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Abstract. This paper introduces a niching technique called GAS (S stands for species)
which dynamically creates a subpopulation structure (taxonomic chart) using a radius func-

tion instead of a single radius, and a ‘cooling’ method similar to simulated annealing. GAS
offers a solution to the niche radius problem with the help of these techniques. A method
based on the speed of species is presented for determining the radius function. Speed functions
are given for both real and binary domains. We also discuss the sphere packing problem on
binary domains using some tools of coding theory to make it possible to evaluate the output
of the system. Finally two problems are examined empirically. The first is a difficult test
function with unevenly spread local optima. The second is an NP-complete combinatorial
optimization task, where a comparison is presented to the traditional genetic algorithm.

1 Introduction

In recent years much work has been done with the aim of extending genetic algorithms (GAs) to
make it possible to find more than one local optimum of a function and so to reduce the probability
of missing the global optimum. The techniques developed for this purpose are known as niching
techniques. Besides the greater probability of the success of the algorithm and a significantly
better performance on GA-hard problems (see [13]), niche techniques provide the user with more
information on the problem, which is very useful in a wide range of applications (decision making,
several designing tasks, etc.).

1.1 Best-Known Approaches

Simple iteration runs the simple GA several times to the same problem, and collects the results
of the particular runs. Fitness sharing has been introduced by Goldberg and Richardson [6]. The
fitness of an individual is reduced if there are many other individuals near it and so the GA is
forced to maintain diversity in the population. Subpopulations can also be maintained in parallel,
usually with the allowance of some kind of communication between them (see, for example, [9]). The
GAS method has developed from this approach. The sequential niche technique is described
in [13]. The GA (or any other optimizing procedure) is run many times on the same problem, but
after every run the optimized function is modified (multiplied by a derating function) so that the
optimum just found will not be located again.

1.2 Problems

These techniques yield good results from several viewpoints, but mention sholud be made of some
of their drawbacks, which do not arise in the case of our method, GAS.
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Simple iteration is unintelligent; if the optima are not of the same value relatively bad
local optima are found with low probability, while good optima are located several times which is
highly unnecessary. Fitness sharing needs O(n2) distance evaluations in every step, besides the
evaluation of the fitness function. It cannot distinguish local optima that are much closer to each
other than the niche radius (a parameter of the method); in other words, it is assumed that the
local optima are approximately evenly spread throughout the search space. This latter problem
is known as the niche radius problem. The sequential niche technique also involves the niche
radius problem. The complexity of the optimized function increases after every iteration due to
the additional derating functions. Since the function is modified many times, “false” optima too
are found. The method seems difficult to use for combinatorial problems or structural optimization
tasks, which are the most promising fields of GA applications.

GAS offers a solution to these problems including the niche radius problem, which is the most
important drawback of all of the methods mentioned earlier.

1.3 Outline of the paper

In section 2 we give a brief description of GAS that is needed for an understanding of the following
part of the paper. The reader who is interested in more details should refer to the Appendix on
how to obtain more information or GAS itself.

In section 4 we give a possible solution to the niche radius problem with the help of the GAS
system. Both real and binary problem domains are discussed.

In section 5 we present experimental results. Two problems are examined. The first demon-
strates how GAS handles the uneven distribution of the local optima of the optimized function.
The second is an NP-complete combinatorial problem, where a comparison is presented to the
traditional GA.

2 Species and GAS

2.1 Basic Ideas and Motivations

The motivation of this work was to tackle the problem of finding unevenly spread optima of multi-
modal optimization problems. For this purpose, a subpopulation approach seemed to be the best
choice.

The obvious drawback of subpopulation approaches is that managing subpopulations need
special algorithms and the system is relatively difficult to understand and maybe to use as well.
There are considerable advantages, however. Every subpopulation may have its own attributes
that make it possible for them to adapt to the different regions of the fitness landscape. The
subpopulations perform effective local search due to the mating restrictions that usually allow
breeding only inside of a subpopulation, and the different subpopulations can even communicate
with each other.

In our method GAS, every subpopulation (or species) is intended to occupy a local maximizer of
the fitness function. Thus, new species are created when it is likely that the parents are on different
hills, and species have to be fused when they are thought to climb the same hill (heuristics will
be given later). To shed some light on the way GAS copes with unevenly spread optima, it is
natural to use a terminology that is well known from the field of simulated annealing. Thus, when
illustrating our definitions and methods, we will talk about the ‘temperature’ of species, the ability
of escaping from local optima. In our system, we made the ‘temperature’ an explicit attribute of
every species (it is the attraction of species, see Definition 3). This allowed us to offer an algorithm
that ‘cools down’ the system while species of different ‘temperatures’ are allowed to exist at the
same time. The basic idea of the algorithm is that ‘warmer’ species are allowed to create ‘cooler’
species autonomously discovering their own local are of attraction.

Finally, let us mention that due to our theoretical results, the large number of parameters of
GAS can be reduced to a couple of easy-to-understand ones (see section 4).



2.2 Basic Definitions

Using the notations in the Introduction of [10], let D be the problem domain, f : D → IR the
fitness function and g : {0, 1}m → D for some m ∈ {2, 3, . . .} the coding function. (GAS searches
for the maxima of f !)

Let us assume that a distance function d : D ×D → IR and term section (section : D ×D →
P (D), where P (D) is the power set of D) are defined.

Example 1. D ⊆ IRm, D is convex.

section(x, y) = {z : z = x + t(y − x), t ∈ [0, 1]}

Example 2. D = {0, 1}m (So if x ∈ D then x = (x1, . . . , xm))

section(x, y) = {z : if xj = yj then zj = xj}

Definition 1. R : IN → IR is a radius function over D if it is monotonic decreasing, positive,
R(0) = max{ d(e1, e2) : e1, e2 ∈ D} and

lim
n→∞

R(n) = 0.

Fig. 1a exemplifies these properties. The radius function will be used to control the speed of
‘cooling’. In fact, it gives the ‘temperature’ of the system in a given step (see section 3). This sheds
some light on the special requirements we made in Definition 1.

Let us fix a radius function R.

Definition 2. A species s over D is given by the triplet (o, l, S) (notation: s = (o, l, S)), where S
is a population over D and the members of S are the individuals of s; o(∈ S) is the center of s and
is such that f(o) = max f(S); l(∈ IN) is the radius index or the level of s, and so the radius of s is
R(l). Recall that in GAs a population is a multiset (or bag) of individuals (e.g. S =< x1, x1, x2 >).

Definition 3. s = (o, l, S) is a species. Let A(s) = {a ∈ D : d(a, o) ≤ R(l)} be the attraction of s.

Fig. 1b illustrates the terms defined above.
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Fig. 1. a: A possible radius function. b: Terms related to species.

Species with small attraction behave as they were ‘cooler’; they discover a relatively small
area, their motion in the space is slower but they can differentiate between local optima that are
relatively close to each other. Note that for a species s = (o, l, S), o is ‘almost’ determined by S. If
the maximal number of different maximizers in a population would be one, Definition 2 would be
redundant. Also note that it is not necessary that S ⊆ A(s).



Definition 4. Let T be a graph with the vertex set V (T ), where V (T ) is a set of species over
D. T is a taxonomic chart (t.c.) if T is a tree and there is an sr = (or, 0, Sr) root in T , and if
(sr =)s0, s1, . . . , sn is a path in T , then for the corresponding levels l0 < l1 < . . . < ln holds.

Note that the root sr of of every t.c. has the level 0 which means that its area of attraction
A(s) covers the whole domain D (see Definitions 1 and 3).

2.3 The Algorithm

Let V (T0) (T0 is a t.c.) contain only sr = (or, 0, Sr), where Sr is randomly chosen. The algorithm
in Fig. 2 shows how GAS creates a Tn+1 t.c. from a given Tn t.c.

procedure activity

begin

while (population size of T_n < maximum allowed) do begin

choose two parents

create two offspring

place the parents and the offspring back in the population

end

dying_off

fusion

end

Fig. 2. The basic algorithm that creates Tn+1 from Tn.

Before describing the parts of the algorithm, we should make a few remarks.

– It is the flexibility of steady state selection [11] that allows the algorithm to create and manage
species, as will be shown later.

– The algorithm can be implemented in parallel on two levels: the level of the while cycle and
the level of the procedure. (However, our implementation is not parallel.)

Let us now examine the parts of the algorithm.

Population Size. The population size of a given T t.c. is
∑

s=(o,l,S)∈V (T )

|S|.

Choose Two Parents. From a given T , we first choose a vertex (a species) with a probability
proportional to the number of the elements of the vertices. Then, we choose two parents from
this species, using the traditional probability (proportional to the fitnesses of the elements of the
species).

Create Two Offspring. From individuals p1 and p2, we create p′1 and p′2 by applying onepoint
crossover and mutation operators to the parents.

Placing Elements Back in the Population. Since this is the point where new species are created,
this is the most important step. We have to decide here whether to separate the given two parents
into two different species and we have to find species for the two newly created offspring. If we
decide to separate the parents, we must find new existing species for them or create new species
for them. The placing-back algorithm is shown in Fig. 3. The notations of the algorithm: p1, p2

are the parents, p′1, p′2 are the two offspring, e is a random point on the section that connects p1



if f(e) < f(p1),f(p2) then

for x=p1,p2,p1’,p2’ do

if (there is a child node s_c of s_p such that x is in A(s_c)) then

move(x,s_c)

{ With the restriction that p1 and p2 }

{ must not be put into the same species. }

for x=(a parent not put in so far) do

create a new child s=(x,max{l_p +1,strict},<x>) for s_p

{ else: The parents are left in s_p. }

for x=(an offspring not put in so far) do begin

s:=s_p; while (x is not in A(s)) do s:=father node of s

{ if s=s_r then A(s)=D! }

move(p,s)

end

Fig. 3. The algorithm that places parents and offspring back in the population.

and p2 (note that p′1 and p′2 are not on this section in general), and sp is the original species of the
parents. We always mean sx = (ox, lx, Sx) on sx for any symbol x.

Function move(p,s) moves p to S and updates o if necessary. Parameter strict determines
the precision of the search, i.e. the ‘temperature’ of the system. Increasing strict decreases ‘tem-
perature’. The way of using this parameter is described in section 3.

It is clear that for a concave or for a unimodal one-dimensional fitness function GAS will never
create a single species.

Dying off. Dying off deletes as many elements from the population of the t.c. as were inserted in
the while cycle keeping the population size constant. The method used for selecting elements to
die is based on the ranking defined by the transformed fitness function f̂ :

f̂(e) :=
f(e) − (a global lower bound of f on the whole population)

|S|

where e is in species s = (o, l, S).
This means that species of small size have more chance to survive (and to grow). The precision

of the procedure (i.e. the level of competition) can be varied during the optimization process. In
section 3 we discuss how to use this possibility. Dying off has no effect on the species structure
(by definition) and does not delete the best individual of a species.

Fusion. The result of fusion depends on R and strict described earlier. After executing fusion

for a given T t.c., we get T ′, for which the following will be true: if s1, s2 ∈ V (T ′), then d(o1, o2) ≥
R(strict).

Fusion simply unites species of T that are too close to each other, and strict tells it what
is too close. If s1 and s2 are united, the result species is s = (o, min{l1, l2}, S1 ∪ S2), where
f(o) = max{ f(o1), f(o2)} and o is o1 or o2. In view of the tree structure, the species with the
lower level absorbs the other. If the species have the same level, either of them may absorb the
other.

3 Optimization with GAS

For global optimization with GAS, we suggest the algorithm shown in Fig. 4. For determination
of the vector of evaluation numbers x and the radius function R, we suggest a method in section 4
based on the speed of species with a given radius in a given domain.



create a starting t.c. T_0

for strict=1 to ST_m { 0 < ST_m(=strict_max) < 8 }

new species

evolution { evolution is the following macro: }

stabilize { for i=1 to 10 do activity }

iterate evolution until reaching { immigration }

x_strict function evaluations { for i=1 to 5 do activity }

Fig. 4. The high-level test algorithm.

The main for cycle performs the ‘cooling’ operation. Increasing strict results in new species
with smaller radii (see Fig. 3). The basic philosophy is to increase diversity at the beginning of
every cycle and then perform optimization of the newly discovered areas. This kind of oscillation
can be observed in biological systems as well.

We now describe the species-level genetic operators, used in the algorithm shown in Fig 4.

Immigration. For every species s = (o, l, S) in a given t.c., |S|/2 randomly generated new individ-
uals are inserted from A(s). Immigration refreshes the genetic material of the species and makes
their motion faster. It has a kind of greasing effect.

New species. This switch alters the state of the system towards managing species creation. It
randomizes dying off and relaxes competition by decreasing the lower bound of the fitness func-
tion, and so decreases the relative differences between individuals. According to some biologists
[3], species are born when the competition decreases; our experiments support this opinion.

Stabilize. The effect of this is the contrary of new species. It prohibits the creation of new species
and increases competition.

As a summary, we give here some heuristical arguments that support the subpopulation structure
approach and use a radius function instead of a single radius.

– The number of distance calculations grows with the size of the t.c. instead of the size of the
population.

– Application of species–level operators (e.g. fusion, immigration) becomes possible.
– Lower-level (closer to root) species manage to create new species in their attraction.
– The advantages of the technique based on the radius function and increasing strict (see Fig. 4)

are similar to those of the ‘cooling’ technique in the simulated annealing method.

Finally, to make our discussion more rigorous, we give the definitions of stability of species and
t.c. These definitions are not really necessary for the present discussion in the sense that will not
be used in any strict mathematical environment. However, when stability is mentioned, it is ment
in this sense. The impatient reader is free to skip these definitions.

Definition 5. W ⊆ D. Species s is stable in W if o ∈ W , and if o1, o2, . . . is a series of new
centers inserted by GAS to s during running then it is impossible that for some i oi 6∈ W .

Example 3. It is clear that s is stable in W = {e ∈ D : f(e) > f(o)}.

Definition 6. e0 ∈ D, e0 is a local optimum (with respect to d) of f . s is stable around e0 if, for
every o1, o2, . . . series of new centers inserted by GAS to s during running, on → e0 (n → ∞) with
probability 1.



Example 4. W ⊆ D, e0 ∈ W . If s is stable in W and e0 is the global optimum of f in W (i.e. e0 is
a local optimum of D or else s could not be stable in W ) and there are no more optima of f in W ,
then s is stable around e0. This example would need a proof but we do not give it here because it
is marginal from the viewpoint of the paper.

Definition 7. T is a t.c. T is stable if every species of T is stable around distinct local optima of
f .

Definition 8. T is a t.c. T is complete if T is stable and there is exactly one stable species around
every local optimum of f .

4 Theoretical Results

In this section we discuss the theoretical tools and new terms that can be used due to the exact
definition of the t.c. data structure and GAS algorithm.

4.1 Speed of Species

We do not assume that the optima of the fitness function are evenly spread; we create species
instead that “live their own lives” and can move in the search space and find the niche on which
they are stable. It can be seen that from this point of view determining the radius function R
depends more upon the speed of the species than on the number of spheres (niches) of a given
radius that can be packed into the space. The speed of a given species s = (o, l, S) will depend
on its radius R(l). The larger the radius is the faster the species can move towards its stable
state so the fewer the number of iterations it needs to become stable. This idea will be used when
simultaneously dividing the available number of function evaluations among the species and setting
the values of the radius function R.

The solution of the sphere packing problem mentioned above is the base of setting the niche
radius parameter of the methods mentioned in the Introduction. This value is useful when evalu-
ating the output of the system since it tells us what percentage of the possible number of optima
we have found. In section 4.3 we discuss such packing problems in the case of binary domains.

Real Domains. In real domains we have D ⊆ IRn for some n ∈ IN. Let us fix a dimension number
n and a species s = (o, l, S) and let us denote the radius of s by r (i.e. r = R(l)). (Recall, that for
a species s = (o, l, S) the center of s, o, is an n-dimensional real vector: o = (o1, . . . , on).)

The following suggestion for the definition of speed is an approximation. It is assumed that
the fitness function f is the projection f(x) = x1 and GAS simply selects new individuals from
the attraction of s, A(s), randomly with a uniform distribution instead of generating them using
parents and genetic operators and drops them into the species one by one. The speed for a radius
r and a dimension n will be the average step size towards the better region.

Definition 9. The speed v(r) of s is (c1 − o1)/2, where c ∈ IRn is the center of gravity of the set

Sn,r = A(s) ∩ {x ∈ IRn : x1 > o1}

In other words, let us choose a random element x
∗ = (x∗

1, . . . , x
∗

n) from A(s) with a uniform
distribution. Let ξ = o1 − x∗

1 if o1 > x∗

1, and ξ = 0 otherwise. Than M(ξ) (the expected value of
ξ) is v(r). This means that v(r) is given by the equation

v(r) =
1

2

1

V (Sn,r)

∫

Sn,r

x1 dx1 . . . dxn (1)



where V (Sn,r) is the volume of Sn,r. (Recall that if ξ = 0 then the center of s o is not changed by
GAS.) It can be proved that

v(r) =

(

n
n−1

2

)

2n+1
r (2)

holds. In the general case (if n is even) (2), is defined with the help of the function Γ (t + 1), the
continous extension of t!. Γ (t+1) =

∫

∞

0
xte−x dx, Γ (1/2+1) =

√
π/2 and Γ (t+2) = (t+1)Γ (t+1).

Binary Domains. Let D = {0, 1}n. Let us fix a dimension number n and a species s = (o, l, S)
and let us denote the radius of s by r (i.e. r = R(l)). We give a definition of speed similar to
Definition 9. Like in the case of real domains, an approximation is used. It is assumed that the
fitness of an individual x ∈ D is given by the number of 1s in it, and GAS works as described in
the case of real domains. As in the binary case, the speed for a radius r and a dimension n will be
the average size of the first step of o after receiving one random individual. The difference is that
in the case of binary domains, the starting center has to be fixed too since the average step sizes
change as the center changes. Let e ∈ D such that the number of 0s is equal to or greater by one
than the number of 1s. Let e be the fixed starting center. Let

Sn,r = {e′ ∈ D : d(e′, e) ≤ r}

where d is the Hamming distance (the sum of the bit differences). Let us choose a random e∗ from
Sn,r with a uniform distribution and let ξ = d(e∗, e) if there are more 1s in e∗, and let ξ = 0
otherwise.

Definition 10. Let v(r) = M(ξ) be the speed of species s in D if the radius of s is r.
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Fig. 5. Speed in binary domains.

We performed experiments to determine v(r) (Fig. 5). It can be seen if n � r, then the equation

v(r) =
3

11

√
r (3)

seems to describe the speed. If r approaches n, the growing of the speed becomes slower than (3)
would indicate.



4.2 Determining R and x

We use the notations of Fig. 4 here. Recall that STm is the number of steps in the ‘cooling’
procedure, the maximal value of strict, and xi denotes the number of function evaluations at
step i. Let us assume that the evaluation number N , the domain type and the corresponding speed
function v are given. We know that

STm
∑

i=1

xi = N (4)

We suggest a setting for which the system of equations

v(R(i))xi = C (i = 1, . . . STm) (5)

holds where C is a constant (independent of i). This simply means that the species of the different
levels receive an equal chance to become stabilized. From (4) and (5) it follows that

C =
N

∑STm

i=1
1

v(R(i))

. (6)

We note that C is the distance that a species of level i expectedly crosses during xi iterations.
In GAS, the upper bound M of the number of species can be set. M = [population size/4] by

default. Now we can give the value of C:

C = R(0)Mν (7)

Recall that R(0) is the diameter of the domain we examine.
ν is a threshold value. Setting ν = 1 means that every species receives at least sufficient function

evaluations for crossing the whole space, which makes the probability of creating a stable t.c. very
high. In section 5 we examine the effect of several different settings of ν. Finally let

R(i) = R(0)βi (i = 1, . . . STm, β ∈ (0, 1)) (8)

Then, R is a valid radius function and subproblems defined by the species will be similar in view
of the radii.

Using (6), (7) and (8), we can write

N

R(0)Mν
=

STm
∑

i=1

1

v(R(0)βi)
(β ∈ (0, 1)) (9)

where everything is given except β.
Since v is monotonous, the right side of (9) monotonically decreases as β increases and so

reaches its minimum if β = 1. Using this fact, the feasibility condition of (9) is

N

R(0)Mν
>

STm

v(R(0))
(10)

If (10) holds, (9) has exactly one solution. This property allows us to use effective numeric
methods for approximating β.

In section 5.1 we discuss the parameters that have to be set in GAS.

4.3 Evaluating the Output

We based the setting of the parameters of GAS on the speed function. However, it is important to
know the maximal possible size of a t.c. for a given radius function R (assuming an arbitrary large
evaluation number and population size) since it tells us what percentage of the maximal possible
number of optima we have found.

The problem leads to the general sphere packing problem and this has been solved neither for
binary nor for real sets in the general case.



Real Case

In n-dimensional real domains Deb’s method [5] can be used.

p = (

√
n

2r
)
n

where r is the species radius, the domain is [0, 1]n and p is the number of optima, assuming that
they are evenly spread. We note that this is only an approximation.

Binary Case

Results of coding theory can be used to solve the packing problem in binary domains since it is
one of the central problems of this field. We will need the definition of binary codes.

Definition 11. d, n ∈ IN, d ≤ n. C ⊆ {0, 1}n is a (n, |C|, d) binary code if ∀c1, c2 ∈ C :
dist(c1, c2) ≥ d (The function “dist” is the Hamming distance, the sum of the bit differences.)

Definition 12. d, n ∈ IN. A(n, d) := max{|C| : C is a (n, |C|, d) binary code}.

A(n, d) has not yet been calculated in the general case; only lower and upper bounds are known.
Such bounds can be found for example in [12], [2] or [1]. One of these is the Plotkin bound:

Theorem 1. ((Plotkin bound)) For d, n ∈ IN, we have

A(n, d) ≤ d

d − 1
2n

if d ≥ 1

2
n

Proof. [12].

In a special case, the exact value is also known:

Theorem 2. For binary codes and m ∈ IN, we have

A(2m+1, 2m) = 2m+2.

In Table 1 we show the Plotkin upper bounds for 2n = 32, 128 and 1024. The values have been
calculated according to the following formulas:

A(2n, n + a) ≤ n+a
n+a−2n/2 = 1

a (n + a)

A(2m+1, 2m) = 2m+2

A(2n, n − a) ≤ 22a+12(n − a)

5 Experimental Results

In this section we examine two problems. The first demonstrates how GAS handles the uneven
distribution of the local optima of the optimized function. The second is an NP-complete combi-
natorial problem, where a comparison is presented to the traditional GA.



d 2n 32 128 1024

n-3 3 328 15 616 130 304
n-2 896 3 968 32 640
n-1 240 1 008 8 176
n 64∗ 256∗ 2048∗

n+1 17 65 513
n+2 9 33 257
n+6 3 11 86
n+16 2 5 33
n+40 - 2 13

Table 1. Plotkin upper bounds for A(2n, d). The indicated values are exact.

5.1 Setting of GA and GAS Parameters

In the following experiments, the settings of the traditional GA parameters are Pm (mutation
probability) = 0.03 (see e.g. [7]) and Pc (crossover probability) = 1, while the population size = 100.
In the while cycle of the basic algorithm (shown in Fig. 2), the maximum allowed population size
is 110. For continuous domains, we used Gray coding as suggested in [4].

The settings of the specific GAS parameters are the following:

– R (radius function) and x (evaluation numbers) can be determined using the method described
in section 4.

– M (maximal number of species in the t.c.) is set to M = (pop. size)/4. Setting a larger value
is not recommended since too many small species could be created.

– N (
∑STm

i=1 xi) depends on the available time and computational resources. We used N = 104.
– ν (treshold) and STm (maximal strict level) are the parameters we tested so we used several

values (see the descriptions of the experiments).

For simplicity, we run evolution only once after new species (see Fig. 4) but we note that
increasing that number can significantly improve the performance in some cases. The cost of one
evolution is 275 evaluations after new species, and 200 after stabilize at the above settings.

5.2 A Function with Unevenly Spread Optimas

The problem domain D is [0, 10]. The fitness function f : D → IR.
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f(x) =

10
∑

i=1

1

(ki(x − ai))2 + ci

f (shown in Fig. 6) is a test function for global optimization procedures suggested in [8].
We have determined R and x for ν = 1/4, 1/2, 3/4 and 1 (see Table 2). STm is 8 in every case.

Recall that according to the algorithm in Fig. 4 the elements of x must be divisible by 200 (the
cost of evolution after stabilize) and the sum of them must be 104 − STm · 275.
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ν = 1 ν = 3/4 ν = 1/2 ν = 1/4

R x R x R x R x

1 6.61 200 6.333 200 5.978 0 5.334 0
2 4.369 200 4.011 200 3.573 200 2.845 0
3 2.888 400 2.54 200 2.136 200 1.517 200
4 1.909 600 1.609 400 1.277 400 0.809 200
5 1.261 800 1.019 800 0.763 600 0.432 600
6 0.834 1200 0.645 1200 0.456 1200 0.23 1000
7 0.551 1800 0.409 1800 0.273 2000 0.123 2000
8 0.364 2800 0.259 3000 0.163 3200 0.066 3600

Table 2. Radius and evaluation numbers for ν = 1/4, 1/2, 3/4 and 1.

We run the corresponding algorithms 100 times. The numbers of stable species that converged
to one of the local optima are shown in Table 3. The most important result is that no unstable
species appeared in the output even for ν = 1/4.

The best results are observed in the case of ν = 1/4. Here, even o3 was found 2 times in spite
of its very small attraction.

o1 o2 o3 o4 o5 o6 o7 o8

ν = 1 100 0 0 100 60 97 48 94
ν = 3/4 100 1 0 100 65 87 72 94
ν = 1/2 100 34 0 100 74 99 58 98
ν = 1/4 100 25 2 100 85 100 90 100

Table 3. Number of stable species around the local optima.

Fig. 7 shows the average number of species detected before increasing strict (after stabilizing
for the old strict). From these values, we can gain information on the structure of the optima
of the fitness function. For example, for radii greater than 3, very few species were created, which
means that the optima are probably closer to each other than 3.
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5.3 An NP–complete Combinatorial Problem

We study the subset sum problem here. We are given a set W = {w1, w2, . . . , wn} of n integers
and a large integer C. We would like to find an S ⊆ W such that the sum of the elements in S is
closest to, without exceeding, C. This problem is NP-complete.

We used the same coding and fitness function as suggested in [14]: D = {0, 1}128. If e ∈ D

(e = (e1, e2, . . . , e128)), then let P (e) =
∑128

i=1 eiwi, and then

−f(e) = a(C − P (e)) + (1 − a)P (e)

where a = 1 when e is feasible (C − P (e)) ≥ 0), and a = 0 otherwise.
Here, ∀w ∈ W 1 ≤ w ≤ 1000 and C is the sum of a randomly chosen subset of W (every

element is chosen with a probability 0.5).
We do not need a coding function here since D is the code itself.

STm = 1 STm = 2 STm = 3 STm = 4 STm = 5 STm = 6

R x R x R x R x R x R x

1 2 9600 20 2600 47 1800 72 1400 93 1200 109 1200
2 3 6800 17 2800 41 1800 67 1400 92 1200
3 6 4600 23 2400 49 1600 79 1400
4 13 3200 35 2000 67 1400
5 26 2400 57 1600
6 48 1600

Table 4. Radii and evaluation numbers for STm = 1, 2, . . . , 6.

We tested several values of STm. Table 4 shows R and x for STm = 1, 2, . . . , 6. The value 8 is
not feasible and 7 is also very close to that bound. ν = 1 in every case. We run the corresponding
algorithms 50 times.

For comparison, in experiments on the same problem with two times more (i.e. 2 · 104 instead
of 104) evaluation numbers in [14], 0.93 optimal solutions were found per run. Here, this value is
at least one for every STm, and for STm = 2 it is 2.62 (see Table 5).

Besides this, many near-optimal solutions were found (as shown in Fig. 8) so we received much
more information with only 104 function evaluations.
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opt. found/ avg. fitness number of
STm run of all spec. species

1 1.56 -3.194 201
2 2.62 -15.616 1250
3 2.1 -10.866 1250
4 2.12 -12.568 1238
5 2.08 -12.84 846
6 1.0 -6.943 211

Table 5. Result of the experiment (50 runs).

6 Summary

In this paper we have introduced a method called GAS for multimodal function optimization
(or multimodal heuristic search). GAS dynamically creates a subpopulation structure called a
taxonomic chart, using a radius function instead of a single radius, and a ‘cooling’ method similar
to simulated annealing.

We based setting of the parameters of the method on the speed of species instead of their
relative size to the search space and we gave speed functions for both real and binary domains.

We performed experiments for a difficult test function with unevenly spread local optima and
for an NP-complete combinatorial problem.

In both cases our results are encouraging though much work will have to be done to examine
the effects of the parameters of the method more thoroughly.
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Appendix

GAS and a detailed description of the system is available via anonymous ftp at the following URL:

ftp://ftp.jate.u-szeged.hu/pub/math/optimization/GAS



This is a directory. Please read the file readme.
The authors would highly appritiate it if you informed them about any problems regarding

GAS (compilling, using, etc.).
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