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ABSTRACT

Hyper-heuristics (HHs) are heuristics that work with an ar-
bitrary set of search operators or algorithms and combine
these algorithms adaptively to achieve a better performance
than any of the original heuristics. While HHs lend them-
selves naturally for distributed deployment, relatively little
attention has been paid so far on the design and evalua-
tion of distributed HHs. To our knowledge, our work is
the first to present a detailed evaluation and comparison of
distributed HHs for real parameter optimization in an is-
land model. Our set of test functions includes well-known
benchmark functions and two realistic space-probe trajec-
tory optimization problems. The set of algorithms available
to the HHs include several variants of differential evolution,
and uniform random search. Our main conclusion is that
some of the simplest HHs are surprisingly successful in a
distributed environment, and the best HHs we tested pro-
vide a robust and stable good performance over a wide range
of scenarios and parameters.

Categories and Subject Descriptors

G.1.6 [Numerical Analysis]: Optimization—global opti-
mization; 1.2.8 [Artificial Intelligence|: Problem Solving,
Control Methods, and Search; D.1.3 [Programming Tech-
niques]: Concurrent Programming
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1. INTRODUCTION

Hyper-heuristics are high level problem independent heuris-
tics that work with any set of problem dependent heuristics
and adaptively apply and combine them to solve a specific
problem [5,6,16].

The difference between HHs and meta-heuristics is that
meta-heuristics are not off-the-shelf methods that can be
readily applied to any problem: they are schemes that have
to be instantiated and tuned to specific problems. In con-
trast to this, HHs do work off-the-shelf using any given set
of operators and algorithms. The tradeoff is that HHs are
“good enough, soon enough, cheap enough” [6] approaches
while meta-heuristics can achieve better performance although
they require significantly more investment.

Although it is a promising and useful idea to design and
apply parallel HHs, relatively little work has been done in
this area, compared to the significant body of work on par-
allel meta-heuristics [2]. In [19], a master-slave model is
proposed, along with a more distributed model where there
are many clusters that implement a master-slave model lo-
cally. In [15] an agent based approach is proposed that is
nevertheless also conceptually centralized involving a single
HH agent. Finally, in [22] a Grid-based solution is proposed
with a central HH server and slave nodes performing low-
level search.

We believe that emerging platforms such as cloud comput-
ing [9], as well as the more established peer-to-peer [3] and
Grid [14] platforms all favor a coarse grained, decentralized
approach that has no bottlenecks and that scales well and
tolerates failure and dynamism. Our goal is to target such
platforms.

In this paper we examine a set of distributed HHs that
are based on an island model, where islands communicate
through various scalable and fault tolerant gossip proto-
cols [8]. We compare these HHs empirically over a set of real
parameter optimization problems, including realistic space-
trajectory optimization problems. Our conclusion is that
distributed HHs are competitive optimizers (for example,
we could improve the best known solution for one of the
realistic problems in our test set), but—most importantly—
HHs are robust and consistently better than any of the basic
heuristics they apply over a wide range of environments.



code | name

Al DE/best/1/exp

A2 DE/localBest/1/exp

A3 DE/rand/1/exp

A4 DE/rand/2/exp

A5 DE/randToBest/1/exp

A6 DE/randToLocalBest/1/exp
A7 particle swarm optimization
A8 random sample

Table 1: The set of heuristics A input to the HHs

2. THE ISLAND MODEL

Our parallelization approach is based on a symmetric is-
land model: we assume that we are given independent nodes,
each of which runs the same algorithm, periodically commu-
nicating with each other. From now on we use the words
“node” and “island” interchangeably.

The neighborhood structure is random. More precisely,
we assume that at any point in time each node can request
a random node address from a local peer sampling service
that returns a random sample taken from the network.

While we do not focus on system-level implementation de-
tails of the parallel algorithms, we note that the peer sam-
pling service can be implemented in a robust, cheap, and
flexible way that scales to millions of nodes [13]. From this
point we simply assume that this service is accessible at ev-
ery node. All the communication mechanisms we will define
are based on gossip algorithms [8] that can be implemented
on top of this service alone. An actual implementation of a
similar framework is available as well [3].

Note that in this framework it would also be possible to
use gossip algorithms [11] to generate better neighborhood
structures [7,21]. For simplicity, in this paper we opted for
a random structure.

Independently of the algorithm run on the island, we al-
ways propagate the current best solution to all the islands.
This is also done through a gossip protocol: islands period-
ically send the best solution they know of to other random
islands, and when they receive such a message, they up-
date their own current best solution. We assume the period
of gossip to be one function evaluation, which presupposes
that the function is non-trivial and takes a sufficiently long
time (in the order of a second or more) to compute. It can
be shown that the time to propagate a new current best
solution to every node this way takes O(log N) periods in
expectation where N is the network size [18].

3. ALGORITHMS

3.1 The Basic Heuristics

Here we describe the set of algorithms A that our HHs
will operate on. A typical HH takes low level operators
often classified as simple hillclimbers and mutation opera-
tors [16]. Instead, in our approach the HH operates over
meta-heuristics as well. These meta-heuristics can still be
classified as leaning towards exploration (diversification) or
towards exploitation (intensification); the presence of both
kinds of algorithms is crucial for every HH.

The set of algorithms is shown in Table 1. Heuristics Al-
A6 are variants of differential evolution. We use the stan-

dard notation as proposed in [20]. Here, “best” means the
global best solution in the network (as learned through gos-
sip, see above). Notation “localBest” in A2 implies the “best”
variant with the best solution interpreted as the local best
solution within the island: this variant ignores the global
best solution so the islands are isolated. Similarly, “rand”
variants are also defined to be local to the island. Heuristic
A5 is like the “2” variants but it uses one random solution
from the population along with the global best; A6 is the
isolated version of A5.

Algorithm A7 is described in [4]. It is a simple island-
based PSO algorithm that assumes that the best solution
PSO relies on is the global best, propagated via gossip. Fi-
nally, A8 returns a random solution from the range of the
function at hand.

All these algorithms are population-based (except A8, which
is stateless). We assume that all the islands maintain a pop-
ulation of size 8. This makes it possible for a HH to change
the algorithm while preserving the population.

3.2 Baseline HHs

We include in our pool two trivial HHs as a baseline. The
first is called StatEq that is short for “static equal share”.
StatEq assigns a heuristic to each island at the beginning
of the run and does not change this assignment anymore.
Furthermore, it assigns an equal number of islands to every
heuristic. Note that StatEq can easily be implemented as a
local algorithm without global consensus, if necessary: for
example, each node can select an algorithm at random at
the beginning, and then adhere to it throughout the run
(depending on network size, this introduces some variance).

The second is called DynEq that is short for “dynamic
equal share”. It assigns a random heuristic to each island
after each cycle (where one cycle within an island represents
the generation of one new solution using a heuristic) at ran-
dom, giving an equal probability to all the heuristics.

3.3 Tabu

Our first non-trivial HH is adapted from related work [6].
Like the set of heuristics A1-A8, and all the rest of the HHs,
this algorithm is run on every island.

In the original sequential version, the basic idea was that
Tabu maintains a tabu list of heuristics, and it also main-
tains a rank value for every heuristic, that can take an in-
teger value from the interval [0, |A|]. If running a heuristic
improved the current best solution, its rank is increased by
one and the tabu list is emptied; otherwise its rank is de-
creased by one and it is put in the tabu list. In each cycle,
Tabu selects the heuristic that has a highest rank among
those that are not in the tabu list.

Note that the tabu list has a dynamic size because it be-
comes empty whenever an algorithm can improve the current
best solution [6]. Its maximal size is |A| — 1.

We parallelize this algorithm by running it on all the is-
lands, but using the global current best solution for the
improvement test (recall that the current best solution is
known locally via gossip). In addition, when we learn about
a new global current best solution from a neighbor (along
with the heuristic that generated it), we treat this event ex-
actly as if the improvement was the result of running the
given heuristic locally (that is, we update the rank of the
given heuristic, and so on).



3.4 SDigmo and DDigmo

A parallel master-slave HH called Digmo was proposed
in [22] designed for a local Grid environment within the Eu-
ropean Space Agency. Here we propose two fully distributed
adaptations of this method for our island model.

The basic idea behind Digmo is that it maintains a prob-
ability distribution over the algorithm set .A based on the
performance of the algorithms. It uses a master-slave archi-
tecture, where the master keeps a central population, and
periodically selects algorithms based on the probability dis-
tribution; it then assigns the selected algorithm to a slave
node along with a random subset of the central population.
When an algorithm reports the results back to the master,
the master updates the probability distribution and the cen-
tral population as well.

For all the algorithms, Digmo maintains a FIFO queue of
size k, that contains the k last results of the algorithm (they
recommend a value of k = 5). Let M; denote the average of
these k values for algorithm i. In the case of minimization
and a positive function, the probabilities P; are chosen so as
to be proportional to 1/M;:

1 1 1
Pi: ar 1- TA = FV
asMi + ( a) |A| s ]Z: M;

where 0 < o < 1 is a constant that determines the minimal
probability each algorithm is assigned. A setting of o = 0.2
is suggested.

We adapt this algorithm to our island model by allowing
each island to approximate P; for all 4, and then allowing
the islands to cooperatively assign heuristics for each island
in two different (static and dynamic) ways based on this
distribution.

To approximate P;, each island maintains a good approx-
imation of the FIFO queue for each heuristic, via gossiping
the latest results of the algorithms. Thus, the queue of al-
gorithm ¢ will contain the last k results of i in the entire
network, with a small time lag due to gossip propagation
delay. This way, M;, and thus P;, can be approximated
locally at each island.

Knowing P; for all ¢, the dynamic way of assigning heuris-
tics is simply to pick a heuristic at random using this distri-
bution independently at every island in every cycle. We call
this variant DDigmo.

In the static approach—that we call SDigmo—we still
want the network to reflect the distribution P;, however, we
want minimize the number of islands that actually change
their heuristic during a run. For this an island needs ex-
tra information: an approximation of the actual proportion
of algorithm ¢ in the network, denoted by P;. An island
running algorithm ¢ will keep running ¢ if P; > B, Oth-
erwise it will select a novel algorithm j with a probability
proportional to max{0, P; — P;}.

For the local approximation of P we apply gossip-based
aggregation [12]. This protocol has an identical cost and
time complexity to gossip based multicast that we apply for
propagating the global best solution, and it also assumes
only the peer sampling service to be able to function prop-
erly. The basic idea behind it is simulating diffusion and
thereby calculating averages, network size, and other statis-
tics.

In SDigmo and DDigmo, based on extensive preliminary
experiments, we set « = 1 and k = 5.

Algorithm 1 Pruner HH
1: forr < 1to I do

% e« AT —7)/T]

3 if n. has changed or newBest then

4: newBest < false

5: rank < sort(stats)

6.

7

8

i < lookup(rank, curr)
if 4 > n. then

141
9: else
10: 1 < max(0,7— 1)
11: end if
12: curr — rankli]
13: end if
14: val < run(curr, bestVal)
15: UPDATESTATS(val, curr)

16: p < getRandomPeer()

17: send (bestVal, bestAlg) to p
18: end for

19: procedure UPDATESTATS(val, alg)
20: if wval is better than bestVal then

> peer sampling service

21: bestVal < val
22: bestAlg < alg
23: stats|alg] + val
24: end if

25: end procedure
26: procedure ONRECEIVE((val, alg))
27: if val is better than bestVal then

28: newBest < true
29: end if
30: UPDATESTATS(val, alg)

31: end procedure

3.5 Pruner

The main motivation for applying HHs is arguably their
ability to adaptively combine search diversification and in-
tensification in order to produce good solutions. However,
in our case, since we apply meta-heuristics as a set of basic
heuristics, it might also make sense to try and pick the one
that best fits the problem at hand, since meta-heuristics
themselves could deal with balancing between exploration
and exploitation to a certain degree, with varying success
depending on the problem.

The Pruner HH is designed with this idea in mind. It
initially uses the entire collection of available algorithms A,
but as the search proceeds, it removes more and more algo-
rithms from this set and does not consider them anymore.
At any given time, we will call the set of algorithms that are
still being considered the eligible set.

We decrease the size of the eligible set according to a
schedule that is defined by the maximal number of itera-
tions (or cycles) I that is assigned to each island. Recall
that in each cycle we evaluate one new solution. The size of
the eligible set in cycle r is |A|(I —r)/I.

The main idea here is that a node applies the same al-
gorithm until either the number of eligible algorithms de-
creases, or a new current best solution is received from an-
other node via gossip. When any of these events occur,
Pruner sorts the algorithms according to the best results
they have produced so far and attempts to choose an algo-
rithm that is better than the current one.



The Pruner HH is given in Algorithm 1. In this algorithm,
stats stores, for each heuristic, the best solution found so far.
Array rank is a sorted list of the algorithms (from best to
worst) based on the information contained in stats. Variable
curr holds the current algorithm.

In each cycle Pruner first computes the number n. of el-
igible algorithms. If n. has changed from the previous it-
eration, or a recent gossip message has updated the best
known solution, the current algorithm curr to be used for
subsequent run is updated as follows. First, the position of
algorithm curr in the sorted list of algorithms rank is ob-
tained through the lookup call. If the current algorithm is
no longer eligible, we switch to the best algorithm available
(that is, rank[1]). Otherwise, the algorithm one rank better
than the current algorithm is chosen.

If none of the events occur, then nothing happens: the
current algorithm is not changed.

It is important to note that—since each node manages its
own eligible set that can differ—Pruner can occasionally add
a removed algorithm again if a result is received via gossip
that ranks the given algorithm high enough.

3.6 Scanner

Apart from shrinking the eligible set in the same way as
Pruner, the key idea behind Scanner is to provide an oppor-
tunity for each algorithm in order to get a better picture of
the performance of a given algorithm, and also to allow for
possible synergic effects among the algorithms.

To achieve this, we introduce two notions. First, we define
a minimal number of consecutive executions for each heuris-
tic (building on the fact that our heuristics can themselves
jump out of local optima). Second, we keep iterating over all
the algorithms in the current eligible set and give all of them
the minimal number of consecutive executions (scanning).

Scanner is listed in Algorithm 2. Here, stats[a] stores
the latest solution obtained by algorithm a. Additional
variables are rank, a sorted list based on stats; counter,
the number of non-improving iterations for the current al-
gorithm; and phase, a state variable that stores the cur-
rent phase of the algorithm: SCAN or NORMAL. Function
MaxNonImproving(phase) takes the phase as input and re-
turns the maximum number of consecutive non-improving
iterations any algorithm is allowed to take.

Scanner is organized in two distinct phases. Phase SCAN is
activated whenever a gossip message containing a new best
solution is received. At that point, algorithms are sorted
based on the latest solutions they have found so far (stored in
stats) and variables are initialized in order to start scanning
from the first algorithm. Subsequently, a few iterations for
each of the eligible algorithms are executed, having the goal
of verifying whether the new solution just received can be
further improved by the remaining eligible algorithms.

When all the eligible algorithms have been tested, we
switch to phase NORMAL. In this phase we keep scanning
the same way as in phase SCAN except that the maximal
number of non-improving iterations is larger and depends
on time as well.

The exact formula we use is MaxNonImproving(NORMAL)
= [I/(c 'ne)], and MaxNonlmproving(SCAN) = min(15,
MaxNonImproving(NORMAL)/2), where n. is the size of the
eligible set and c is the number of iterations during which
the current algorithm has been kept to be the current al-
gorithm continuously. Note that since n. can change, this

Algorithm 2 Scanner HH

1: for r < 1to I do
2: if newBest then
3: newBest < false
4: rank < sort(stats)
5: 141
6: counter < 0
7 phase < SCAN
8: end if
9: val <+ run(ranki], bestVal)
10: counter = UPDATESTATS(val, rank[i])
11: if counter > MaxNonImproving(phase) then
12: counter < 0
13: 14 1+1
14: end if
15: if i = [|A|- (I —r)/I] then b Eligible group size
16: if phase = SCAN then
17: rank < sort(stats)
18: phase <— NORMAL
19: end if
20: 141
21: end if

22: p <+ getRandomPeer()
23: send (bestVal, bestAlg) to p

> peer sampling service

24: end for

25: procedure UPDATESTATS(val, alg)
26: stats|alg] < val

27: if wval is better than bestVal then
28: bestVal < val

29: bestAlg < alg

30: return 0

31: else

32: return counter + 1

33: end if

34: end procedure
35: procedure ONRECEIVE((val, alg))
36: if wval is better than bestVal then

37: newBest < true
38: end if
39: UPDATESTATS(val, alg)

40: end procedure

recursive formula cannot be solved exactly independently of
time, but nevertheless it is approximately /I /ne. This set-
ting, as well as all other design decisions, are a result of
extensive preliminary experiments with earlier versions and
alternatives.

4. EXPERIMENTAL RESULTS

The experiments were run using PeerSim, a network simu-
lator originally developed for experimenting with large scale
peer-to-peer protocols, such as gossip-based multicast and
aggregation [17]. The source code of the PeerSim implemen-
tation of the HHs is available from the PeerSim homepage.

In the following we outline the experimental setup and
then discuss the results obtained.

4.1 Test Functions

We chose well-known test functions as shown in Table 3.
We included Spherel0 as an easy unimodal function. Rosen-
brock1l0 and Zakharovl0 are included as non-trivial uni-



name short description
StatEq equal share for heuristics in space
DynEq | equal share for heuristics in time

Tabu an island based version of [6]

SDigmo | static variant of the HH inspired by [22]
DDigmo | dynamic variant of the HH inspired by [22]
Pruner focusing search on best heuristics

Scanner | attempting to give a chance to every heuristic

Table 2: Summary of our pool of HHs

modal functions. The rest of the functions are multimodal.
Griewank10 is similar to Spherel0 with high frequency sinu-
soidal “bumps” superimposed on it. Schaffer10 is a sphere-
symmetric function where the global minimum is surrounded
by deceptive spheres. Levy4 is not unlike Griewank10, but is
more asymmetric, and involves higher amplitude noise too.

Cassinil and Cassini2 are realistic applications related to
the Cassini spacecraft trajectory design problem of the Eu-
ropean Space Agency (ESA). The two problems have 6 and
22 real variables, respectively, and an unknown number of
local optima. These problems have been extensively stud-
ied and are known to contain an enormous number of local
optima and to be strongly deceptive for local optimizers [1].

4.2 Experimental Setup

In our experiments we varied the following parameters:

e network size (V) the number of nodes (islands) in
the network

e function evaluations (F) the number of overall func-
tion evaluations performed in the network

For a combination of network size N and overall function
evaluations F, each island is assigned an equal number of
function evaluations: E/N.

We ran 10 independent experiments for each combination
of £ and N where

N e {2°,2",...,2"} and E € {2'°,2"% 2'7 2*0},

for every possible algorithm in Table 2 and the standalone
versions of the algorithms in Table 1, on each test function.

The outcome of a single experiment is the best solution
found in the network.

4.3 Filtering the Raw Outcome

Our primary goal is to compare the algorithms from the
point of view of stability and reliable good performance
across a wide range of parameters, since these are the trade-
mark features of a good HH.

To clean the generated data from noise, before analyzing
the results we first selected only one value for parameter
E for each function. The reason is that if F is too large,
then the results are inconclusive: all the algorithms produce
almost identical results very close to the global optimum,
which makes it impossible to differentiate between the algo-
rithms. This was problematic especially for the very easy
functions: Sphere and Zakharov.

If F is very small, then none of the algorithms produce
very good results, so comparison is again not really worth-
while. We selected the value that differentiates most among
the algorithms: F = 2%° for Cassinil, Cassini2, Griewank,

Number of times best, 2nd best,...,10th best
StatEq 4 12 8 7 4 7 3 5 3 1
SDigmo 6 4 6 11 10 6 3 1 2 4
Pruner 5 6 11 7 7 4 3 3 3 3
Al 9 2 1 3 5 11 7 3 2 2
Scanner 7 5 6 1 5 2 5 2 5
A4 8 7 1 1 3 4 3 5 3 5
DynEq 2 2 3 4 2 5 T 7T 7 5
DDigmo | 1 3 4 3 2 2 9 8 6 7
A5 4 3 4 5 4 2 1 3 1 4
AT 5 6 2 1 3 2 7 3 3
A6 2 1 2 7 4 2 3 3 2 1
A3 2 2 4 3 1 1 3 1 5 8
Tabu 1 2 2 3 3 4 5 8 4
A2 1 2 2 4 1 2 7 2
A8 1 2 4 2 1 4 2

Table 5: Mean best fitness rank statistics.

Schaffer and Rosenbrock; E = 217 for Levy, and E = 2'2 for
Sphere and Zakharov.

Network size is also important to consider. Large networks
(N > 2') allow too few evaluations per island even for £ =
229 the largest value of E; while in small networks (N <
2?) the behavior of the algorithms is rather different than
in larger networks, and, quite interestingly, results for the
same value of E are of lower quality than in larger networks.
Since we are interested in relatively large networks where all
the islands still have a reasonable number of evaluations,
we removed the experiments with the indicated extremal
network sizes.

4.4 Dominance Analysis

In the remaining data, we were interested in characterizing
dominant protocols, that perform well in every case. To
achieve this, we calculated the dominance matrix as shown
in Table 4. In this matrix, an entry a; ; denotes the number
of different parameter settings, where the average of the best
value found during each of the 10 independent runs (also
called the mean best fitness measure) by algorithm 4 (column
index) was better than that of algorithm j (row index). The
sum a; ; + a;j,; is the number of different parameter settings,
that is, the number of different types of experiments in the
dataset.

In addition, we also list ranking information for the mean
best fitness in Table 5. In the table the first column contains
the number of different parameter settings where the mean
best fitness of the given algorithm was best; the second col-
umn contains the number of times it was second best, and
SO on.

These two tables together offer interesting insights into
the performance of the algorithms. First of all, we can see
that the most dominant HH is one of our baseline heuristics,
StatEq. The second best heuristic, SDigmo, is dominated
by StatEq by a substantial margin: 34 to 22.

As a general pattern, we see that HHs that tend to be
static and do not change the heuristic on an island too of-
ten tend to be better (more dominant) than the dynamic
variants, so this feature seems to be desirable in an island
model.

Another observation is that HHs consistently and very
convincingly dominate all the algorithms in A, which clearly
underlines the main advantage of HHs. The best performing
algorithm according to this measure is A1, which ranks 4th.

Looking at Table 5, however, we notice that Al has the
largest number of wins among the possible parameter set-



Function f(x) D f(z™) K
Spherel0 S0 7 [-5.12,5.12]"° 0 1
Rosenbrock10 | 37 100(wit1 — #7)° + (zi — 1)° [—100, 100]"° 0 1
Zakharov10 [ Y00 27 + (30,2 ixi/2)2 + (30,2, ixi/2)" [-5,10]"° 0 1
Griewank10 | 321°, 22/4000 — []'2, cos (x /\/E) +1 [—600, 600]'° 0 ~ 101
Schaffer10 0.5+ (sin2(\/ S0 a?) —0.5)/ [—100, 100]'° 0 ~ 63 spheres
(1+ (3532, 21)/1000)°
Levy4 sin?(3rx1) + >, (v — 1)2(1 + sin® (37wi41)) + [~10, 10]* —21.502356 71000
(x4 — 1)(1 + sin?(27x4))
Cassinil description available from ESA at http://www.esa.int/gsp/ACT/inf/op/globopt/evvejs.htm
Cassini2 description available from ESA at http://www.esa.int/gsp/ACT/inf/op/globopt/edvdvdedjds.htm

Table 3: Test functions. D: search space; f(z*): global minimum value; K :

Pruner

number of local minima.

StatEq  SDigmo Al Scanner | A4 DynEq DDigmo A5 A7 | A6 A3 Tabu A2 A8 | sum
StatEq 34 31 32 35 38 45 47 44 33 46 47 48 47 49 576
SDigmo 22 30 31 35 37 43 46 41 34 42 49 49 49 47 555
Pruner 25 26 38 38 31 43 43 37 39 39 47 43 52 49 550
Al 24 25 18 25 31 39 39 31 41 33 36 36 42 43 463
Scanner 21 21 18 31 29 29 32 32 35 | 33 40 33 46 44 | 444
Ad 18 19 25 25 27 24 24 39 36 | 38 34 44 36 41 | 430
DynEq 11 13 13 17 27 32 20 35 30 38 40 38 45 49 408
DDigmo 9 10 13 17 24 32 36 34 27 35 40 36 45 49 407
A5 12 15 19 25 24 17 21 22 29 | 38 28 38 34 44 | 366
AT 23 22 17 15 21 20 26 29 27 28 30 25 33 35 351
A6 10 14 17 23 23 18 18 21 18 28 28 34 32 46 | 330
A3 9 7 9 20 16 22 16 16 28 26 | 28 28 40 46 | 311
Tabu 8 7 13 20 23 12 18 20 18 31 22 28 32 37 289
A2 9 7 4 14 10 20 11 11 22 23| 24 16 24 43 | 238
A8 7 9 7 13 12 15 7 7 12 21 | 10 10 19 13 162

Table 4: Dominance matrix based on mean best fitness.

N QNOumber Oimme; bezt’ 21:3(1 bESt"é"wth beft too easy for most of the algorithms so they should be given
StatEq 5 9 6 7 4 8 5 4 2 2 less weight in the comparison. On the dataset without the
Shigmo | 4 7 10 7 7 3 5 3 2 1 easy functions, we see a slightly altered dominance matrix
g;‘:g; g 2 6 2 i ‘61 g g g Z; (Table 8). Algorithm Al now seems less favorable: it turns
AT T 71T 5 1 5 5 1 3o 7 out Al excels on the easy functions primarily. However,
Scanner 4 8 6 11 5 1 2 the best three HHs are still the same as in Table 4, which
AT 4 4 5 1.3 6 6 9 6 1 provides further evidence that a good HH can in fact achieve
DDigmo | 5 3 3 4 4 8 7 5 5 - . .
Tabu 1 2 1 6 6 4 4 1 4 9 a better performance than any of the basic algorithms it is
NG T 3 3 2 1 1 3 5 12 5 based on, and that this performance is rather stable as well.
A3 2 2 1 2 2 2 2 7 6
A2 5 2 3 1 2.7 5 4.5 Statistical Tests
A6 1 3 3 1 1 3 3 3 5 ) ) )
A8 12 1 2 1 1 2 5 Before turning to a more fine-grained presentation of the

Table 6: Minimal best fitness rank statistics.

tings. There is a catch though: its ranking distribution is
bimodal: it has another peak at around rank 6; this means
that Al is often the best, but when it is not best, it is rather
bad. HHs show a more reliable and stable pattern.

This is even better illustrated by Table 6 which, instead of
the mean best fitness, is calculated based on the best result
of the 10 independent runs: we see that A1 can be very good,
but its performance is quite unreliable. The corresponding
dominance matrix is shown in Table 7, where the best HHs
have the same order, but Al leaps ahead in dominance.

Naturally, dominance depends on the set of test functions
we have examined. We tried to remove the easiest functions
from the dataset: Sphere and Zakharov. These functions are

performance of the algorithms, we first discuss whether the
algorithms that have a similar dominance pattern are in fact
significantly different. Recall that we have a sample of size
10 for each parameter setting. For a pair of algorithms ¢ and
j we can ask ourselves whether their samples are significantly
different in a statistical sense?

Since we have no information about the underlying distri-
bution, and we have no reason to assume that it is Gaussian,
we use a nonparametric statistical test, the Mann-Whitney
test [10], to decide whether we can significantly differenti-
ate between ¢ and j based on the 10 samples. The results
are somewhat surprising: the difference between StatEq and
SDigmo is not statistically significant (at level 5%) in the
vast majority of parameter settings. The difference between
DDigmo and DynEq is not significant either. This is consis-
tent with the similar rank of these pairs in Tables 4 and 8.

For the rest of the algorithm pairs we could not find any
other clear case where the difference could be questioned.



Al StatEq SDigmo Pruner DynEq | A4 Scanner A7 DDigmo Tabu | A5 A3 A2 A6 A8 | sum
Al 36 31 36 42 40 35 42 42 40 42 43 41 43 45 558
StatEq 20 41 40 40 30 36 29 45 46 43 44 42 44 48 548
SDigmo 25 15 40 44 33 43 29 46 46 42 46 44 43 46 542
Pruner 20 16 16 25 29 41 27 28 43 40 40 39 42 45 451
DynEq 14 16 12 31 34 29 24 21 37 42 46 45 44 A7 442
A4 16 26 23 27 22 25 33 27 36 45 38 34 43 46 441
Scanner 21 20 13 15 27 31 31 31 36 41 43 43 40 45 437
A7 14 27 27 29 32 23 25 37 30 35 38 39 37 42 435
DDigmo 14 11 10 28 35 29 25 19 34 37 45 45 41 42 415
Tabu 16 10 10 13 19 20 20 26 22 35 34 34 37 38 334
A5 14 13 14 16 14 11 15 21 19 21 27 28 36 43 292
A3 13 12 10 16 10 18 13 18 11 22 29 34 32 41 279
A2 15 14 12 17 11 22 13 17 11 22 28 22 28 46 278
A6 13 12 13 14 12 13 16 19 15 19 20 24 28 42 260
A8 11 8 10 11 9 10 11 14 14 18 13 15 10 14 168

Table 7: Dominance matrix based on minimal best fitness.

StatEq  SDigmo Pruner A4 A5 | A1 A6 Scanner DDigmo DynEq | Tabu A7 A3 A2 A8 | sum
StatEq 27 27 26 31 26 33 33 37 37 36 28 35 35 35 446
SDigmo 15 26 24 27 25 28 30 36 33 35 28 35 35 33 410
Pruner 15 16 19 23 31 25 31 32 32 30 32 34 39 35 394
A4 16 18 23 25 22 25 25 22 22 30 32 30 32 30 352
A5 11 15 19 17 24 28 23 21 20 27 26 28 34 36 329
Al 16 17 11 20 18 20 18 29 30 23 32 25 31 29 319
A6 9 14 17 17 14 22 22 20 17 24 26 28 32 38 300
Scanner 9 12 11 17 19 24 20 20 19 21 28 28 34 30 292
DDigmo 5 6 10 20 21 13 22 22 27 24 21 28 33 35 287
DynEq 5 9 10 20 22 12 25 23 15 25 22 28 33 35 284
Tabu 6 7 12 12 15 19 18 21 18 17 28 28 32 31 264
A7 14 14 10 10 16 10 16 14 21 20 14 20 23 21 223
A3 7 7 8 12 14 17 14 14 14 14 14 22 34 32 223
A2 7 7 3 10 8 11 10 9 9 10 19 8 29 148
A8 7 9 7 12 6 13 4 12 7 7 11 21 10 13 139

Table 8: Dominance matrix based on mean best fitness, excluding Sphere and Zakharov from the dataset.

4.6 Performance on Test Functions

Based on the Mann-Whitney tests, and the fact that StatEq
dominates SDigmo, we exclude SDigmo from further consid-
eration. Taking this into account, and based on the dom-
inance results, we identify StatEq, Pruner, and Scanner as
the best HHs, and Al and A4 as the best basic heuristics.
Figure 1 illustrates mean best fitness as a function of net-
work size for the non-trivial test functions.

We notice that StatEq is very stable and tends to be at
the lower bound of the other algorithms (or it is the best,
see Cassinil) except for a few special cases where A4 and
Scanner perform well.

Finally, we note that Scanner actually improved the best
known solution to Cassinil.! Scanner, Pruner and SDigmo
produced competitive results for Cassini2 as well, e.g. SDigmo
reached 8.410157744690402, although with tuned parame-
ters and E = 2?3, However, this might serve as an reminder
that although StatEq is the most stable dominant method,
and as such the most preferable HH in our set, for specific
problems other heuristics might yield a better peak perfor-
mance.

S. CONCLUSIONS

In this paper we provided convincing evidence through
an extensive experimental analysis that a conceptually very
simple baseline method is a quite competitive HH in a large

1Cassinil(—789.7652528252638, 158.30958439573675,
449.38588149034445, 54.713196036801925, 1024.7266958960276,
4552.859162641155) = 4.930707804754513

scale parallel environment using a standard island model.

We also presented promising HHs such as Pruner and
Scanner that show a competitive performance with respect
to both dominance and peak performance as well on certain
problems.

It is also clear that this environment favors conservative
methods, that is, an island should not change its heuristic
very often. This could be due to the fact that variants of
differential evolution, that we mainly use as basic heuristics
due to their competitive performance and simple configura-
tion, strongly depend on the population distribution.

As a last note, we point out that although in our exper-
iments SDigmo did not turn out to be statistically differ-
ent from StatEq, it outperformed both Scanner and Pruner,
and, in general, we consider it a promising algorithm. More
research is needed to find out whether there are problems
or parameter settings where SDigmo may actually be signif-
icantly superior to StatEq.
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