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Abstract

This paper introduces the wave model, a novel
approach on analyzing the behavior of GAs. Our
aim is to give techniques that have practical rele-
vance and provide tools for improving the perfor-
mance of the GA or for discovering simple and
effective heuristics on certain problem classes.
The wave analysis is the process of building wave
models of problem instances of a problem class
and extracting common features that characterize
the problem class in question. A wave model is
made of paths which are composed of subsets of
the search space (features) that are relevant from
the viewpoint of the search. The GA is described
as a basicly sequential process; a wave motion
along the paths that form the wave model. The
method is demonstrated via an analysis of the
NP-complete subset sum problem. Based on the
analysis, problem specific GA modifications and
a new heuristic will be suggested that outperform
the original GA.

1 INTRODUCTION

This paper introduces the wave model, a novel approach
on analyzing the behavior of GAs. Our aim is to give tech-
niques that have practical relevance and provide tools for
improving the performance of the GA or for discovering
simple and effective heuristics on certain problem classes.

This is very important since the models known from
the literature are not capable of providing such infor-
mation. There are measures of problem difficulty such
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as [Jones et al. 1995], but they tend to be very expensive
to calculate and do not provide much more information
than the result of running the GA on the given prob-
lem. Other approaches suggest features that are responsi-
ble for problem difficulty such as deception [Whitley 1991]
or having long paths [Horn et al. 1994] but the identifi-
cation of these features for nontrivial problems is hard
and it is not clear, how to improve the performance based
on the identified features. Exact models such as Markov
chain analysis [Suzuki 1993] are not tractable on non-
trivial problems while the wave model is a trade-off be-
tween exhaustivity and practical usefulness. Forma analy-
sis [Radcliffe et al. 1994] has similar practical motivations
but while it still stands on the ground of the traditional
building block hypothesis [Goldberg 1989] the wave anal-
ysis is an attempt to shed some light on a rather different
aspect of the search process.

In section 2 the basic concepts of the wave analysis will be
discussed. In section 3 the practical application of the wave
model is demonstrated. The problem class under considera-
tion is the subset sum problem which is NP-complete. After
analyzing this problem class, problem specific GA modifi-
cations and a new heuristic will be suggested that outper-
form the original GA. Finally, the results of the paper will
be summarized.

2 THE WAVE MODEL

First the terminology should be clarified. The wave analy-
sis is the process of creating a wave model of a fixed objec-
tive function or the elements of a characteristic set of func-
tions from a problem class and then extracting the common
features of the models. The GA implementation (selection
and genetic operators) is also fixed. Thus, a wave model be-
longs to a problem instance and a GA implementation and
the wave analysis is a framework for creating and analyzing
such models.



It has to be noted that the analysis is not an automated pro-
cess. It is a framework that helps creating problem class
specific models, but finding a good wave model remains a
hard task. The evaluation of the results of the analysis (e.g.
the description of the role of the genetic operators) is non-
trivial as well. The utility of the approach is not providing
trivial methods for gaining information about a problem.
Instead, it is a “way of thinking” that makes it possible to
learn from the GA how to solve problems, and to develop
new, effective and problem class specific heuristics.

As it is widely known, the GA is a very flexible meta-
heuristic that is successful on very different problem
classes. Models of the GA try to capture the reasons of this
flexibility. For example, the oldest, schema based approach
suggested, that the search process is nothing else but the
identification of ‘building blocks’ via selection and com-
bining them together via the reproduction operators in an
implicitly parallel way. While admitting that in some cases
it may be a reasonable model, it is now widely accepted
that it is only one of the many strategies a GA can use (see
e.g. [Jelasity et al. 1996])

Using the wave analysis we look at the GA as a collection
of heuristics and in the case of a given problem class we
try to identify the one actually used by the GA. The wave
model is sequential emphasizing the similarity between the
GA and hillclimbing methods. In this framework the GA is
in fact a very general and flexible hillclimbing method.

Finally, let us mention that the possibility of generating
hard and easy problems with the help of wave models will
not be discussed in this paper due to the lack of space
though it would be rather interesting. The interested reader
will probably form a picture about this issue by the end of
this section anyway.

Now, let us fix the notations. Let S be the search space,
f : S → IR the objective function, C the coding space
and g : S → C the injective coding function. For the
sake of simplicity, the notation f(c) (c ∈ C) will be used
instead of f(g−1(c)). Let P0 be the initial population and
Pi the population at step i. Let f(Pi) be the average func-
tion value of the individuals in population Pi. The objective
function will be maximized.

2.1 WAVES

Before introducing the concept of waves, an assumption
will be made: f(Pi) ≤ f(Pj) if i < j and the variance of
f in the succeeding populations does not increase. This as-
sumption is rather weak since it follows from the properties
of the selection mechanisms commonly used in GAs (see
e.g.[Blickle et al. 1995]).

A wave needs a space in which it can spread. To con-
struct this space, let us sort the elements of C along a one-
dimensional line according to the partial ordering given by
f . Then, every element in this ordering will be a subset of
C with elements having the same function value. Observe
that the above assumption means that during the search the
population can be looked at as a wave that spreads towards
the region with the better values. Such a wave is shown in
Fig. 1.
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Fig. 1. Here S = [0, 1], f(x) = x. The population size is 50.
Ranking selection and binary encoding were used. The evaluation
number is 100, 300 and 500 respectively. The height of the box at
point i indicates the proportion of Prefix1

[i,i] in the population (see
Definition 4).

The goal of creating a wave model is to extract the prob-
lem specific characteristics of this wave motion. The main
method of achieving this goal will be a discretization in
terms of characteristic features of C and the result of this
will be called a path. Paths will be defined in the next sec-
tion.



2.2 PATHS

First, let us define a partial ordering over the subsets of C
as it was done in [Vose 1991].

Definition 1. Let C1, C2 ⊂ C. C1 < C2 iff
maxc∈C1

f(c) < minc∈C2
f(c).

The next definition will be the basis of the definition of
path.

Definition 2. Let Ci ⊂ C, (i = 1, . . . , k). The sequence
C1, . . . , Ck is an increasing sequence of features iff Ci <
Cj for every i < j.

Every path will be an increasing sequence of features but
several restrictions have to be considered. The first and
most natural property an increasing sequence must have to
be a path is the wave motion property.

Definition 3. An increasing sequence of features
C1, . . . , Ck has the wave motion property iff for ev-
ery i Pr(Ci ⊇ Pj for some j) ≈ 1. (where Pr() stands for
probability and Pj is the population at step j).

Observe that the succeeding elements of the sequence with
the wave motion property has to cover the population one
after another because it has been assumed that the aver-
age fitness increases during the search and the sequence in
question is increasing in the sense of Definition 2. The def-
inition allows us to verify the wave motion property both
empirically and mathematically. Figure 2 exemplifies the
wave motion property. The definition of the elements of the
increasing sequence illustrated in Fig. 2 is the following:

Definition 4. Let c ∈ {a, b}n. c has the feature Prefixa
[i,j]

if the first k letter of c is a (i ≤ k ≤ j) and if k < n then
the (k + 1)th letter of c is b.

Example 1. Let C = {0, 1}4. Then, using the traditional
schema notation, Prefix1

[1,2] = 10∗∗∪ 110∗, Prefix0
[2,4] =

001∗ ∪ {0001, 0000}.

Let us shed some light on how to read the figures similar to
Fig. 2. Every graph in the figures corresponds to a feature.
A graph depicts the number of elements in the given gener-
ation (x-axis) having the feature in question. Instead of av-
eraging the results, the graphs contain a continous line for
every experiment performed. For example, Fig. 2 clearly
shows that in generation 10 Prefix1

[0,5] is almost not repre-
sented in most of the experiments, Prefix1

[6,12] dominates
the generation i.e. the wave is here in generation 10 and
Prefix1

[13,20] starts gaining strength.
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Fig. 2. Here S = [0, 1], f(x) = x. The population size was
50. Ranking selection and 20-bit binary encoding were used.
The evaluation number was 1000. 50 independent runs were per-
formed. The number of representatives of the features Prefix1

[0,5],
Prefix1

[6,12] and Prefix1
[13,20] are shown as the function of genera-

tion index for every run.

At this point a natural question arises: can we accept an
increasing sequence as a model of the GA if the sequence
in question shows the wave motion property. The answer
is certainly no. The problem is that if Pi ⊂ A holds for
some feature A and for a population Pi then Pi ⊂ B will
also be true for any B ⊃ A. To overcome this difficulty,
it has to be required that every element of the increasing
sequence of features has to be minimal in the sense of the
next definition:

Definition 5. An element of an increasing sequence with
the wave motion property Ci is minimal if the replacing of
Ci with any of its subsets results in a new sequence that
does not have the wave motion property anymore.

Now the definition of a path can be given.

Definition 6. An increasing sequence of features is a path
if it has the wave motion property and every element is min-
imal in it.



2.3 PATH DECOMPOSITION

Definition 6 is still not sufficient for our purposes; some re-
finements have to be made. It may very well happen that
a path says little about the process inside the GA and can-
not be a basis of improving the performance of the search.
The problem is connected with the multimodality of the
objective function. To shed some light on this issue, let us
consider the example shown in Fig. 3. Though it is a path,
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Fig. 3. Here S = [0, 1], f(x) = |x−0.5|. The population size was
50. Ranking selection and 20-bit binary encoding were used. Only
1-point crossover was used with a probability of 1. The evalua-
tion number was 1000. 50 independent runs were performed. The
number of representatives of the features Prefix1

[1,5]∪Prefix0
[1,5],

Prefix1
[6,12]∪Prefix0

[6,12] and Prefix1
[13,20]∪Prefix0

[13,20] are shown
as the function of generation index for every run.

it is clear that if for the starting population P0 ⊂Prefix1
[1,5]

holds then with the given settings no solutions will be gen-
erated that would start with a 0 and in fact the search will
be identical with the earlier example shown in Fig. 2 so
the sequence Prefix1

[1,5], Prefix1
[6,12], Prefix1

[13,20] is a path.
Similarly, its 0-prefixed counterpart is a path as well. The
above comments make it clear that the path in question has
some kind of structure and the information about this struc-

ture is essential from the viewpoint of a good model. The
above phenomenon motivates the next definition.

Definition 7. A path C1, . . . , Ck is complex iff there are
two paths B1, . . . , Bk and A1, . . . , Ak such that Bi∩Ai =
∅ and Bi∪Ai = Ci (i = 1, . . . , k). If a path is not complex
then it is simple.

Now the definition of the wave model can be given.

Definition 8. A wave model of the search performed by an
implementation of the GA on a given objective function is a
set of simple paths such that for every method used for gen-
erating the initial population P0 there is exactly one path
in which the first feature C1 covers P0 with a probability
approaching 1 (Pr(C1 ⊃ P0) ≈ 1).

This definition of the wave model is very simple and could
be refined in several ways. For example it says nothing
about the relation of different paths or other possible types
of decompositions of paths. However, for the present dis-
cussion it suffices since the focus is on the empirical results
of section 3.

3 THE SUBSET SUM PROBLEM

In this section we demonstrate the wave analysis using the
subset sum problem which is NP-complete. Then, using the
wave model, the performance of the GA will be improved
and a heuristic will also be given that outperforms the orig-
inal GA.

3.1 PROBLEM DESCRIPTION AND
REPRESENTATION

In the case of the subset sum problem we are given a set
W = {w1, w2, . . . , wn} of n integers and a large integer
M . We would like to find a V ⊆ W such that the sum
of the elements in V is closest to, without exceeding, M .
This problem is NP-complete. Let us denote the sum of the
elements in W by SW .

We created our problem instances in a similar way to the
method used in [Khuri et al. 1993]. The size of W was
set to 100 and the elements of W were drawn randomly
with a uniform distribution from the interval [0, 104] in-
stead of [0, 103] (as was done in [Khuri et al. 1993]) to ob-
tain larger variance. According to the preliminary experi-
ments, the larger variance of W results in harder problem
instances. Five problem instances were generated (SUB1,
SUB2, SUB3, SUB4 and SUB5). Since the value of M
seemed to be interesting during the preliminary experi-
ments, M -s was set in a different way for all the five in-
stances. We set Mi (M corresponding to the ith problem



instance SUBi) to the closest integer to SWi · i/9 where
SWi is the SW corresponding to SUBi.1 (It should be noted
that exact solutions do exist for the examined problem in-
stances.)

We used the same coding and objective function as sug-
gested in [Khuri et al. 1993]. C was {0, 1}100. If x ∈ C

(x = (x1, x2, . . . , x100)), then let P (x) =
∑100

i=1 xiwi, and
then

−f(x) = a(M − P (x)) + (1 − a)P (x)

where a = 1 when x is feasible (i.e. M − P (e) ≥ 0) and
a = 0 otherwise.

3.2 WAVE ANALYSIS

The experiments were performed with GENE-
SIS [Grefenstette 1984]. The selection type was ranking
selection. The operators were 1-point crossover and
traditional mutation. The probabilities of the operators are
1 and 0.003 if not otherwise stated. The population size
was 100 and the number of evaluations was 5000 in every
experiment. The initial populations were generated by a
uniform random sampling of C.

Before giving the analysis an important issue has to be dis-
cussed: the methods for identifying the features that would
form the paths of the wave model. In general, it is a tough
problem and requires a lot of work. In fact, it needs a
scientific research: making a hypothesis, verifying it do-
ing experiments with the GA, improving the hypothesis
and so on. The difficulty is hidden in the fact that the set
of possible features for given configurations of the GA is
very large and mostly undiscovered. Schemta form only a
(maybe small) subset of this collection of features. For ex-
ample, the features that will arise in this work are fairly
independent of schemata and other examples are given
in [Jelasity et al. 1996]. It is very likely that any automation
of this feature-finding process (if possible) would involve
very powerful and intelligent computational methods. The
question is: is it worth doing the above research? This sec-
tion implies that the answer is yes. There is hope that as a
result of giving a wave model of a problem, we can extract
common features of the whole problem class that makes it
possible to improve the performance of the GA or even to
develop effective problem class specific heuristics.

Now let us see the wave analysis of the subset sum prob-
lem. Experimenting with the GA, it has been found that
on every problem instances the search has two phases: the
distribution optimization phase and the hillclimbing phase.

1 Instances with an M > SW/2 have an ‘almost’ equivalent
problem with an M ′ = SW−M . ‘Almost’ equivalent, because
of the asymmetric construction of the objective function.

3.2.1 Distribution optimization

This phase is connected to the size of M . The method for
generating the initial population has a special bias regard-
ing the number of bits. This factor has a gaussian distribu-
tion with a mean value of 50 (the half of the string-length).
This means that most of the elements in P0 have approxi-
mately 50 1s so the expected value of the fitness function is
SW/2. If M is smaller than SW/2 then the initial popula-
tion can be expected to have a poor performance. Distribu-
tion optimization means that the GA alters the distribution
and the number of 1s to a better configuration. This phe-
nomenon is the most characteristic in the case of SUB1 so
we will concentrate on this problem instance here. To con-
struct a path for SUB1 let us first define a feature:

Definition 9. A c ∈ C has the feature L[i,j] if the subset
defined by c contains k of the largest 50 elements of W and
i ≤ k ≤ j.

Then, we claim that the sequence L[15,30], L[5,14], L[0,4]

is a path. The mathematical considerations implying that
the above sequence is increasing with a high probability
(w.r.t. the samples taken by the succeeding populations) are
straightforward and elemental and therefore omitted. The
empirical results shown in Fig. 4 imply the wave property.
The minimality and simplicity of the path are also trivial
if considering the definitions of these properties (see sec-
tion 2).

Another argument beside this model is that it predicts2 that
the high mutation probability which has a bias towards
the initial distribution of bits in the solutions detaining
the wave motion of the above path will decrease the per-
formance. Experimental results justify the prediction (see
Fig. 5 and NAIV-M in Table 2).

3.2.2 The Hillclimbing Phase

This phase begins when the optimization of the bit distri-
bution in the solutions has been performed. The model of
this second phase does not share the linear style of the first
phase. On the contrary, we suggest that there is an enor-
mous number of paths in the model of this phase that are
built of relatively small sets and are highly problem in-
stance specific. This is why this phase is called the hill-
climbing phase; such path structure calls for a hillclimbing
strategy. This claim is supported by section 3.3.

There are several arguments that support our suggestion re-
garding the path structure of this phase. First, every run

2 Prediction is possible because the path under consideration
covers the whole search space and therefore does not allow any
other paths to exist.
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Fig. 4. The number of representatives of L[15,30], L[5,14] and L[0,4]

respectively. The results of 50 runs are shown as a function of
generation index.

on every problem resulted in a different solution that are
considerably far from each other (see Table 1). The many
optimal solutions found do not seem to have any common
feature except the bit distribution. Results of coding the-
ory [Lint 1992] also support that a great number of paths
can exist without interfering with each other. As it was
shown in [Jelasity et al. 1995], GAS, a GA with a special
niching technique supporting the separate handling of dif-
ferent local optima outperformed the standard GA on this
problem. Finally, the modifications of the GA that were
made using this hypothesis were successful as it will be
seen in section 3.3.

3.2.3 The Wave Model

As the mindful reader has observed already, no exact wave
models have been given for any of the problem instances
under consideration. Since the aim of the wave analysis is
to extract characteristic features of whole problem classes,
the problem instance specific details (such as the exact path
structure of the second phase for a given problem instance)
are not important. What was given is a general characteri-
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Fig. 5. The proportions of L[15,30], L[5,14] and L[0,4] respectively.
The probability of mutation is increased to 0.06. The results of 50
runs are shown as a function of generation index.

zation of the search on an arbitrary problem instance of a
class of the subset sum problem.

3.3 APPLICATION OF THE RESULTS

As it has been suggested, the search has two phases: the bit
distribution optimization phase and the hillclimbing phase.
It will be shown that both require extra computational effort
that can be saved. In the following, the modified algorithms
will be described.

OPTDISTR, distribution optimization. This phase can be
totally eliminated by explicitly ensuring that the bit distri-
bution is optimal from the very beginning of the search w.r.t
the bias of the population initialization procedure. This was
done by modifying the problem instances.3 For a problem
instance SUBi from the base set Wi the ki largest elements
have been deleted where ki was such that the sum of the
remaining elements of Wi was the closest to 2Mi. A solu-

3 The algorithm of the modification is independent from the
problem instances so can be looked at as a problem class spe-
cific modification of the GA.



Hamming distance
min. max. average variance

SUB1 13 69 47.56 91.89
SUB2 24 63 47.55 50.5
SUB3 34 65 49.91 26.2
SUB4 34 68 49.71 26.77
SUB5 35 64 49.97 25.21

Table 1. The values correspond to sets of optimal solutions of
problem instances found during all the experiments icluding the
ones with the modifications of the GA (section 3.3). The mini-
mum, the maximum, the average and the variance of the Ham-
ming distences of pairs from these sets are shown.

tion of a modified problem instance naturally defines a so-
lution of the original problem instance with the same func-
tion value.

All the following algorithms in this section use these mod-
ified problem instances.

5X1000, hillclimbing phase. According to our model,
there are a lot of paths in this phase. Since they are rather
far from each other (see 1) and do not seem to show any
common structure it was assumed that it would be a good
idea process them separately. Therefore the population size
was reduced to 2 and the GA was run 5 times with 1000
evaluations in each to ensure that only one path is processed
at a time. Then, the best solution was picked as a result.
The only operator was mutation with a probability of 0.06.
Note that this algorithm is rather similar to – though more
flexible than – the stochastic hillclimber.

HEUR, a heuristic. To examine the effect of the optimal
bit distribution a heuristic has been introduced which sim-
ply generated 5000 random individuals on the modified
problem instances. This method is in fact equivalent to gen-
erating an initial population with 5000 elements.

3.3.1 Evaluation

It can be seen that the optimal bit distribution is essen-
tial; even the random search (HEUR) performed well though
only the bit distribution was optimized.

The application of the information about the hillclimbing
phase was useful as well. 5X1000 had the best average per-
formance on almost every problem instance especially on
SUB5 which is the hardest (the largest) problem instance
since the smallest set is subtracted from W5 due to the bit
distribution optimization. Note that no fine tuning of the
parameters have been performed to adapt the method to
smaller problems. Table 2 clearly shows that the model has
practical relevance.

4 SUMMARY

In this paper the wave analysis of GAs has been described.
The wave analysis is the process of building wave mod-
els of problem instances of a problem class and extract-
ing common features that characterize the problem class in
question. A wave model is made of paths which are com-
posed of subsets of the search space (features) that are rele-
vant from the viewpoint of the search. The GA is described
as a basicly sequential process; a wave motion along the
paths that form the wave model.

The above mentioned features include but are not at all
limited to schemata. In fact there are many that are inde-
pendent of schemata such as those involved in the wave
analysis of the subset sum problem presented in this paper.
Using this analysis, modifications of the naiv GA has been
suggested that outperformed the original algorithm on the
subset sum problem class.
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