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Abstract. Mean estimation, also known as average consensus, is an important

computational primitive in decentralized systems. When the average of large vec-

tors has to be computed, as in distributed data mining applications, reducing the

communication cost becomes a key design goal. One way of reducing communi-

cation cost is to add dynamic stateful encoders and decoders to traditional mean

estimation protocols. In this approach, each element of a vector message is en-

coded in a few bits (often only one bit) and decoded by the recipient node. How-

ever, due to this encoding and decoding mechanism, these protocols are much

more sensitive to benign failure such as message drop and message delay. Proper-

ties such as mass conservation are harder to guarantee. Hence, known approaches

are formulated under strong assumptions such as reliable communication, atomic

non-overlapping transactions or even full synchrony. In this work, we propose

a communication efficient algorithm that supports known codecs even if trans-

actions overlap and the nodes are not synchronized. The algorithm is based on

push-pull averaging, with novel features to support fault tolerance and compres-

sion. As an independent contribution, we also propose a novel codec, called the

pivot codec. We demonstrate experimentally that our algorithm improves the per-

formance of existing codecs and the novel pivot codec dominates the competing

codecs in the scenarios we studied.

1 Introduction

Mean estimation has been studied in decentralized computing for a long time [1,6,8,19].

The applications of these algorithms include data fusion in sensor networks [20], dis-

tributed control [15] and distributed data mining [17]. A very interesting potential new

application is federated learning, where a deep neural network (DNN) model is trained

on each node and these models are then averaged centrally [11]. This average computa-

tion could be decentralized, allowing for a fully decentralized solution. However, since

DNNs may contain millions of floating-point parameters all of which have to be aver-

aged simultaneously, optimizing the utilized bandwidth during decentralized averaging

becomes the central problem.

Many approaches have been proposed for bandwidth-efficient average calculation.

For example, floating point numbers can be compressed to a few bits using different
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quantization methods and these quantized values can then be averaged by a server [9,

18]. This is a synchronized and centralized solution, and the approach also introduces

an estimation error. Quantization has been studied also in decentralized gossip proto-

cols where the communicated values are quantized onto a fixed discrete range (see,

for example, [21]). Here, an approximation error is introduced again, even in reliable

networks, and message exchanges cannot overlap in time between any pairs of nodes.

In control theory, more sophisticated dynamic quantization approaches have been

proposed that can provide exact convergence at least in reliable systems by compen-

sating for the quantization error. An example is the work of Li et al. [10]. Here, full

synchronization and reliability are assumed, and the quantization range is scaled by

a fixed scaling function. Dynamic quantization has also been proposed in the context

of linear control in general, again, in a synchronized model [5]. Carli et al. [4] adopt

the compensating idea in [10] and compare it with other static (non-adaptive) quantiza-

tion techniques. The same authors also study adaptive quantization; that is, dynamically

changing the sensitivity of the quantizer [3] (originally proposed in [2]), which is fea-

sible over a fixed communication overlay. The system model in these studies assumes

reliability and atomic communication as well.

A rather different kind of method involves compressing a stream of floating point

values using prediction and leading zero count compression [16]. Although this method

could be adapted to our application scenario with some modifications, in this study we

focus only on the quantization-based compression methods.

Our contributions include a modified push-pull averaging algorithm and a novel

codec. These two contributions are orthogonal: the codec can be used along with any

algorithm and the push-pull algorithm can use any codec. The novel codec, called pivot

codec, encodes every floating point value onto a single bit and it can adapt dynamically

to the range of the encoded values. The novel push-pull protocol is robust against mes-

sage drop failure, it does not require the synchronization of the clocks of the nodes, and

it includes a smoothing feature based on recorded link-flows that improves the perfor-

mance of our compression codec. Here, we evaluate our contributions in simulation.

We compare our solutions with the competing codecs and algorithms from related work

and show that we can improve both robustness and the compression rate significantly.

2 System Model

We model our system as a large set of nodes that communicate via message passing.

The protocols we discuss here send very large messages, so the delay of successfully

delivered messages is determined by the message size and the available network band-

width (as opposed to network latency). Our protocols assume that the delay of most

(but not necessarily all) of the messages that are delivered is less than an upper bound.

This upper bound is at least half of the gossip period, or more, depending on the overlay

network. The messages can be lost and their order of delivery is not guaranteed. We do

not require time to be synchronized over the nodes but we do assume the existence of a

local clock. Each node is assumed to have a small set of neighbors, with which the node

can exchange messages. This neighbor set is assumed to be stable and in this study we

do not consider node failure. The set of neighbors might be a uniform random sample



from the network or it might be defined by any fixed overlay network, depending on the

application.

3 Proposed Algorithms

We first discuss our novel codec and then present the modified push-pull averaging pro-

tocol in several steps, addressing its robustness, compression, and smoothing features.

3.1 Codec Basics

Central to our algorithms is the concept of encoding and decoding messages over a

given directed link using a codec. A codec consists of an encoder and a decoder placed

at the origin and the target of the link, respectively. We assume that the link is used to

send a series of real valued messages during the execution of the protocol. We follow

the notations used in [13]. First of all, the compression (or encoding) is based on quan-

tization, that is, mapping real values to a typically small discrete space (an alphabet)

denoted by S. The decoding maps an element of alphabet S back to a real value.

Codecs may also have state. This state might contain, for example, information

about the current granularity or scale of the encoding, the previous value transmitted

and elapsed time. The state space will be denoted by Ξ . Every codec implementation

defines its own state space Ξ (if the implementation is stateful). Both the encoder and

the decoder are assumed to share the same state space.

We now introduce a notation for the mapping functions mentioned above. Let Q :
Ξ× IR→ S denote the encoder (or quantizer) function that maps a given real value to a

quantized encoding based on the current local state of the encoder. Let K : Ξ×S → IR
denote the decoding function that maps the encoded value back to a real value based

on the current local state of the decoder. Finally, let F : Ξ × S → Ξ define the state

transition function that determines the dynamics of the state of the encoder and the

decoder. Note that in a given codec both the encoder and the decoder uses the same F .

These three mappings are always executed in tandem, that is, an encoded message is

decoded and then the state transition is computed.

Although the encoder and the decoder are two remote agents that communicate

over a limited link, the algorithms we discuss will ensure that both of them maintain

an identical state. In this sense, we can talk about the state of the codec. To achieve

this, first we have to initialize the state using the same value ξ0. Second, if the encoder

and the decoder have identical states at some point in time, then an identical state can

be maintained also after the next transmission, because the encoder can simulate the

decoder locally, thus they can both execute the state transition function with identical

inputs. Note that here we assumed that communication is reliable. If this is not the case,

the algorithms using the codec must handle unreliability appropriately so as to maintain

the identical states.

3.2 Pivot codec

Here we describe our codec implementation that we coined the pivot codec, for reasons

that will be explained below. The main goal in our implementation was aggressive com-



pression, so we put only a single bit on the wire for each encoded value. This means

Spivot = {0, 1}.
The intuition behind the design is that we treat the encoder and the decoder as

two agents, such that the encoder stores a constant value and the decoder has to guess

this value based on a series of encoded messages. Obviously, in real applications the

encoded value is rarely constant. However, the design is still efficient if the encoded

values do not change much between two transmissions. In fact, this assumption holds

in many applications, including decentralized mean approximation, which allows for

an efficient compression. Many competing codecs, especially simple quantization tech-

niques, do not make any assumptions about the correlation of subsequent encoded val-

ues, hence they are unable to take advantage of the strong positive correlation that is

present in many applications.

The codec is stateful. The state is defined by a triple (x̂, d, slast) ∈ Ξpivot =
IR × IR × Spivot. Here, x̂ is the approximation of the pivotal value, namely the actual

(constant or slowly changing) real value stored by the encoder agent. The remaining

values are d, the signed step size, and slast, the last encoded value that was transmitted.

The encoding function is given by

Qpivot((x̂, d, slast), x) =

{
1, if |x̂+ d− x| < |x̂− x|

0, otherwise,
(1)

where x is the value to be encoded. In other words, the encoded value is 1 if and only

if adding the current step size to the approximation makes the approximation better.

Accordingly, the decoding function

Kpivot((x̂, d, slast), s) =

{
x̂+ d, if s = 1

x̂, otherwise
(2)

will add the step size to the current approximation if and only if a 1 is received. Note

that this design ensures that the approximation never gets worse. It can only get better

or stay unchanged, assuming the encoded value is a constant. Note that both the encoder

and the decoder share the same state. This is possible because the encoder can simulate

the decoder locally, thus both the encoder and the decoder can compute the same state

transition function given by

Fpivot((x̂, d, slast), s) =





(x̂+ d, 2d, s), if s = 1 ∧ slast = 1

(x̂+ d, d, s), if s = 1 ∧ slast = 0

(x̂,−d/2, s), otherwise.

(3)

Here, if d is added for the second time, we double it (assuming that the direction is good)

and if we have s = 0 then we halve the step size and reverse its direction, assuming

that adding d overshot the target. The step size is left unchanged after its first successful

application (middle line).

In order for the encoder and the decoder to share their state, they also have to be

initialized identically. The initial state ξ0 might use prior knowledge, for example, prior

information about the expected mean and the variance of the data are good starting

points for x̂ and d, respectively, but a generic value like ξ0 = (0, 1, 0) can also be used.



Algorithm 1 robust push-pull

1: x is the local approximation of the average, initially the local value to be averaged.

2: ui,in and ui,out record the number of times the local value was updated as a result of an

incoming push or pull message from i, respectively.

3: si is the value that was sent in the last push message to i.

4: δi,out, δi,in are the last push, or pull transfers to i, respectively.

5: idi is the current unique ID created when sending the latest push message to i, initially 0.

6: idmax,i is the maximal unique ID received in any push message from i, initially −∞.

7:

8: procedure ONNEXTCYCLE ⊲ called every ∆ time units

9: i← randomOutNeighbor()

10: si ← x

11: idi ← idi + 1
12: send push message (ui,out, si, idi) to node i

13:

14: procedure ONPUSHMESSAGE(u,s, id, i) ⊲ received from node i

15: if idmax,i < id then

16: idmax,i ← id

17: if u < ui,in then ⊲ last pull has not arrived, roll back corresponding update

18: x← x+ δi,in
19: ui,in ← ui,in − 1

20: send pull message (x, id) to node i

21: update(i, in, x, s)

22:

23: procedure ONPULLMESSAGE(s,id, i) ⊲ received from node i

24: if idi = id then

25: update(i, out, si, s)

26:

27: procedure UPDATE(i, d, sloc, srem)

28: ui,d ← ui,d + 1
29: δi,d ← η · 1

2
(sloc − srem)

30: x← x− δi,d

3.3 Robust push-pull averaging

As a first step towards the compressed algorithm, here we propose a variant of push-pull

averaging (Algorithm 1) that is robust to message loss and delay and that also allows

for the application of codecs later on. We assume that the links are directed. This means

that if both A→ B and B → A exist, they are independent links. Over a given directed

link there is a series of attempted push-pull exchanges with push messages flowing

along the link and the answers (pull messages) moving in the opposite direction. The

algorithm ensures that both ends of each link will eventually agree on the flow over

the link. This will ensure a sum preservation (also called mass conservation) property

which we prove below.

The algorithm is similar to traditional push-pull averaging in that the nodes ex-

change their values first. However, as a generalization the new value will not be the

average of the two values, but instead a difference δ is computed at both sides using a



“learning rate” parameter η ∈ (0, 1], where δ can be viewed as the amount of material

being transferred by the given push-pull exchange. Note that both sides can compute

the same δ (with opposite signs) independently as they both know the two raw values

and they have the same parameter η. Here, η = 1 results in the traditional variant, and

smaller values allow for stabilizing convergence when the push-pull exchanges are not

atomic, in which case—despite sum-preservation—convergence is not guaranteed.

As for ensuring sum preservation, we assign an increasing unique ID to all push-

pull exchanges. Using these IDs we simply drop out-of-order push messages. Dropping

push messages has no effect on the update counters and the local approximations so no

further repair action is needed. When the pull message arrives in time, the update is per-

formed, and since the sender of the pull message (say, node B) has already performed

the same identical update (using the same δ), the state of the network is consistent. If,

however, the pull message was dropped or delayed then the update performed by node

B has to be rolled back. This is done when B receives the next push message and learns

(with the help of the update counters) that its previous pull message had not been re-

ceived in time. The update can be rolled back using δ, which ensures that the sum in the

network is preserved.

After this intuitive explanation, let us describe the sum-preservation property in

formal terms. For this, let us assume that there exists a time t after which there are

no failures (message drop or delay). We will show that after time t the sum of the

approximations will eventually be the same as the original sum of local values.

Definition 1. We say that, over link A → B, a successful transaction with ID j is

completed when node A receives a pull message with id = j from node B before

sending the next push message with id = j + 1 to B.

Let jk be the ID of the kth successful transaction over link A→ B, and let j0 = 0.

For any variable v of Algorithm 1, let vX denote the value of variable v at node X .

Theorem 1. For any index K ≥ 0, right after processing the pull message from B
to A of a successful transaction jK (or for K = 0 right after initialization), A and

B agree on the total amount of mass transferred over the link A → B, furthermore,

uA
B,out = uB

A,in = K holds.

Proof. The theorem trivially holds for K = 0. Assume that the theorem holds for

K = k − 1. We show that it holds for K = k as well. First of all, line 25 is executed

if and only if the transaction is successful. Then, uA
B,out is incremented by 1, therefore

uA
B,out = k indeed holds right after the kth successful transaction. As for uB

A,in, the

inductive assumption states that uB
A,in = k − 1 right after the (k − 1)-th successful

transaction. After this point, there will be a series of incoming push messages that are

not out of order with IDs i1, . . . , in such that jk−1 < i1 < · · · < in = jk, where jk is

the ID of the kth successful transaction. These incoming messages are assumed to be

processed sequentially. In all of these push messages we will have u = k−1. It follows

that after processing i1 we will have uB
A,in = k and after processing each new message

i2, . . . , in we will still have uB
A,in = k. This means we have uA

B,out = uB
A,in = k right

after the successful transaction jk.

Let us turn to the transferred mass, and show that after the kth successful trans-

action A and B will add or remove, respectively, the same δ mass from their current



approximations. This is analogous to our previous reasoning about the counters uA
B,out

and uB
A,in, exploiting the observation that only at most one update has to be rolled back

between consecutive updates (which can be done due to recording δBA,in) until the cor-

rect update occurs. Also, due to recording sAB both A and B can compute the same δ
despite the delay at A between sending the push message and updating after receiving

the pull message.

Corollary 1. After time t push-pull exchanges become atomic transactions so after a

new push message is sent on each link, each pair of nodes will agree on the transferred

amount of mass, resulting in global mass conservation. Also, the algorithm will become

equivalent to the atomic push-pull averaging (for η = 1), for which convergence has

also been shown [6].

Note that if the message delay is much longer than the gossip period∆ then progress

becomes almost impossible, because sending a new push message over a link will of-

ten happen sooner than the arrival of the pull message (the reply to the previous push

message), so the pull message will be dropped. Therefore, the gossip period should be

longer than the average delay. In particular, if the gossip period is at least twice as large

as the maximal message delay then no pull messages will be dropped due to delay.

Transactions over different links are allowed to overlap in time. When this happens,

it is possible that the variance of the values will temporarily increase, although the sum

of the values will remain constant. In networks where transactions overlap to a great

degree, it is advisable to set the parameter η to a lower value to increase stability.

3.4 Compressed push-pull averaging

Here, we describe the compressed variant of push-pull averaging, as shown in Algo-

rithm 2. Although the algorithm is very similar to Algorithm 1, we still present the

full pseudocode for clarity. Let us first ignore all the f variables. The algorithm is still

correct without keeping track of the f values, these are needed to achieve a smoothing

effect that we explain later on. Without the f values, the algorithm is best understood

as a compressed variant of Algorithm 1 where values are encoded before sending and

decoded after reception. There are some small but important additional details that we

explain shortly.

In the messages, the value of x is compressed, but the u and id values are not. This is

not an issue, however, because our main motivation is the application scenario where x
is a large vector of real numbers. The amortized cost of transmitting two uncompressed

integers can safely be ignored.

The algorithm works with any codec that is given by the definition of the state space

Ξ , the alphabet S, and the functions Q, F and K , as described previously. We maintain

a codec for every link and for every direction. That is, for every directed link (j, i) there

is a codec for the direction j → i as well as j ← i. For the j → i direction, node j
stores the codec state (used for encoding push messages) in ξi,out,loc and for the j ← i
direction the codec (used for decoding pull messages) is stored in ξi,out,rem at node

j. In this notation, “out” means that the given codecs are associated with the outgoing

link. The states for the incoming links are stored in a similar fashion.



Algorithm 2 compressed smooth push-pull

1: ξi,in,loc, ξi,in,rem, ξi,out,loc, ξi,out,rem ∈ Ξ are the states of the codecs for the local node

and remote node i, initially ξ0.

2: fi,in, fi,out are the amounts of mass transferred so far to i, initially 0.

3: ξi,in′,loc, ξi,in′,rem, and fi,in′ are the previous values of ξi,in,loc, ξi,in,rem, and fi,in, ini-

tially ξ0, ξ0, and 0, respectively.

4:

5: procedure ONNEXTCYCLE ⊲ called every ∆ time units

6: i← randomOutNeighbor()

7: si ← Q(ξi,out,loc, x+ fi,out)
8: idi ← idi + 1
9: send push message (ui,out, si, idi) to node i

10:

11: procedure ONPUSHMESSAGE(u,s, id, i) ⊲ received from node i

12: if idmax,i < id then

13: idmax,i ← id

14: if u < ui,in then ⊲ last pull has not arrived, roll back corresponding update

15: x← x+ δi,in
16: ui,in ← ui,in − 1
17: (ξi,in,loc, ξi,in,rem, fi,in)← (ξi,in′,loc, ξi,in′,rem, fi,in′)

18: spull ← Q(ξi,in,loc, x+ fi,in)
19: (ξi,in′,loc, ξi,in′,rem, fi,in′)← (ξi,in,loc, ξi,in,rem, fi,in)
20: send pull message (spull, id) to node i

21: update(i, in, spull, s)

22:

23: procedure ONPULLMESSAGE(s,id, i) ⊲ received from node i

24: if idi = id then

25: update(i, out, si, s)

26:

27: procedure UPDATE(i, d, sloc, srem)

28: ui,d ← ui,d + 1
29: δi,d ← η · 1

2
(K(ξi,d,loc, sloc)−K(ξi,d,rem, srem)− 2fi,d)

30: (ξi,d,loc, ξi,d,rem, fi,d)← (F (ξi,d,loc, sloc), F (ξi,d,rem, srem), fi,d + δi,d)
31: x← x− δi,d

Recall that codecs must have identical states at both ends of the link and this state is

used for encoding and decoding as well. For example, the codec state ξi,out,loc at node

j for the direction j → i should be the same as ξj,in,rem at node i. This requirement

is implemented similarly to the calculation of δ in Algorithm 1. The codec state transi-

tions, too, are calculated at both ends of each link independently, but based on shared

information, so both nodes can follow the same state transition path, assuming also that

the states have the same initial value ξ0. This state transition is computed right after

computing δ, in line 30.

Apart from δ, here we also need the previous codec states for rolling the last update

back if a pull message was dropped or delayed. To this end, the codec states are backed

up (line 19) and are rolled back when needed (line 17).



When calculating δ, we must take into account the fact that encoding and decoding

typically introduces an error. Therefore, in order to make sure that both nodes compute

the same δ, both nodes have to simulate the decoder at the other node, and work with

the decoded value instead of the exact value that was sent (line 29). Fortunately, this

can be done, since the state of the decoder at the other node can be tracked locally, as

explained previously. However, since we are no longer working with the exact values,

there is no guarantee that every update will actually reduce variance over the network,

so it is advisable to set η to a value less than one.

3.5 Flow compensation

So far we have ignored the f variables in Algorithm 2. The purpose of these variables

is to make compression more efficient by making the transmitted values over the same

link more similar to each other. This way, good stateful adaptive codecs can adjust their

parameters to the right range achieving better compression.

The f values capture the flow over the given link. This approach was inspired by

flow-based approaches to averaging to achieve robustness to message loss [7,14]. How-

ever, our goal here is not to achieve robustness, but rather to reduce fluctuations in the

transmitted values. The algorithm accumulates these flows for each link in both direc-

tions. In addition, the flow value is added to the transmitted value. This has a smoothing

effect, because if a large δ value was computed over some link (that is, the value of x
changed by a large amount), then the sum of x and the flow will still stay very simi-

lar the next time the link is used. The beneficial effect of this on compression will be

demonstrated in our experimental study.

Clearly, both nodes can still compute the same δ locally, because the flow value is

also known at both ends of a link, only the sign will differ. Hence we can apply the

formula in line 29.

4 Simulation Results

We evaluate our algorithms in simulation using PeerSim [12]. Apart from the modi-

fied push-pull protocol presented here, we experiment with the synchronized version of

average consensus, the most well-known algorithm in related work in connection with

quantized communication. In addition, we study a set of codecs and combine these with

the two algorithms (synchronized iteration and our push-pull gossip). This way, both the

codecs and the algorithms can be compared, as well as their different combinations.

Synchronized average consensus is described, for example, in [1]. The idea in a

nutshell is that—assuming the values of the nodes are stored in a vector x(t) at time

t—if the adjacency matrix A of the nodes is invertible and doubly stochastic then the

iteration x(t+1) = Ax(t) will converge to a vector in which all the elements are equal

to the average of the original values. The distributed implementation of such an iteration

requires strong synchronization. Quantized and compressed solutions in related work

focus on such approaches, as well as slightly more relaxed versions where the adjacency

matrix can be different in each iteration, but the different iterations can never overlap.

The codecs we test include simple floating point quantization (F16, F32) assuming

a floating point representation of 16 and 32 bits (half and single precision, respectively).



Here, the codec is stateless, and decoding is the identity mapping. Encoding involves

finding the numerically closest floating point value.

We also include the zoom in - zoom out codec (Zoom) of Carli et al. [3]. We cannot

present this codec in full detail due to lack of space, but the basic idea is that an m-

level quantization is applied such that there is a quantizer mapping to m− 2 equidistant

points within the [−1, 1] interval and the values -1 and 1 are also possible levels used

for mapping values that are outside the interval. The codec state also includes a dy-

namically changing scaling factor that scales this interval according to the values being

transferred. This codec resembles the pivot codec we proposed, and to the best of our

knowledge this is the state of the art dynamic adaptive codec. Note that the minimal

number of quantization levels (or alphabet size) is 3, when m = 3. The codec has two

additional parameters: zin ∈ (0, 1) and zout > 1. The first determines the zoom-in

factor and the second is the zoom-out factor. We fix the setting zout = 2 based on the

recommendation of the authors and our own preliminary results.

4.1 Experimental setup

The network size is N = 5,000, and the results are the average of 5 runs. We also

simulated a select subset of algorithms with N = 500,000 (single run) in order to

demonstrate scalability. The overlay network is defined by a k-out network, where

k = 5 or k = 20. In the case of synchronized average consensus, we transform this

network into a doubly stochastic adjacency matrix A by dropping directionality and

setting the weights on the links using the well-known Metropolis-Hastings algorithm:

Aij = 1/(1+max(di, dj)), where di is the degree of node i. Loop edges are also added

with weight Aii = 1−
∑

j 6=i Aij .

The initial distribution of values is given by the worst case scenario when one node

has a value of 1, and all the other nodes have 0. This way, the true average is 1/N
(where N is the network size). Our performance metric is the mean squared distance

from the true average. We study the mean squared error as a function of the number of

bits that are transferred by an average node to average a single value. Recall that we

assume that many values are averaged simultaneously (we work with a large vector) so

network latency can be ignored. This means that the number of transmitted bits can be

converted into wall-clock time if one fixes a common bandwidth value for all the nodes.

We examine the value of the parameter η (see Algorithm 1) using a range depend-

ing on the actual codec (we determined the optimal value for each scenario and experi-

mented with neighboring values). We also vary the cycle length ∆. We experiment with

short and long cycles. When using short cycles, the round-trip time of a message is as-

sumed to be 98% of the cycle length. With long cycles, the round trip time is assumed to

be only 2% of the cycle length. The motivation of looking at these two extreme scenar-

ios is that in the latter case messages overlap to a much lesser extent than in the former

case. Thus, we wish to demonstrate that our solutions are robust to short cycles. As for

failures, we simulate message drop failure, where the message drop rate is either 0% or

5%.
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Fig. 1. Comparison of codecs in push-pull with no message drop (left) and a 5% message drop

(right) with short cycles (top) and long cycles (bottom). The parameters of all of the codecs have

been optimized.
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Fig. 2. The effect of parameters η and neighborhood size k on the pivot codec, with no message

drop (left) and a 5% message drop (right).

4.2 Results

Figure 1 gives a comparison of the performance of different codecs when using our

push-pull algorithm. The parameters were optimized for every codec using a grid search

in the space η ∈ {20, 2−1, . . . , 2−4}, k ∈ {5, 20}, zin ∈ {0.35, 0.4, . . . , 0.85} and

m ∈ {4, 8, 16}. In all the four scenarios shown on the plots, the best parameter settings

were η = 1/2 and k = 5 for the pivot codec and η = 1/4, k = 5, m = 4, and

zin = 0.55 for the zooming codec. For the floating point codecs, η = 1/2 and η = 1
were the best for short and long cycles, respectively, and k = 20 was the best without

message drop. With message drop, the floating point codecs are more stable with k = 5
but they converge slightly faster with k = 20, especially with short cycles. The pivot

codec clearly dominates the other alternatives.
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Fig. 3. Comparison of codecs in synchronized average consensus. The parameters of all of the

codecs are optimized.

10
-30

10
-25

10
-20

10
-15

10
-10

10
-5

 500  1000  1500  2000

m
ea

n 
sq

ua
re

d 
er

ro
r

bits transferred per node

F32
F16
zoom
pivot

10
-30

10
-25

10
-20

10
-15

10
-10

10
-5

 500  1000  1500  2000

m
ea

n 
sq

ua
re

d 
er

ro
r

bits transferred per node

F32
F16
zoom
pivot

Fig. 4. Comparison of codecs with network size N = 500,000 (left) and without the flow com-

pensation technique (with N = 5,000, right).

The difference between k = 5 and k = 20 is that in the former case more trans-

actions are performed over a given fixed link. In the case of the stateless codecs, this

means that k = 5 results in a more stable convergence because errors are corrected

faster, but with k = 20 the correlation between consecutive updates over a fixed link

are lower which results in a faster initial convergence. In the case of the pivot codec,

Figure 2 illustrates the effect of parameters η and k. It is clear that the algorithm is

robust to η, however, parameter k has a significant effect. Unlike the stateless codecs,

the pivot codec benefits from a somewhat larger correlation between updates as well as

the higher frequency of the updates over a link since these allow for a better prediction

of the value at the other end of the link. The zooming codec has a similar behavior (not

shown), and we predict that every stateful codec prefers smaller neighborhoods.

Figure 3 presents a similar comparison using the synchronized average consensus

algorithm. Note that here, the long and short cycle variants behave identically. Again,

the parameters were optimized for every codec and the best parameter settings were

η = 1/2 and k = 5 for the pivot codec, η = 1 and k = 5 for the floating point codecs,

and η = 1, k = 5, m = 8, and zin = 0.45 for the zooming codec. Again, the pivot

codec dominates the other alternatives. Furthermore, note that, for the pivot codec, the

optimal parameters are the same as those in the case of the push-pull algorithm. This

suggests that these parameters are robust.

Figures 1 and 3 allow us to compare the push-pull algorithm with the synchronized

algorithm. It is clear that all the codecs perform better with push-pull than with the



synchronized algorithm. This implies that the push-pull algorithm is a better choice for

compression, independently of the selected codec.

Figure 4 contains two remaining observations. First, it demonstrates that the mean

squared error of push-pull gossip does not depend on network size as the results with

N = 500,000 (left plot) are very similar to those with N = 5,000 (Figure 1, top left).

This is not surprising as this is predicted by theory when no compression is applied [6].

Second, Figure 4 (right) shows the effect of the flow compensation technique intro-

duced in Algorithm 2, where we used the f variables to smooth the stream of values

over each link. As before, we optimized the parameters for all the codecs. The optimal

parameter value for the pivot codec turned out to be η = 1/8 and k = 5. This means

that if we drastically reduce η, thus smoothing the transactions much more aggressively

with this alternative technique, the pivot codec still dominates the other codecs. How-

ever, we are not able to get the same compression rate we could achieve with flow

compensation (Figure 1) so the flow compensation technique is a valuable addition to

the protocol. The other codecs have the same optimal parameters as with flow compen-

sation. Note that the zooming codec also benefits from flow compensation, although to

a lesser extent. We also observed that the zooming codec is very sensitive to zin in this

case, small deviations from the optimal value result in a dramatic performance loss (not

shown).

5 Conclusions

In this paper we presented two contributions, namely a novel push-pull algorithm for

computing the average, and a novel codec (called pivot codec) for compressed commu-

nication. These two contributions are orthogonal, because the push-pull algorithm can

be used with any codec and the pivot codec can be used with any distributed algorithm

that supports codecs.

The original features of the push pull algorithm include a mechanism to tolerate

message drop failure, and a technique to support overlapping transactions with differ-

ent neighbors. We also added a mechanism that we called flow compensation, which

makes the stream of values over a given link smoother to improve compression. An-

other smoothing technique is a learning rate parameter η that controls the magnitude of

each transaction. The pivot codec that we introduced is based on the intuition that in

decentralized aggregation algorithms the values sent over a link are often correlated so

compressing the stream is in fact similar to trying to guess a constant value on the other

side of an overlay link.

We demonstrated experimentally that the novel codec is superior in the scenarios we

studied in terms of the compression rate. We also demonstrated that the flow compensa-

tion mechanism indeed improves performance, although the pivot codec dominates the

other codecs from related work even without the flow compensation mechanism. We

saw that the push-pull protocol is highly robust to overlapping transactions as well, and

in general outperforms the synchronized iteration algorithm independently of the codec

used.
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