
A segment-based statistical speech recognition
system for isolated/continuous number

recognition?

A. Kocsor, A. Kuba Jr., L. Tóth, M. Jelasity ,L. Felföldi, T. Gyimóthy and
J. Csirik

Research Group on Artificial Intelligence
József Attila University, Szeged, Hungary, H-6720, Árpád tér 2.

kocsor@inf.u-szeged.hu
kandras@inf.u-szeged.hu
tothl@inf.u-szeged.hu

jelasity@inf.u-szeged.hu
lfelfold@rgai00.inf.u-szeged.hu

csirik@inf.u-szeged.hu
gyimi@inf.u-szeged.hu

Abstract. This paper presents an overview of the “AMOR” segment-
based speech recognition system developed at the Research Group on Ar-
tificial Intelligence of the Hungarian Academy of Sciences. We present the
preprocessing method, the features extracted from its output, and how
segmentation of the input signal is done based on those features. We also
describe the two types of evaluation functions we applied for phoneme
recognition, namely a C4.5 and an instance-based learning technique. In
our system, the recognition of words from a vocabulary means a special
search in a hypothesis space; we present how this search space is handled
and the search is performed. Our results demonstrate that for small vo-
cabularies we obtained acceptable recognition database used. It is now a
matter of further investigation to see how much these methods could be
extended to be applicable to large vocabulary speech recognition.

1 Introduction

After decades of research in the middle of the 90’s automatic speech recognition
(ASR) finally reached the level of practical usability. However, in the last ten
years there have been only a few improvements in the underlying technology,
and the skeptics say this success is due rather to the increase in processor power
and the amount of training speech corpora available. So further radical improve-
ments are possible only if the underlying model is changed to incorporate as
much knowledge as possible concerning human speech perception, from the level
of early auditory processing to the presumed cognitive processes in the cortex [?].

? This work was supported by the grants OTKA T25721 and FKFP 1354/1997

1

2 A. Kocsor, at al.

Historically, early attempts of ASR in the 70’s were knowledge-based systems,
but since these couldn’t handle the incredible variability of speech, statistics-
based learning algorithms took over, and currently they exclusively dominate
research under the names “Hidden Markov Model” and “Artificial Neural Net-
works”. In our experimental speech recognition system “AMOR” we both try
to bring back AI into speech recognition, and incorporate new knowledge about
human speech perception. The former means that the system can be viewed as a
rule-based one as well, but the rules can be learned using AI learning techniques.
The latter means that the preprocessing, segmentation and feature extraction
phases attempt to model the proper stages along the auditory pathway. There
are only a few similar systems we are aware of, the closest being the SUMMIT
system of MIT [?] and the APHODEX recognizer of CRIN/INRIA [?].

Since building a whole ASR system is a big task, a relatively easy first goal
chosen was to recognize Hungarian numbers such as “two-hundred and sixty
five”. This leads to a continuous speech recognition task over a dictionary of 26
words. Both the training and testing database was recorded in office quality (at
a sampling rate of 22050), containing carefully pronounced (read) speech. Our
first results show that at this quality and with this small dictionary even with
quite few and simple features and a small amount of training the system can
reach an acceptable recognition rate. It is now a matter of further research to
decide whether this approach could handle bad quality spontaneous speech with
a huge dictionary.

The paper is of the following structure: the subsequent section deals with the
pre-processing phase which converts the raw speech signal into a spectral format
that is much more suitable for the recognition algorithm. To get more specific
data further information extraction is required. These acoustic features and their
properties are described in the third section. In the fourth section we deal with
the corner stones of partitioning the speech signal into basic blocks (in our case
these are phonemes) and mention the technique we use. We treat the recognition
procedure as a search in a tree that is defined in the fifth section of the paper.
The leaves of this tree represent the possible output words and the software have
to find the correct one. To make it feasible we define an evaluation function that
assigns a real value to every node in that tree. A few different functions of this
kind are presented in the sixth section, while the results attained are found in
the seventh. As always in the field of speech recognition, much more work is to
be done, so finally we mention a few important points to be examined in the last
section.

2 Preprocessing

As the preprocessing phase the system converts the speech signal into the tra-
ditional (wideband) spectrogram, that is, calculates its short-time Fourier spec-
trum (using a Hamming window). The intensity of the spectrum is, as traditional,
taken on a logarithmic (decibel) scale. Standard speech recognizers further pro-
cess this, conventionally warping it to a logarithmic (Bark) frequency scale,

Segment-based statistical speech recognition system 3

smoothing it, then taking only the first few so-called cepstral parameters. In
our system this is absent, since we have a further processing step where acous-
tic features are extracted from the spectrogram; smoothing, Bark-warping and
other similar transformations take place in this phase, where necessary (later
we plan to replace the spectrogram with the output of a hearing model, which
supposedly allows for the extraction of more reliable features).

For those not in the know we shall briefly formalize the preprocessing step
[?]. For simplicity we use continuous notation, but in the practice both the signal
and its spectrum are given by their samples, of course. In our system we calculate
512 samples from the spectrum between 0 and 11025Hz in every 10ms.

Notation 1

– Let us denote the moments of time by Tpnt where Tpnt := IR+ the non-
negative real numbers.

– We introduce the notation Tintv for time intervals: Tintv := {(t1, t2) ∈ Tpnt×
Tpnt : t1 < t2}.

– The input speech is given by v : Tpnt → IR which represents the signal as a
function of time.

– After decomposition of the signal into sinusoid waves the valid range of fre-
quencies is denoted by H. (Usually, H = [0, 11025])

Definition 1. We define the result of preprocessing as an Spc : Tpnt×H → IR+

function for which:

Spc(t, h) :=

∣

∣

∣

∣

∫ ∞

−∞

v(l)w(l − t)e−ihldl

∣

∣

∣

∣

holds. This function determines the intensity of frequency h at the moment t. w

is the Hamming window employed by the system.

3 Acoustic features

This phase is absent in standard speech recognizers; there the values of the
smoothed spectrum are themselves considered as ”features”. However, it is well
known that from the spectrum-like output of the cochlea the brain extracts
relevant acoustic cues in the cochlear nucleus, and supposedly also at higher
stages. We especially kept in mind those new results which claim that humans
process frequency channels independently, and integration occurs only at a higher
stage [?]. Thus our main features were the energies in certain frequency bands,
which were chosen based on linguistic knowledge [?] and what we know about
the tuning curves of neurons in the cochlear nucleus [?]. We divided the spectrum
into only four bands, which is a very coarse representation, but surprisingly it
yielded quite good results. We used two types of features in the system; the
ones belonging to the first type were called ”time-point features”, which means
they are defined at each time point of the signal and simulate the output of

4 A. Kocsor, at al.

the feature extractor neurons. After this, a coarse segmentation of the signal
is performed (also based on certain features). We then supposed that in later
stages the brain integrates information over these segments; this is simulated
by our ”interval-features”, or ”cues”, which are defined in a time-interval. The
values of these interval-features form the basis of the recognition.

Definition 2. A f : Tpnt → IR+ function is called time-point feature by defini-
tion iff f(t) depends only on the intensity of frequencies at the moment t.

Here we show some examples of time-point features some of which will be of
special interest later on:

f1
[a,b](t) :=

∫ b

a
Spc(t, h)dh, 0 ≤ a < b,

f2
[a,b](t) := maxa≤h≤b Spc(t, h)dh, 0 ≤ a < b,

f3
[a,b](t) := mina≤h≤b Spc(t, h)dh, 0 ≤ a < b.

Definition 3. A g : Tintv → IR+ function is called interval feature iff g(t1, t2)
is defined by the values of Spc(t, h), (t1 ≤ t ≤ t2).

Features h(t1, t2), g
1
f (t1, t2), · · · , g

4
f (t1, t2), and κ1(t1, t2) · · · , κ

7(t1, t2) presented
below are interval features. During the empirical investigation we used those
denoted by κ. The function h(t1, t2) is the 2-dimension version of f 1

[a,b](t) and

the gi
f functions are general interval features derived from time-point features.

Besides this, κi(t1, t2) functions are special members of the former group: all
those except κ6(t1, t2) were derived from f1

[a,b] (defined above). κ6(t1, t2) is a
trivial interval-feature.

g(t1, t2)[a,b] :=

∫ t2

t1

∫ b

a

Spc(t, h)dhdt

Interval features generated from an arbitrary time-point feature f(t) are:

g1
f (t1, t2) :=

∫

t2

t1
f(t)dt

t2−t1

g2
f (t1, t2) := maxt∈[t1,t2] f(t)

g3
f (t1, t2) := mint∈[t1,t2] f(t)

g4
f (t1, t2) := g2

f (t1, t2) − g3
f (t1, t2)

Features for later use are:

κ1(t1, t2) :=

∫

t2

t1
f1
[0,800](t)dt

t2−t1

κ2(t1, t2) :=

∫

t2

t1
f1
[800,1800](t)dt

t2−t1

κ3(t1, t2) :=

∫

t2

t1
f1
[1800,4500](t)dt

t2−t1

κ4(t1, t2) :=

∫

t2

t1
f1
[4500,11025](t)dt

t2−t1

κ5(t1, t2) :=

∫

t2

t1
f1
[0,11025](t)dt

t2−t1

κ6(t1, t2) := t2 − t1

κ7(t1, t2) :=
(

maxt∈[t1,t2] f
1
[0,11025](t)

)

−
(

mint∈[t1,t2] f
1
[0,11025](t)

)

Segment-based statistical speech recognition system 5

4 Segmentation of speech

Definition 4. An array of sk = [t0, t2, · · · , tk] is called segmentation with k

elements if 0 = t0 < t1 < · · · < tk holds.

A segmentation is called ideal if every phoneme in the speech fits onto one
[ti, tj] interval where i, j ∈ {0, · · · , k}, i < j. Our aim is to produce an ideal
segmentation where j − i < 6 holds for every phoneme. This restriction reduces
the size of the search space significantly and it should not be a hard task for any
reasonable segmenting algorithm to fulfill this requirement.
In our system the segmentation is obtained with the help of the following algo-
rithm:

– We divide the spectra into four part and take one time-point feature for
each that characterizes it, namely: α1 = f1

[0,800](t), α2 = f1
[800,1800](t), α3 =

f1
[1800,4500](t) and α4 = f1

[4500,11025](t).
– Then we construct the function

lc(t) = max
1≤i≤4

|αi(t − c) − αi(t + c)|

with an appropriate constant c. In general c = 20 millisecond was found
satisfactory.

– Then the segment bounds are placed at the local maxima of lc(t).

This method results in a segmentation that can be regarded as ideal from the
point of view of the application.

5 Hypothesis space

The method presented below is suitable for any type of dictionary and any
kind of language. However for a concrete practical application we sought to
focus on a particular problem. We chose to develop a system that recognizes
spoken numbers in the Hungarian language. From now on, word means series
of phonemes. Phonemes are denoted by p, for instance p1 · · · pj means a word
containing j phonemes.

5.1 Dictionary

The dictionary contains the spoken forms of the words we plan to recognise. The
words are stored as phoneme series. According to the particular goal we wanted
to achieve (i.e. to identify spoken numbers) our dictionary was built from words
and word parts that allow us to phonetically describe all the numbers between
0 and 999,999,999 using the concatenation operator. In the Hungarian language
this meant 26 different dictionary entries.

6 A. Kocsor, at al.

5.2 Hypothesis space

Let W be the set of words meaning numbers between 0 and 109−1. Let Prefk(W)
mean the set of the k-long prefixes of all the words in W that contain at least k

phonemes. For a given sn = [t0, t1, · · · , tn] segmentation which defines n intervals
we can make the set Sk = {[ti0 , ti1 , · · · , tik

] : 0 = i0 < i1 < · · · < ik ≤ n}
which we call the set of sub-segmentations over sn with k elements (intervals).
Furthermore, to reduce the number of elements in Sk we can assume that il+1 −
il < 6, 0 ≤ l ≤ k − 1.

Now we shall recursively define the search tree. Let us denote the root by v0

and link it to every element of the set Pref1(W) × S1. These are the first level
vertices.

Having a particular (p1p2 · · · pj , [ti0 , · · · , tij
]) leaf given, add all

(p1p2 · · · pjpj+1, [ti0 , · · · , tij
, tij+1

]) ∈ Prefj+1(W) × Sj+1

points to the tree as descendants of the given leaf. Repeat this step until there are
no points to be added. Then the tree is complete. Please note that every vertex
in the tree at level n has n phonemes and n interval. Ancestors are similar to
their descendants except the last phoneme and the last interval.

During recognition our aim is to reach a leaf (p1p2 · · · pj , [ti0 , · · · , tij
]) such

that p1p2 · · · pj ∈ W holds. We will call this kind of leaves terminating leaves.
In figure 5.1 we present a hypothesis space with four different phonemes. Let

us suppose a segmentation s4 = [0, 100, 160, 200, 270] and a dictionary consisting
of the words p1p2p3, p1p2p4 and p1p3p4. The table below works as a legend for
the figure 5.1; it describes the vertices vi, (1 ≤ i ≤ 28) on the figure.

v1 := (p1, [0, 100]) v15 := (p1p2, [0, 200, 270])
v2 := (p1, [0, 160]) v16 := (p1p3, [0, 200, 270])
v3 := (p1, [0, 200]) v17 := (p1p2p3, [0, 100, 160, 200])
v4 := (p1, [0, 270]) v18 := (p1p2p3, [0, 100, 160, 270])
v5 := (p1p2, [0, 100, 160]) v19 := (p1p2p4, [0, 100, 160, 200])
v6 := (p1p2, [0, 100, 200]) v20 := (p1p2p4, [0, 100, 160, 270])
v7 := (p1p2, [0, 100, 270]) v21 := (p1p2p3, [0, 100, 200, 270])
v8 := (p1p3, [0, 100, 160]) v22 := (p1p2p4, [0, 100, 200, 270])
v9 := (p1p3, [0, 100, 200]) v23 := (p1p3p4, [0, 100, 160, 200])

v10 := (p1p3, [0, 100, 270]) v24 := (p1p3p4, [0, 100, 160, 270])
v11 := (p1p2, [0, 160, 200]) v25 := (p1p3p4, [0, 100, 200, 270])
v12 := (p1p2, [0, 160, 270]) v26 := (p1p2p3, [0, 160, 200, 270])
v13 := (p1p3, [0, 160, 200]) v27 := (p1p2p4, [0, 160, 200, 270])
v14 := (p1p3, [0, 160, 270]) v28 := (p1p3p4, [0, 160, 200, 270])

While v4, v7, v10, v12, v14, · · · , v28 are leaves of the tree, only v17, · · · , v28 are
terminating leaves.

5.3 Evaluation function

We shall define a δ function that maps a non-negative real value to any arbitrary
[t1, t2] time interval and p phoneme. The value of δ is lower if p fits well onto the

Segment-based statistical speech recognition system 7

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

v0

v1 v2 v3 v4

v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16

v17 v18 v19 v20 v21 v22 v23 v24 v25 v26 v27 v28

"""""""

bbbbbbb

PPPPPPPPPPP

````````````````

�
�
�
�

S
S
S
S











#
#

#
#

#

�������

�������

#
#

#
#

#

�
�

�
�

S
S
S
S

c
c

c
c

c

T
T
T
T

A
A
A
A

T
T
T
T

C
C
C
C

\
\
\
\

�
�

�
�

�
�

�
�

B
B
B
B

Fig. 1. Tree representation of the hypothesis space with s4 = [0, 100, 160, 200, 270]
segmentation and W = {p1p2p3, p1p2p4, p1p3p4} as a dictionary

input signal between [t1, t2] and is higher if p does not fit. How such a function
is obtained is discussed in the next section of the paper.

Assuming we have this δ we can define a weight function named ∆ on every
node of the search tree as follows:

∆(p1p2 · · · pj , [ti0 , · · · , tij
]) :=

j
∑

k=1

δ(tik−1
, tik

, pk).

Our task will be to search among the terminating leaves and find the one
that has a minimal weight (according to ∆).

5.4 Search method

Naturally there are many methods to scan the hypothesis space with. However
two basic ideas are worth considering:

– During the search we should mark the best solution so far.
– If the node under investigation has a greater weight than the best solution

presently we can skip over this node and all its descendants. This is due to
the monotonicity of ∆.

Our method was a back-track algorithm which used the ideas above. It uses
colouring to indicate the already visited nodes however this is not necessary if
the algorithm can order the descendants at every node. The best value is stored
in min, its initial value being infinity. minpoint points to the best terminating



8 A. Kocsor, at al.

leaf so far. (Initially NULL.) The algorithm presented here is recursive although
it is quite easy to transform it into a non-recursive form.

Procedure Search;

min :=INF;

minpoint := NULL;

FOR all vertices

color of actual vertex := white ;

Dive(v0);

End procedure

Procedure Dive(vertex v)

IF ∆(v) > min then

color of v := black;

return;

ENDIF

IF v is terminating leaf then

min := ∆(v);
minpoint := pointer to v;

color of v := black ;

return;

ENDIF

WHILE exists w white-colored child of v

Dive(w);

ENDWHILE

color of v := black ;

End procedure

6 Various evaluation functions

Up to this point we have described a fairly general system. As soon as we define
one particular evaluator function, however, it determines the behaviour of the
whole application. We will address two essentially different evaluator functions in
this section but they have one thing in common, namely they require a database
which we use to build them.

6.1 Database

As it was mentioned before, 26 words are enough to build the Hungarian number
names from 0 to 109 − 1 with concatenation. Our group made a database from
these words which is small but representative to some degree. 10 people (males,
females and children) were asked to pronounce those 26 words twice, the sample
rate of the recording being 22050 Hz. The created files together then constituted
our sample base.



Segment-based statistical speech recognition system 9

This base went through the pre-processing phase and segmentation was done
by hand. In this way we obtained a database that has phonemes as the small-
est entries. The total number of the phonemes was about 2000, there being 32
different kind of them. Denoting the database with A, it could be described as
follows:

A := { [(ti11 , ti11+1), (ti12 , ti12+1), · · · , (ti1
l1

, ti1
l1

+1), p1],

[(ti21 , ti21+1), (ti22 , ti22+1), · · · , (ti2
l2

, ti2
l2

+1), p2],

. . .

[(ti321 , ti321 +1), (ti322 , ti322 +1), · · · , (ti32
l32

, ti32
l32

+1), p32]}

A has a single line for every pj , and the (ti, tk) intervals are the locations in A

where pj occurs.

6.2 Evaluation functions

First we have to choose r different interval features, namely τ 1(t1, t2), · · · ,
τ r(t1, t2). The more they characterise the phonemes the better they are. In
our case which is described in the results section we used κ1, · · · , κ7 as they are
defined in Section 3. We have to show how to generate δ from these. With a
given δ, ∆ is to be computed as mentioned in 5.3.

6.2.1 Statistical averages based weighting function

δ(t1, t2, pj) :=

r
∑

c=1

(

exp

(

(τ c(t1, t2) − o(pj , c))
2

σ2(pj , c)

)

− 1

)

,

where o(pj , c) is the average of τ c values for a given pj phoneme at every occur-
rence of pj in the database and σ2(pj , c) defines the standard deviation of the
same values:

o(pj , c) :=

∑lj
s=1 τ c(t

i
j
s
, t

i
j
s+1)

lj
,

σ2(pj , c) :=

lj
∑

s=1

(

o(pj , c) − τ c(t
i
j
s
, t

i
j
s+1)

)2

lj
.

6.2.2 C4.5 based weighting function We used a dedicated software package
with built-in C4.5 capabilities [?]. The training database was a restricted version
of A, one speaker being left out. The output of the C4.5 learning mechanism
was a T̂ decision tree. For a given (t1, t2) interval of the pre-processed speech
signal T̂ results in one phoneme of the phoneme set according to the values of
τ1(t1, t2), · · · , τ

r(t1, t2). Let us denote the result phoneme with T̂ (τ1(t1, t2), · · · ,
τ r(t1, t2)). As the learning process is not 100 percent accurate we defined a



10 A. Kocsor, at al.

conditional probability matrix (confusion matrix) P with the aid of the database
A. A Pjk element in the matrix represents the probability of that T̂ maps the
pk phonemes in A into pj . Obviously higher values in the diagonal of P mean
better learning results.

By definition:

Pjk :=

∣

∣

∣

{

j : pj = T̂ (τ1(tik
s
, tik

s+1), · · · , τ
r(tik

s
, tik

s+1)), 1 ≤ s ≤ lj

}∣

∣

∣

lj
, 1 ≤ j, k ≤ 32.

δ is defined by using the values of P :

δ(t1, t2, pj) := 1 − Pjk, where T̂ (τ1(t1, t2), · · · , τ
r(t1, t2)) = pk.

7 Results

We should recall that database A contains samples from 10 different speaker.
By taking out the samples belonging to one particular speaker, we created
A1, · · · , A10 restricted databases. The databases were segmented by hand. For
every one of these databases we created the statistical average-based evalua-
tor function (SABEF, see 6.2.1) and the C4.5 based evaluator function (see
6.2.2). Then we run the recognizer with every evaluator function on the training
database and on the words that were left out, as well. The table below con-
tains the results achieved with the different evaluator functions obtained from
A1, · · · , A5. The values show the percentage of the correct identification of words
using a specific ∆ on two test input: on the database that was used for obtain-
ing ∆ (marked as “TRAINING”) and on the words that were omitted from the
training database (marked as “TEST”).

SABEF TEST TRAINING C4.5 TEST TRAINING

∆1
1 94.23 92.03 ∆2

1 96.15 92.58
∆1

2 94.23 92.30 ∆2
2 94.23 92.86

∆1
3 92.30 93.13 ∆2

3 92.30 93.13
∆1

4 90.38 92.03 ∆2
4 90.38 93.40

∆1
5 76.92 93.96 ∆2

5 82.69 94.50

averages 89,61 92.69 averages 91.15 93.29

7.1 Conclusion

Summarizing the results, we can say that the present system type of test inputs.
This is true regardless whether we use C4.5 learning or the average-based func-
tions. Considering the present (slightly artificial) conditions that manifests in
relatively small database and few interval features we deem these results satis-
factory. There are some promising results with automatic segmentation as well.
However, due to the lack of thorough investigation so far we cannot present these
results. Hopefully, we will discuss them in another paper.



Segment-based statistical speech recognition system 11

8 Future Work

– Further investigation using automatic segmentation.
– A slight modification of the average based weight function is supposed to

improve the results a bit. We chose to add weighting factors as follows:

δ(t1, t2, pj) :=

r
∑

c=1

ρc
j

(

exp

(

(τ c(t1, t2) − o(pj , c))
2

σ2(pj , c)

)

− 1

)

,

The ρc
j values were to be defined by the training set so that they could

reinforce the characterising power of the interval features.
– Adding new interval features.
– Broadening the database by additional speakers.

References

1. D. Fohr, J. Haton, and Y. Laprie, Knowledge-Based Techniques in Acoustic-

Phonetic Decoding of Speech: Interest and Limitations, International Journal of
Pattern Recognition and AI, Vol. 8 No. 1, 1994, pp. 133-153.

2. H. Bourlard, H. Hermansky, and N. Morgan, Towards Increasing Speech Recogni-

tion Error Rates, Speech Communication, Vol. 18, 1996, pp. 205-231.
3. P. Duchnowski, A New Structure for Automatic Speech Recognition, PhD Thesis,

MIT, September 1993.
4. J. Glass, J. Chang, M. McCandless, A Probabilistic Framework for Features-Based

Speech Recognition, Proc. International Conference on Spoken Language Process-
ing, October 1996, Philadelphia, PA, pp. 2277-2280

5. J.B. Allen, How do Humans Process and Recognize Speech?, IEEE Trans. Speech

Audio Process., Vol. 2. No. 4, pp. 567-577.
6. E.F. Evans, Modelling Characteristics of Onset-I Cells in Guinea Pig Cochlear

Nucleus, Proceedings of the NATO Advanced Study Institute on Computational
Hearing, July 1998, pp. 1-6.

7. L.R. Rabiner and R.W. Schafer, Digital Processing of Speech Signals, 1978,
Prentice-Hall, Signal Processing Series

8. J.R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann, San Ma-
teo, CA, 1993.


