. on Information Systems (TOIS) 26(3) (2008) 1–42

19. Pouwelse, J., Yang, J., Meulpolder, M., Epema, D., Sips, H.: Buddycast: an operational peer-

to-peer epidemic protocol stack. In: Proc. 14th Annual Conf. of the Advanced School for

Computing and Imaging, ASCI (2008) 200–205

20. Voulgaris, S., van Steen, M.: Epidemic-style management of semantic overlays for content-

based searching. In: Proc. Euro-Par. Number 3648 in LNCS, Springer (2005) 1143–1152

21. Garbacki, P., Epema, D.H.J., van Steen, M.: A two-level semantic caching scheme for super-

peer networks. In: Proc. 10th Intl. Workshop on Web Content Caching and Distribution

(WCW’05), IEEE Computer Society (2005) 47–55

22. Akavipat, R., Wu, L.S., Menczer, F., Maguitman, A.: Emerging semantic communities in

peer web search. In: Proc. Intl. workshop on Information retrieval in peer-to-peer networks

(P2PIR’06), ACM (2006) 1–8

23. Ziegler, C.N., McNee, S.M., Konstan, J.A., Lausen, G.: Improving recommendation lists

through topic diversification. In: Proc. 14th Intl. Conf. on WWW, ACM (2005) 22–32

24. Jelasity, M., Voulgaris, S., Guerraoui, R., Kermarrec, A.M., van Steen, M.: Gossip-based

peer sampling. ACM Trans. on Computer Systems 25(3) (2007) 8

25. Jelasity, M., Montresor, A., Babaoglu, O.: T-Man: Gossip-based fast overlay topology con-

struction. Computer Networks 53(13) (2009) 2321–2339

26. Montresor, A., Jelasity, M.: Peersim: A scalable P2P simulator. In: Proc. Ninth IEEE Intl.

Conf. on Peer-to-Peer Computing (P2P 2009), IEEE (2009) 99–100 extended abstract.

27. Jelasity, M., Montresor, A., Jesi, G.P., Voulgaris, S.: The Peersim simulator

http://peersim.sf.net.

