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Abstract. Fully distributed data mining algorithms build global models
over large amounts of data distributed over a large number of peers in a
network, without moving the data itself. In the area of peer-to-peer (P2P)
networks, such algorithms have various applications in P2P social net-
working, and also in trackerless BitTorrent communities. The difficulty
of the problem involves realizing good quality models with an affordable
communication complexity, while assuming as little as possible about
the communication model. Here we describe a conceptually simple, yet
powerful generic approach for designing efficient, fully distributed, asyn-
chronous, local algorithms for learning models of fully distributed data.
The key idea is that many models perform a random walk over the net-
work while being gradually adjusted to fit the data they encounter, using
a stochastic gradient descent search. We demonstrate our approach by
implementing the support vector machine (SVM) method and by ex-
perimentally evaluating its performance in various failure scenarios over
different benchmark datasets. Our algorithm scheme can implement a
wide range of machine learning methods in an extremely robust manner.

1 Introduction

Data aggregation has long been considered an important aspect of a peer-to-
peer (P2P) system. In the past decade, an extensive literature has accumulated
on the subject. Research has mainly focused on very simple statistics over fully
distributed databases, such as the average of a distributed set of numbers [18,
15], separable functions [22], or network size [20]. General SQL queries have
also been implemented in this fashion [25]. The main attraction of the known
fully distributed (mostly gossip-based) algorithms for data aggregation is their
impressive simplicity and efficiency, combined with robustness to benign failure.
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Simple statistics or queries are very useful, but often more is needed. For
example, for a P2P platform that offers rich functionality to its users including
spam filtering, personalized search, and recommendation [24, 1, 3], or for P2P
approaches for detecting distributed attack vectors [5], complex predictive mod-
els have to be built based on fully distributed, and often sensitive, data. At the
same time, it would be highly desirable to build these models without sacrificing
any of the nice properties of the aggregation algorithms mentioned above.

In sum, we need to find fully distributed, efficient, and lightweight data min-
ing algorithms that make no or minimal assumptions about the synchrony and
reliability of communication, work on fully distributed datasets without collect-
ing the data to a central location, and make the learned models available to
all participating nodes. Our contribution is that we propose a method based on
stochastic gradient search that meets these requirements. In stochastic gradient
search, the model of the data is gradually evolved as it is exposed to random
records from the training dataset. A wide range of models—including artificial
neural networks, and support vectors—can be evolved in this fashion. Stochas-
tic gradient methods can naturally be implemented in a gossip fashion, where
models perform a random walk over the network, while converging to an op-
timal model. Furthermore, we can even improve the performance of sequential
stochastic gradient methods, exploiting the fact that there are many interacting
models making random walks at the same time.

2 System and Data Model

We assume that the system consists of a potentially very large number of nodes,
typically personal computing devices such as PCs or mobile devices. Every node
has a network address. Every node can send messages to every other node,
provided the address of the target node is available. We assume that messages
can have arbitrary delays, and messages can be lost as well. In addition, nodes
can join and leave at any time without warning, thus leaving nodes and crashed
nodes are treated identically. Leaving nodes can join again, and while offline,
they may retain their state information.

The only middleware service our algorithm relies on is the peer sampling
service [16]. Through this service, each node can request uniform random samples
of the nodes in the network that are likely to be online at the time of the request.
The API of the service consists of a local function getRandomPeer(), which
returns a random node address. Many implementations of the peer sampling
service are known. In this paper we apply the NewsCast protocol, a gossip
based implementation [16]. The overhead of NewsCast consists of sending one
message of a constant size to a random node periodically. This protocol has been
extended to deal with uneven request rates at different nodes, as well as uneven
distributions of message drop probabilities [30].

As for the data distribution model, we assume that each node stores exactly
one data record. These records are of the same type (contain the local values of
the same features) at each node. This extreme distribution model allows us to



support applications that require extreme privacy where, for example, the profile
of a user never leaves the computer of the user.

3 Background

The basic problem of supervised binary classification can be defined as follows.
Let us assume that we are given a labeled database in the form of pairs of feature
vectors and their correct classification, i.e. (x1, y1), . . . , (xn, yn), where xi ∈ R

d,
and yi ∈ {−1, 1}. The constant d is the dimension of the problem (the number
of features). We are looking for a model f : Rd → {−1, 1} that correctly classifies
the available feature vectors, and that can also generalize well; that is, which can
classify unseen examples too. For testing purposes, the available data is often
partitioned into a training set and a test set, the latter being used only for testing
candidate models.

Supervised learning can be thought of as an optimization problem, where
we want to maximize prediction performance, which can be measured via, for
example, the number of feature vectors that are classified correctly over the
training set. The search space of this problem consists of the set of possible
models (the hypothesis space) and each method also defines a specific search
algorithm (often called the training algorithm) that eventually selects one model
from this space.

Stochastic gradient search is one such generic search algorithm. Without going
into too much detail, the basic idea is that we iterate over the training examples
in a random order repeatedly, and for each training example, we calculate the
gradient of the error function (which describes classification error), and modify
the model along this gradient to reduce the error on this particular example.
At the same time, the step size along the gradient is gradually reduced. In
many instantiations of the method, it can be proven that the converged model
minimizes the sum of the errors over the examples [8].

Let us now turn to support vector machines (SVM), the learning algorithm
we apply in this paper [6]. In its simplest form, the SVM approach works with the
space of linear models to solve the binary classification problem. Assuming a d

dimensional problem, we want to find a d−1 dimensional separating hyperplane
that maximizes the margin that separates examples of the two class. The margin
is defined by the hyperplane as the sum of the minimal perpendicular distances
from both classes.

Equation (1) states the formal SVM optimization problem, where w ∈ R
d

and b ∈ R are the parameters of model, namely the norm of the separating hyper-
plane and the bias parameters, respectively. Furthermore, ξi is the slack variable
of the ith sample, which can be interpreted as the amount of misclassification
error of the ith sample, and C is a trade-off parameter between generalization
and error minimization.

min
w,b,ξi

1

2
‖w‖2 + C

n∑

i=1

ξi

s.t. yi(w
Txi + b) ≥ 1− ξi and ξi ≥ 0 (∀i : 1 ≤ i ≤ n)

(1)



The Pegasos algorithm is an SVM training algorithm, based on a stochastic
gradient descent approach [27]. It directly optimizes a form of the above defined,
so-called primal optimization task. We will use the Pegasos algorithm as a basis
for our distributed method. In this primal form, the desired model w is explicitly
represented, and is evaluated directly over the training examples. Since in the
context of SVM learning this is an unusual approach, let us take a closer look at
why we decided to work in the primal formulation. The standard SVM algorithms
solve the dual problem instead of the primal form [6]. The dual form is

max
α

n∑

i=1

αi −
1

2

n∑

i,j=1

αiyiαjyjx
T
i xj

s.t.

n∑

i=1

αiyi = 0 and 0 ≤ αi ≤ C (∀i : 1 ≤ i ≤ n),

(2)

where the variables αi are the Lagrangian variables. The Lagrangian variables
can be interpreted as the weights of the training samples, which specify how
important the corresponding sample is from the point of view of the model.

The primal and dual formalizations are equivalent, both in terms of theo-
retical time complexity and the optimal solution. Solving the dual problem has
some advantages; most importantly, one can take full advantage of the kernel-
based extensions (which we have not discussed here) that introduce nonlinearity
into the approach. However, methods that deal with the dual form require fre-
quent access to the entire database to update αi, which is unfeasible in our
system model. Besides, the number of variables αi equals the number of training
samples, which could be orders of magnitude larger than the dimension of the
primal problem, d. Finally, there are indications that applying the primal form
can achieve a better generalization on some databases [4].

4 Related Work

Here we do not consider parallel data mining algorithms. This field has a large
literature, but the rather different underlying system model means it is of little
relevance to us here. Apart from the related work mentioned in the Introduction,
we focus here on fully distributed data mining algorithms.

We divide fully distributed data mining algorithms into two main groups. In
the first group we can find approaches that do not build models or that build
minimal models like the unsupervised learners [28] or the collaborative filtering
based recommender algorithms [23, 2, 12, 31]. These types of approaches mainly
use other well-studied P2P services like aggregation [18, 15] with perhaps some
kind of overlay support like T-Man [14]. We stress that these algorithms do
not implement optimization or generative probability modeling like most of the
state-of-the-art machine learning algorithms do.

In the second group there are algorithms that do build models, but require
services such as round-based synchronization, and other reliability assumptions
(e.g. [7]). As for SVM algorithms, we are aware of only one comparable P2P SVM



Algorithm 1 P2P Stochastic Gradient Descent Algorithm

1: initModel()
2: loop

3: wait(∆)
4: p← selectPeer()
5: send currentModel to p

6: procedure onReceiveModel(m)
7: m← updateModel(m)
8: currentModel ← m
9: modelQueue.add(m)

implementation called Gadget SVM [13]. This algorithm applies the Push-Sum
algorithm [18], but it requires round synchronization as well.

Hence, to the best of our knowledge there is no other learning approach
designed to work in our fully asynchronous system model, and which is capable
of producing a large array of state-of-the-art models.

5 The Algorithm

The skeleton of the algorithm we propose is shown in Algorithm 1. This algorithm
is run by every node in the network. When joining the network, each node
generates a model via initModel(). After the initialization each node starts to
periodically send its current model to a random neighbor that is selected using
the peer sampling service (see Section 2). When receiving the model, the node
updates it using a stochastic gradient descent step based on the training sample
it stores, and subsequently it stores the model. The model queue can be used
for voting, as we will explain later.

Recall that we assumed that each node stores exactly one training sample.
This is a worst case scenario; if more samples are available locally, then we can
use them all to update the model without any network communication, thus
speeding up convergence.

In this skeleton, we do not specify what kind of models are used and what
algorithms operate on them. For example, a model is a d − 1 dimensional hy-
perplane in the case of SVM, as described earlier, which can be characterized
by a d dimensional real vector. In other learning paradigms other model types
are possible. To instantiate the framework, we need to implement initModel()
and updateModel(). This can be done based on any learning algorithm that
utilizes the stochastic gradient descent approach. In this paper we will focus
on the Pegasos algorithm [27], which implements the SVM method. The two
procedures are shown in Algorithm 2.

We assume that the model m has two fields: m.t ∈ N, which holds the number
of times the model was updated, and m.w ∈ R

d that holds the linear model. The
parameter λ ∈ R is the learning rate. In our experiments we used the setting
λ = 10−4. Vector x ∈ R

d is the local feature vector at the node, and y ∈ {−1, 1}
is its correct classification. The operator < ·, · > calculates the inner product.
Line 4 gets executed if the local example x is misclassified by the model m.w.

The effect of the algorithm will be that the models will perform a random
walk in the network while being updated using the update rule of the Pegasos



Algorithm 2 P2Pegasos

1: procedure updateModel(m)
2: η ← 1/(λ ·m.t)
3: if y 〈m.w, x〉 < 1 then

4: m.w← (1− ηλ)m.w + ηyx
5: else

6: m.w← (1− ηλ)m.w

7: m.t← m.t+ 1
8: return m

9: procedure initModel

10: m.t← 0
11: m.w ← (0, . . . , 0)T

12: send model(m) to self

Algorithm 3 P2Pegasos prediction procedures

1: procedure predict(x)
2: w← currentModel
3: return sign(〈w, x〉)

4: procedure votedPredict(x)
5: pRatio ← 0
6: for m ∈ modelQueue do

7: if sign(〈m.w, x〉) ≥ 0 then

8: pRatio ← pRatio +1

9: return sign(pRatio/modelQueue.size()−0.5)

algorithm. In this sense, each model corresponds to an independent run of the
sequential Pegasos, hence the theoretical results of the Pegasos algorithm are
applicable. Accordingly, we know that all these models will converge to an opti-
mal solution of the SVM primal optimization problem [27]. For the same reason,
the algorithm does not need any synchronization or coordination. Although we
do not give a formal discussion of asynchrony, it is clear that as long as each
node can contact at least one new uniform random peer in a bounded time after
each successful contact, the protocol will converge to the optimal solution.

An important aspect of our protocol is that every node has at least one model
available locally, and thus all the nodes can perform a prediction. Moreover, since
there are N models in the network (where N is the network size), we can apply
additional techniques to achieve a higher predictive performance than that of
an output model of a simple sequential implementation. Here we implement a
simple voting mechanism, where nodes will use more than one model to make
predictions. Algorithm 3 shows the procedures used for prediction in the original
case, and in the case of voting. Here the vector x is the unseen example to be
classified. In the case of linear models, the classification is simply the sign of the
inner product with the model, which essentially describes on which side of the
hyperplane the given point lies. We note, that modelQueue is assumed to be
of a bounded size. When storing a new model in it, an old one will be removed
if the queue is full. In our experiments we used a queue implementation, where
the queue holds the 10 latest added models.

6 Experimental results

We selected data sets of different types including small and large sets containing
a small or large number of features. Our selection includes the commonly used



Table 1. The main properties of the data sets, and the prediction error of the baseline
sequential algorithms.

Iris1 Iris2 Irirs3 Reuters SpamBase Malicious10

Training set size 90 90 90 2000 4140 2155622
Test set size 10 10 10 600 461 240508
Number of features 4 4 4 9947 57 10
Classlabel ratio 50/50 50/50 50/50 1300/1300 1813/2788 792145/1603985

Pegasos 20000 iter. 0 0 0 0.025 0.111 0.080 (0.081)
Pegasos 1000 iter. 0 0 0.4 0.057 0.137 0.095 (0.060)
SVMLight 0 0 0.1 0.027 0.074 0.056 (–)

Fiser’s Iris data set [9]. The original data set contains three classes. Since the
SVM method is designed for the binary (two-class) classification problem, we
transformed this database into three two-class data sets by simply removing each
of the classes once, leaving classes 1 and 2 (Iris1), classes 1 and 3 (Iris2), and
classes 2 and 3 (Iris3) in the data set. In addition, we included the Reuters [11],
the Spambase, and the Malicious URLs [19] data sets as well. All the data sets
were obtained from the UCI database repository [10]. Table 1 shows the main
properties of these data sets, as well as the prediction performance of the baseline
algorithms. SVMLight [17] is an efficient SVM implementation. Note that the
Pegasos algorithm can be shown to converge to the same value as SVMlight [27].

The original Malicious URLs data set has about 3,000,000 features, hence
we first reduced the number of features so that we could carry out simulations.
The message size in our algorithm depends on the number of features, therefore
in a real application this step might also be useful in such extreme cases. We
used a simple and well-known method, namely we calculated the correlation
coefficient of each feature with the class label, and kept the ten features with
the maximal absolute values. If necessary, this calculation can also be carried
out in a gossip-based fashion [15], but we performed it offline. The effect of this
dramatic reduction on the prediction performance is shown in Table 1, where
the results of Pegasos on the full feature set are shown in parentheses (SVMlight
could not be run due to the large size of the database).

6.1 Scenarios

The experiments were carried out in the event based engine of the PeerSim sim-
ulator [21]. The peer sampling service was provided by the NewsCast protocol.
The network size is the same as the database size; each node has exactly one sam-
ple. Each node starts running the protocol at the same time. The protocol does
not require a synchronized startup, but we need it here to analyze convergence
in a clearly defined setting.

In our experimental scenarios we modeled message drop, message delay, and
churn. The drop probability of each message was 0.5. This can be considered
an extremely large drop rate. Message delay was modeled as a uniform random
delay from the interval [∆, 10∆], where ∆ is the gossip period, as shown in



Algorithm 1. This is also an extreme delay, which is orders of magnitudes higher
than what can be expected in a realistic scenario.

We also modeled realistic churn based on probabilistic models in [29]. Accord-
ingly, we approximated the online session length with a lognormal distribution,
and we approximated the parameters of the distribution using a maximum like-
lihood estimate based on a trace from a private BitTorrent community called
FileList.org, obtained from Delft University of Technology [26]. We set the offline
session lengths so that at any moment in time 90% of the peers were online. In
addition, we assumed that when a peer came back online, it retained its state
that it had at the time of leaving the network. We now list the scenarios we
experimented with: No failure: there is no message drop, no delay and no churn;
Drop only: we simulate message drop as described, but no other types of failure;
Delay only: we simulate message delay only; Churn only: we simulate node churn
only; All failures: we apply message drop, delay and churn at the same time.

6.2 Metrics

The evaluation metric we focus on is prediction error. To measure prediction
error, we need to split the datasets into training sets and test sets. The ratios
of this splitting are shown in Table 1. At a given point in time, we select 100
peers at random (or all the peers, if there are fewer than 100) and we calculate
the average misclassification ratio of these 100 peers over the test set using the
current models of the peers. The misclassification ratio of a model is simply
the number of the misclassified test examples divided by the number of all test
examples, which is the so called 0-1 error.

Moreover, we calculated the similarities between the models circulating in
the network using the cosine similarity measure. This was done only for the Iris
databases, where we calculated the similarity between all pairs of models, and
calculated the average. This metric is useful for studying the speed at which the
actual models converge. Note that under uniform sampling it is known that all
models converge to an optimal model.

6.3 Results

Figure 1 shows the results over the Iris datasets for algorithm variants that do
not apply voting for prediction. The plots show results as a function of cycles.
One cycle is defined as a time interval of one gossip period ∆. Although the size
of each data set is the same, the dynamics of the convergence are rather different.
The reason is that the learning complexity of a database depends primarily on
the inner structure of the patterns of the data, and not on the size of data
set. In trivially learnable patterns a few examples are enough to construct a
good model, while under complex patterns a large number of samples as well as
many iterations might be required. Since Pegasos also has a similar convergence
behavior, we can be sure that this is not an artifact of parallelization.

Let us now turn to the analysis of the individual effects of the different fail-
ures we modeled, comparing them to two baseline algorithms. The first baseline
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Fig. 1. Experimental results over the Iris databases

algorithm is SVMLight, a sequential efficient SVM solver [17] that optimizes the
dual SVM problem given in (2). It is independent of the cycles, hence its perfor-
mance is shown as a horizontal line. The second baseline algorithm is Pegasos.
We ran Pegasos 100 times, and show the average error at each cycle. Note that
for Pegasos each cycle means visiting another random teaching example.

Clearly, the best performance is observed under no failure. This performance
is very close to that of Pegasos, and converges to SVMlight (like Pegasos does).
The second best performance is observed with churn only. Adding churn simply
introduces an extra source of delay since models do not get forgotten as men-
tioned in 6.1. The situation would be different in an adaptive scenario, which we
do not consider here. In the scenario with message drop only, the performance is
still very close to the ideal case. Considering the extremely large drop rates, this
result is notable. This extreme tolerance to message drop comes from the fact
that the algorithm is fully asynchronous, and a 25% drop rate on average causes
only at most a proportional slowdown of the convergence. Among the individual
failure types, extreme message delay is the most significant factor. On average,
each message takes as much as 5 cycles to reach its destination. The resulting
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Fig. 2. Experimental results over the large databases, and the Iris1 database. Labels
marked with a ‘V’ are variants that use voting.

slowdown is less then a factor of 5, since some messages do get through faster,
which speeds up the convergence of the prediction error.

In Figure 1 we also present the convergence of the averaged cosine similari-
ties over the nodes together with their prediction performance under no failures,
without voting. We can see that in the case of each data set the models con-
verge, so the observed learning performance is due to good models as opposed
to random influences.

Although, as mentioned above, in our case convergence speed depends mainly
on data patterns, and not on the database size, to demonstrate scalability we
performed large scale simulations as well with our large data sets. The results can
be seen in Figure 2. Here we plotted just the two scenarios with no failures and
with all the failures. The figure also shows results for the variants that use voting.
A general observation regarding the distinction between the P2Pegasos variants
with and without voting is that voting results in a better performance in all sce-
narios, after a small number of cycles. In the first few cycles, the version without
voting outperforms voting because there is insufficient time for the queues to
be filled with models that are mature enough. On some of the databases the
improvement due to voting can be rather dramatic. We note that where the test
data sets were larger (see Table 1) we obtained smoother convergence curves.

7 Conclusions

In this paper we have proposed a generic framework for fully distributed data
mining, which implements stochastic gradient search. Nodes in the network gos-
sip models that are continuously updated at each node along their random walk.



We experimented with an instantiation of this framework using the Pegasos algo-
rithm, that is a stochastic gradient descent implementation of the SVM method.
Our main conclusion is that the approach is able to produce SVM models in a
very hostile environment, with extreme message drop rates and delays, with very
limited assumptions about the communication network. The only service that is
needed is uniform peer sampling. The quality of the models are very similar to
that of the sequential Pegasos algorithm. Furthermore, we can also outperform
Pegasos with the help of a voting technique that makes use of the fact that
there are many independent models in the network passing through each node.
The models are available at each node, so all the nodes can perform predictions
as well. At the same time, nodes never reveal their data, so this approach is a
natural candidate for privacy preserving solutions.
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